
DRAW: A Recurrent Neural Network For Image Generation

Karol Gregor KAROLG@GOOGLE.COM

Ivo Danihelka DANIHELKA@GOOGLE.COM

Alex Graves GRAVESA@GOOGLE.COM

Danilo Jimenez Rezende DANILOR@GOOGLE.COM

Daan Wierstra WIERSTRA@GOOGLE.COM

Google DeepMind

Abstract

This paper introduces the Deep Recurrent Atten-

tive Writer (DRAW) neural network architecture

for image generation. DRAW networks combine

a novel spatial attention mechanism that mimics

the foveation of the human eye, with a sequential

variational auto-encoding framework that allows

for the iterative construction of complex images.

The system substantially improves on the state

of the art for generative models on MNIST, and,

when trained on the Street View House Numbers

dataset, it generates images that cannot be distin-

guished from real data with the naked eye.

1. Introduction

A person asked to draw, paint or otherwise recreate a visual

scene will naturally do so in a sequential, iterative fashion,

reassessing their handiwork after each modification. Rough

outlines are gradually replaced by precise forms, lines are

sharpened, darkened or erased, shapes are altered, and the

final picture emerges. Most approaches to automatic im-

age generation, however, aim to generate entire scenes at

once. In the context of generative neural networks, this typ-

ically means that all the pixels are conditioned on a single

latent distribution (Dayan et al., 1995; Hinton & Salakhut-

dinov, 2006; Larochelle & Murray, 2011). As well as pre-

cluding the possibility of iterative self-correction, the “one

shot” approach is fundamentally difficult to scale to large

images. The Deep Recurrent Attentive Writer (DRAW) ar-

chitecture represents a shift towards a more natural form of

image construction, in which parts of a scene are created

independently from others, and approximate sketches are

successively refined.

Proceedings of the 32
nd International Conference on Machine

Learning, Lille, France, 2015. JMLR: W&CP volume 37. Copy-
right 2015 by the author(s).

Time

Figure 1. A trained DRAW network generating MNIST dig-

its. Each row shows successive stages in the generation of a sin-

gle digit. Note how the lines composing the digits appear to be

“drawn” by the network. The red rectangle delimits the area at-

tended to by the network at each time-step, with the focal preci-

sion indicated by the width of the rectangle border.

The core of the DRAW architecture is a pair of recurrent

neural networks: an encoder network that compresses the

real images presented during training, and a decoder that

reconstitutes images after receiving codes. The combined

system is trained end-to-end with stochastic gradient de-

scent, where the loss function is a variational upper bound

on the log-likelihood of the data. It therefore belongs to the

family of variational auto-encoders, a recently emerged

hybrid of deep learning and variational inference that has

led to significant advances in generative modelling (Gre-

gor et al., 2014; Kingma & Welling, 2014; Rezende et al.,

2014; Mnih & Gregor, 2014; Salimans et al., 2014). Where

DRAW differs from its siblings is that, rather than generat-

DRAW: A Recurrent Neural Network For Image Generation

ing images in a single pass, it iteratively constructs scenes

through an accumulation of modifications emitted by the

decoder, each of which is observed by the encoder.

An obvious correlate of generating images step by step is

the ability to selectively attend to parts of the scene while

ignoring others. A wealth of results in the past few years

suggest that visual structure can be better captured by a se-

quence of partial glimpses, or foveations, than by a sin-

gle sweep through the entire image (Larochelle & Hinton,

2010; Denil et al., 2012; Tang et al., 2013; Ranzato, 2014;

Zheng et al., 2014; Mnih et al., 2014; Ba et al., 2014; Ser-

manet et al., 2014). The main challenge faced by sequential

attention models is learning where to look, which can be

addressed with reinforcement learning techniques such as

policy gradients (Mnih et al., 2014). The attention model in

DRAW, however, is fully differentiable, making it possible

to train with standard backpropagation. In this sense it re-

sembles the selective read and write operations developed

for the Neural Turing Machine (Graves et al., 2014).

The following section defines the DRAW architecture,

along with the loss function used for training and the pro-

cedure for image generation. Section 3 presents the selec-

tive attention model and shows how it is applied to read-

ing and modifying images. Section 4 provides experi-

mental results on the MNIST, Street View House Num-

bers and CIFAR-10 datasets, with examples of generated

images; and concluding remarks are given in Section 5.

Lastly, we would like to direct the reader to the video

accompanying this paper (https://www.youtube.

com/watch?v=Zt-7MI9eKEo) which contains exam-

ples of DRAW networks reading and generating images.

2. The DRAW Network

The basic structure of a DRAW network is similar to that of

other variational auto-encoders: an encoder network deter-

mines a distribution over latent codes that capture salient

information about the input data; a decoder network re-

ceives samples from the code distribuion and uses them to

condition its own distribution over images. However there

are three key differences. Firstly, both the encoder and de-

coder are recurrent networks in DRAW, so that a sequence

of code samples is exchanged between them; moreover the

encoder is privy to the decoder’s previous outputs, allow-

ing it to tailor the codes it sends according to the decoder’s

behaviour so far. Secondly, the decoder’s outputs are suc-

cessively added to the distribution that will ultimately gen-

erate the data, as opposed to emitting this distribution in

a single step. And thirdly, a dynamically updated atten-

tion mechanism is used to restrict both the input region

observed by the encoder, and the output region modified

by the decoder. In simple terms, the network decides at

each time-step “where to read” and “where to write” as well

read

x

zt zt+1

P (x|z1:T)write

encoder

RNN

sample

decoder

RNN

read

x

write

encoder

RNN

sample

decoder

RNN

ct−1 ct cT σ

henc
t−1

hdec
t−1

Q(zt|x, z1:t−1) Q(zt+1|x, z1:t)

. . .

decoding

(generative model)

encoding

(inference)

x

encoder

FNN

sample

decoder

FNN

z

Q(z|x)

P (x|z)

Figure 2. Left: Conventional Variational Auto-Encoder. Dur-

ing generation, a sample z is drawn from a prior P (z) and passed

through the feedforward decoder network to compute the proba-

bility of the input P (x|z) given the sample. During inference the

input x is passed to the encoder network, producing an approx-

imate posterior Q(z|x) over latent variables. During training, z

is sampled from Q(z|x) and then used to compute the total de-

scription length KL
(

Q(Z|x)||P (Z)
)

− log(P (x|z)), which is

minimised with stochastic gradient descent. Right: DRAW Net-

work. At each time-step a sample zt from the prior P (zt) is

passed to the recurrent decoder network, which then modifies part

of the canvas matrix. The final canvas matrix cT is used to com-

pute P (x|z1:T). During inference the input is read at every time-

step and the result is passed to the encoder RNN. The RNNs at

the previous time-step specify where to read. The output of the

encoder RNN is used to compute the approximate posterior over

the latent variables at that time-step.

as “what to write”. The architecture is sketched in Fig. 2,

alongside a feedforward variational auto-encoder.

2.1. Network Architecture

Let RNN enc be the function enacted by the encoder net-

work at a single time-step. The output of RNN enc at time

t is the encoder hidden vector henc
t . Similarly the output of

the decoder RNN dec at t is the hidden vector hdec
t . In gen-

eral the encoder and decoder may be implemented by any

recurrent neural network. In our experiments we use the

Long Short-Term Memory architecture (LSTM; Hochreiter

& Schmidhuber (1997)) for both, in the extended form with

forget gates (Gers et al., 2000). We favour LSTM due

to its proven track record for handling long-range depen-

dencies in real sequential data (Graves, 2013; Sutskever

et al., 2014). Throughout the paper, we use the notation

b = W (a) to denote a linear weight matrix with bias from

the vector a to the vector b.

At each time-step t, the encoder receives input from both

the image x and from the previous decoder hidden vector

hdec
t−1. The precise form of the encoder input depends on a

read operation, which will be defined in the next section.

The output henc
t of the encoder is used to parameterise a

distribution Q(Zt|h
enc
t) over the latent vector zt. In our

https://www.youtube.com/watch?v=Zt-7MI9eKEo
https://www.youtube.com/watch?v=Zt-7MI9eKEo

DRAW: A Recurrent Neural Network For Image Generation

experiments the latent distribution is a diagonal Gaussian

N (Zt|µt, σt):

µt = W (henc
t) (1)

σt = exp (W (henc
t)) (2)

Bernoulli distributions are more common than Gaussians

for latent variables in auto-encoders (Dayan et al., 1995;

Gregor et al., 2014); however a great advantage of Gaus-

sian latents is that the gradient of a function of the sam-

ples with respect to the distribution parameters can be eas-

ily obtained using the so-called reparameterization trick

(Kingma & Welling, 2014; Rezende et al., 2014). This

makes it straightforward to back-propagate unbiased, low

variance stochastic gradients of the loss function through

the latent distribution.

At each time-step a sample zt ∼ Q(Zt|h
enc
t) drawn from

the latent distribution is passed as input to the decoder. The

output hdec
t of the decoder is added (via a write opera-

tion, defined in the sequel) to a cumulative canvas matrix

ct, which is ultimately used to reconstruct the image. The

total number of time-steps T consumed by the network be-

fore performing the reconstruction is a free parameter that

must be specified in advance.

For each image x presented to the network, c0, h
enc
0 , hdec

0

are initialised to learned biases, and the DRAW net-

work iteratively computes the following equations for t =
1 . . . , T :

x̂t = x− σ(ct−1) (3)

rt = read(xt, x̂t, h
dec

t−1) (4)

henc

t = RNN
enc(henc

t−1, [rt, h
dec

t−1]) (5)

zt ∼ Q(Zt|h
enc

t) (6)

hdec

t = RNN
dec(hdec

t−1, zt) (7)

ct = ct−1 + write(hdec

t) (8)

where x̂t is the error image, [v, w] is the concatenation

of vectors v and w into a single vector, and σ denotes

the logistic sigmoid function: σ(x) = 1
1+exp(−x) . Note

that henc
t , and hence Q(Zt|h

enc
t), depends on both x

and the history z1:t−1 of previous latent samples. We

will sometimes make this dependency explicit by writing

Q(Zt|x, z1:t−1), as shown in Fig. 2. henc can also be

passed as input to the read operation; however we did not

find that this helped performance and therefore omitted it.

2.2. Loss Function

The final canvas matrix cT is used to parameterise a model

D(X|cT) of the input data. If the input is binary, the natural

choice for D is a Bernoulli distribution with means given

by σ(cT). The reconstruction loss Lx is defined as the

negative log probability of x under D:

Lx = − logD(x|cT) (9)

The latent loss Lz for a sequence of latent distributions

Q(Zt|h
enc
t) is defined as the summed Kullback-Leibler di-

vergence of some latent prior P (Zt) from Q(Zt|h
enc
t):

Lz =

T
∑

t=1

KL
(

Q(Zt|h
enc

t)||P (Zt)
)

(10)

Note that this loss depends upon the latent samples zt
drawn from Q(Zt|h

enc
t), which depend in turn on the input

x. If the latent distribution is a diagonal Gaussian with µt,

σt as defined in Eqs 1 and 2, a simple choice for P (Zt) is

a standard Gaussian with mean zero and standard deviation

one, in which case Eq. 10 becomes

Lz =
1

2

(

T
∑

t=1

µ2
t + σ2

t − log σ2
t

)

− T/2 (11)

The total loss L for the network is the expectation of the

sum of the reconstruction and latent losses:

L = 〈Lx + Lz〉z∼Q (12)

which we optimise using a single sample of z for each

stochastic gradient descent step.

Lz can be interpreted as the number of nats required to

transmit the latent sample sequence z1:T to the decoder

from the prior, and (if x is discrete) Lx is the number of

nats required for the decoder to reconstruct x given z1:T .

The total loss is therefore equivalent to the expected com-

pression of the data by the decoder and prior.

2.3. Stochastic Data Generation

An image x̃ can be generated by a DRAW network by it-

eratively picking latent samples z̃t from the prior P , then

running the decoder to update the canvas matrix c̃t. After T
repetitions of this process the generated image is a sample

from D(X|c̃T):

z̃t ∼ P (Zt) (13)

h̃dec
t = RNN

dec(h̃dec
t−1, z̃t) (14)

c̃t = c̃t−1 + write(h̃dec
t) (15)

x̃ ∼ D(X|c̃T) (16)

Note that the encoder is not involved in image generation.

3. Read and Write Operations

The DRAW network described in the previous section is

not complete until the read and write operations in Eqs. 4

and 8 have been defined. This section describes two ways

to do so, one with selective attention and one without.

DRAW: A Recurrent Neural Network For Image Generation

3.1. Reading and Writing Without Attention

In the simplest instantiation of DRAW the entire input im-

age is passed to the encoder at every time-step, and the de-

coder modifies the entire canvas matrix at every time-step.

In this case the read and write operations reduce to

read(x, x̂t, h
dec

t−1) = [x, x̂t] (17)

write(hdec

t) = W (hdec

t) (18)

However this approach does not allow the encoder to fo-

cus on only part of the input when creating the latent dis-

tribution; nor does it allow the decoder to modify only a

part of the canvas vector. In other words it does not pro-

vide the network with an explicit selective attention mech-

anism, which we believe to be crucial to large scale image

generation. We refer to the above configuration as “DRAW

without attention”.

3.2. Selective Attention Model

To endow the network with selective attention without sac-

rificing the benefits of gradient descent training, we take in-

spiration from the differentiable attention mechanisms re-

cently used in handwriting synthesis (Graves, 2013) and

Neural Turing Machines (Graves et al., 2014). Unlike

the aforementioned works, we consider an explicitly two-

dimensional form of attention, where an array of 2D Gaus-

sian filters is applied to the image, yielding an image

‘patch’ of smoothly varying location and zoom. This con-

figuration, which we refer to simply as “DRAW”, some-

what resembles the affine transformations used in computer

graphics-based autoencoders (Tieleman, 2014).

As illustrated in Fig. 3, the N×N grid of Gaussian filters is

positioned on the image by specifying the co-ordinates of

the grid centre and the stride distance between adjacent fil-

ters. The stride controls the ‘zoom’ of the patch; that is, the

larger the stride, the larger an area of the original image will

be visible in the attention patch, but the lower the effective

resolution of the patch will be. The grid centre (gX , gY)
and stride δ (both of which are real-valued) determine the

mean location µi
X , µj

Y of the filter at row i, column j in the

patch as follows:

µi
X = gX + (i−N/2− 0.5) δ (19)

µj
Y = gY + (j −N/2− 0.5) δ (20)

Two more parameters are required to fully specify the at-

tention model: the isotropic variance σ2 of the Gaussian

filters, and a scalar intensity γ that multiplies the filter re-

sponse. Given an A × B input image x, all five attention

parameters are dynamically determined at each time step

δ

gY {

{
gX

{

Figure 3. Left: A 3× 3 grid of filters superimposed on an image.

The stride (δ) and centre location (gX , gY) are indicated. Right:

Three N × N patches extracted from the image (N = 12). The

green rectangles on the left indicate the boundary and precision

(σ) of the patches, while the patches themselves are shown to the

right. The top patch has a small δ and high σ, giving a zoomed-in

but blurry view of the centre of the digit; the middle patch has

large δ and low σ, effectively downsampling the whole image;

and the bottom patch has high δ and σ.

via a linear transformation of the decoder output hdec :

(g̃X , g̃Y , log σ
2, log δ̃, log γ) = W (hdec) (21)

gX =
A+ 1

2
(g̃X + 1) (22)

gY =
B + 1

2
(g̃Y + 1) (23)

δ =
max(A,B)− 1

N − 1
δ̃ (24)

where the variance, stride and intensity are emitted in the

log-scale to ensure positivity. The scaling of gX , gY and δ
is chosen to ensure that the initial patch (with a randomly

initialised network) roughly covers the whole input image.

Given the attention parameters emitted by the decoder, the

horizontal and vertical filterbank matrices FX and FY (di-

mensions N × A and N × B respectively) are defined as

follows:

FX [i, a] =
1

ZX

exp

(

−
(a− µi

X)2

2σ2

)

(25)

FY [j, b] =
1

ZY

exp

(

−
(b− µj

Y)
2

2σ2

)

(26)

where (i, j) is a point in the attention patch, (a, b) is a point

in the input image, and Zx, Zy are normalisation constants

that ensure that
∑

a FX [i, a] = 1 and
∑

b FY [j, b] = 1.

DRAW: A Recurrent Neural Network For Image Generation

Figure 4. Zooming. Top Left: The original 100×75 image. Top

Middle: A 12× 12 patch extracted with 144 2D Gaussian filters.

Top Right: The reconstructed image when applying transposed

filters on the patch. Bottom: Only two 2D Gaussian filters are

displayed. The first one is used to produce the top-left patch fea-

ture. The last filter is used to produce the bottom-right patch fea-

ture. By using different filter weights, the attention can be moved

to a different location.

3.3. Reading and Writing With Attention

Given FX , FY and intensity γ determined by hdec
t−1, along

with an input image x and error image x̂t, the read opera-

tion returns the concatenation of two N ×N patches from

the image and error image:

read(x, x̂t, h
dec

t−1) = γ[FY xF
T
X , FY x̂F

T
X] (27)

Note that the same filterbanks are used for both the image

and error image. For the write operation, a distinct set of

attention parameters γ̂, F̂X and F̂Y are extracted from hdec
t ,

the order of transposition is reversed, and the intensity is

inverted:

wt = W (hdec

t) (28)

write(hdec

t) =
1

γ̂
F̂T
Y wtF̂X (29)

where wt is the N ×N writing patch emitted by hdec
t . For

colour images each point in the input and error image (and

hence in the reading and writing patches) is an RGB triple.

In this case the same reading and writing filters are used for

all three channels.

4. Experimental Results

We assess the ability of DRAW to generate realistic-

looking images by training on three datasets of progres-

sively increasing visual complexity: MNIST (LeCun et al.,

1998), Street View House Numbers (SVHN) (Netzer et al.,

2011) and CIFAR-10 (Krizhevsky, 2009). The images

generated by the network are always novel (not simply

copies of training examples), and are virtually indistin-

guishable from real data for MNIST and SVHN; the gener-

ated CIFAR images are somewhat blurry, but still contain

recognisable structure from natural scenes. The binarized

MNIST results substantially improve on the state of the art.

As a preliminary exercise, we also evaluate the 2D atten-

tion module of the DRAW network on cluttered MNIST

classification.

For all experiments, the model D(X|cT) of the input data

was a Bernoulli distribution with means given by σ(cT).
For the MNIST experiments, the reconstruction loss from

Eq 9 was the usual binary cross-entropy term. For the

SVHN and CIFAR-10 experiments, the red, green and blue

pixel intensities were represented as numbers between 0

and 1, which were then interpreted as independent colour

emission probabilities. The reconstruction loss was there-

fore the cross-entropy between the pixel intensities and the

model probabilities. Although this approach worked well

in practice, it means that the training loss did not corre-

spond to the true compression cost of RGB images.

Network hyper-parameters for all the experiments are

presented in Table 3. The Adam optimisation algo-

rithm (Kingma & Ba, 2014) was used throughout. Ex-

amples of generation sequences for MNIST and SVHN

are provided in the accompanying video (https://www.

youtube.com/watch?v=Zt-7MI9eKEo).

4.1. Cluttered MNIST Classification

To test the classification efficacy of the DRAW attention

mechanism (as opposed to its ability to aid in image gener-

ation), we evaluate its performance on the 100 × 100 clut-

tered translated MNIST task (Mnih et al., 2014). Each im-

age in cluttered MNIST contains many digit-like fragments

of visual clutter that the network must distinguish from the

true digit to be classified. As illustrated in Fig. 5, having

an iterative attention model allows the network to progres-

sively zoom in on the relevant region of the image, and

ignore the clutter outside it.

Our model consists of an LSTM recurrent network that re-

ceives a 12 × 12 ‘glimpse’ from the input image at each

time-step, using the selective read operation defined in Sec-

tion 3.2. After a fixed number of glimpses the network uses

a softmax layer to classify the MNIST digit. The network

is similar to the recently introduced Recurrent Attention

Model (RAM) (Mnih et al., 2014), except that our attention

method is differentiable; we therefore refer to it as “Differ-

entiable RAM”.

The results in Table 1 demonstrate a significant improve-

ment in test error over the original RAM network. More-

over our model had only a single attention patch at each

https://www.youtube.com/watch?v=Zt-7MI9eKEo
https://www.youtube.com/watch?v=Zt-7MI9eKEo

DRAW: A Recurrent Neural Network For Image Generation

Time

Figure 5. Cluttered MNIST classification with attention. Each

sequence shows a succession of four glimpses taken by the net-

work while classifying cluttered translated MNIST. The green

rectangle indicates the size and location of the attention patch,

while the line width represents the variance of the filters.

Table 1. Classification test error on 100 × 100 Cluttered Trans-

lated MNIST.

Model Error

Convolutional, 2 layers 14.35%

RAM, 4 glimpses, 12× 12, 4 scales 9.41%

RAM, 8 glimpses, 12× 12, 4 scales 8.11%

Differentiable RAM, 4 glimpses, 12× 12 4.18%

Differentiable RAM, 8 glimpses, 12× 12 3.36%

time-step, whereas RAM used four, at different zooms.

4.2. MNIST Generation

We trained the full DRAW network as a generative model

on the binarized MNIST dataset (Salakhutdinov & Mur-

ray, 2008). This dataset has been widely studied in the

literature, allowing us to compare the numerical perfor-

mance (measured in average nats per image on the test

set) of DRAW with existing methods. Table 2 shows that

DRAW without selective attention performs comparably to

other recent generative models such as DARN, NADE and

DBMs, and that DRAW with attention considerably im-

proves on the state of the art.

Table 2. Negative log-likelihood (in nats) per test-set example on

the binarised MNIST data set. The right hand column, where

present, gives an upper bound (Eq. 12) on the negative log-

likelihood. The previous results are from [1] (Salakhutdinov &

Hinton, 2009), [2] (Murray & Salakhutdinov, 2009), [3] (Uria

et al., 2014), [4] (Raiko et al., 2014), [5] (Rezende et al., 2014),

[6] (Salimans et al., 2014), [7] (Gregor et al., 2014).

Model − log p ≤
DBM 2hl [1] ≈ 84.62
DBN 2hl [2] ≈ 84.55
NADE [3] 88.33
EoNADE 2hl (128 orderings) [3] 85.10
EoNADE-5 2hl (128 orderings) [4] 84.68
DLGM [5] ≈ 86.60
DLGM 8 leapfrog steps [6] ≈ 85.51 88.30
DARN 1hl [7] ≈ 84.13 88.30
DARN 12hl [7] - 87.72

DRAW without attention - 87.40

DRAW - 80.97

Figure 6. Generated MNIST images. All digits were generated

by DRAW except those in the rightmost column, which shows the

training set images closest to those in the column second to the

right (pixelwise L2 is the distance measure). Note that the net-

work was trained on binary samples, while the generated images

are mean probabilities.

Once the DRAW network was trained, we generated

MNIST digits following the method in Section 2.3, exam-

ples of which are presented in Fig. 6. Fig. 7 illustrates

the image generation sequence for a DRAW network with-

out selective attention (see Section 3.1). It is interesting to

compare this with the generation sequence for DRAW with

attention, as depicted in Fig. 1. Whereas without attention

it progressively sharpens a blurred image in a global way,

DRAW: A Recurrent Neural Network For Image Generation

Time

Figure 7. MNIST generation sequences for DRAW without at-

tention. Notice how the network first generates a very blurry im-

age that is subsequently refined.

with attention it constructs the digit by tracing the lines—

much like a person with a pen.

4.3. MNIST Generation with Two Digits

The main motivation for using an attention-based genera-

tive model is that large images can be built up iteratively,

by adding to a small part of the image at a time. To test

this capability in a controlled fashion, we trained DRAW

to generate images with two 28 × 28 MNIST images cho-

sen at random and placed at random locations in a 60× 60
black background. In cases where the two digits overlap,

the pixel intensities were added together at each point and

clipped to be no greater than one. Examples of generated

data are shown in Fig. 8. The network typically generates

one digit and then the other, suggesting an ability to recre-

ate composite scenes from simple pieces.

4.4. Street View House Number Generation

MNIST digits are very simplistic in terms of visual struc-

ture, and we were keen to see how well DRAW performed

on natural images. Our first natural image generation ex-

periment used the multi-digit Street View House Numbers

dataset (Netzer et al., 2011). We used the same preprocess-

ing as (Goodfellow et al., 2013), yielding a 64 × 64 house

number image for each training example. The network was

then trained using 54× 54 patches extracted at random lo-

cations from the preprocessed images. The SVHN training

set contains 231,053 images, and the validation set contains

4,701 images.

The house number images generated by the network are

Figure 8. Generated MNIST images with two digits.

Figure 9. Generated SVHN images. The rightmost column

shows the training images closest (in L2 distance) to the gener-

ated images beside them. Note that the two columns are visually

similar, but the numbers are generally different.

highly realistic, as shown in Figs. 9 and 10. Fig. 11 reveals

that, despite the long training time, the DRAW network un-

derfit the SVHN training data.

4.5. Generating CIFAR Images

The most challenging dataset we applied DRAW to was

the CIFAR-10 collection of natural images (Krizhevsky,

DRAW: A Recurrent Neural Network For Image Generation

Table 3. Experimental Hyper-Parameters.

Task #glimpses LSTM #h #z Read Size Write Size

100× 100 MNIST Classification 8 256 - 12× 12 -

MNIST Model 64 256 100 2× 2 5× 5
SVHN Model 32 800 100 12× 12 12× 12
CIFAR Model 64 400 200 5× 5 5× 5

s

Time

Figure 10. SVHN Generation Sequences. The red rectangle in-

dicates the attention patch. Notice how the network draws the dig-

its one at a time, and how it moves and scales the writing patch to

produce numbers with different slopes and sizes.

 5060

 5080

 5100

 5120

 5140

 5160

 5180

 5200

 5220

 0 50 100 150 200 250 300 350

c
o

s
t

p
e

r
e

x
a

m
p

le

minibatch number (thousands)

training
validation

Figure 11. Training and validation cost on SVHN. The valida-

tion cost is consistently lower because the validation set patches

were extracted from the image centre (rather than from random

locations, as in the training set). The network was never able to

overfit on the training data.

2009). CIFAR-10 is very diverse, and with only 50,000

training examples it is very difficult to generate realistic-

Figure 12. Generated CIFAR images. The rightmost column

shows the nearest training examples to the column beside it.

looking objects without overfitting (in other words, without

copying from the training set). Nonetheless the images in

Fig. 12 demonstrate that DRAW is able to capture much of

the shape, colour and composition of real photographs.

5. Conclusion

This paper introduced the Deep Recurrent Attentive Writer

(DRAW) neural network architecture, and demonstrated its

ability to generate highly realistic natural images such as

photographs of house numbers, as well as improving on the

best known results for binarized MNIST generation. We

also established that the two-dimensional differentiable at-

tention mechanism embedded in DRAW is beneficial not

only to image generation, but also to image classification.

Acknowledgments

Of the many who assisted in creating this paper, we are es-

pecially thankful to Koray Kavukcuoglu, Volodymyr Mnih,

Jimmy Ba, Yaroslav Bulatov, Greg Wayne, Andrei Rusu

and Shakir Mohamed.

DRAW: A Recurrent Neural Network For Image Generation

References

Ba, Jimmy, Mnih, Volodymyr, and Kavukcuoglu, Koray.

Multiple object recognition with visual attention. arXiv

preprint arXiv:1412.7755, 2014.

Dayan, Peter, Hinton, Geoffrey E, Neal, Radford M, and

Zemel, Richard S. The helmholtz machine. Neural com-

putation, 7(5):889–904, 1995.

Denil, Misha, Bazzani, Loris, Larochelle, Hugo, and

de Freitas, Nando. Learning where to attend with deep

architectures for image tracking. Neural computation,

24(8):2151–2184, 2012.

Gers, Felix A, Schmidhuber, Jürgen, and Cummins, Fred.

Learning to forget: Continual prediction with lstm. Neu-

ral computation, 12(10):2451–2471, 2000.

Goodfellow, Ian J, Bulatov, Yaroslav, Ibarz, Julian,

Arnoud, Sacha, and Shet, Vinay. Multi-digit

number recognition from street view imagery using

deep convolutional neural networks. arXiv preprint

arXiv:1312.6082, 2013.

Graves, Alex. Generating sequences with recurrent neural

networks. arXiv preprint arXiv:1308.0850, 2013.

Graves, Alex, Wayne, Greg, and Danihelka, Ivo. Neural

turing machines. arXiv preprint arXiv:1410.5401, 2014.

Gregor, Karol, Danihelka, Ivo, Mnih, Andriy, Blundell,

Charles, and Wierstra, Daan. Deep autoregressive net-

works. In Proceedings of the 31st International Confer-

ence on Machine Learning, 2014.

Hinton, Geoffrey E and Salakhutdinov, Ruslan R. Reduc-

ing the dimensionality of data with neural networks. Sci-

ence, 313(5786):504–507, 2006.

Hochreiter, Sepp and Schmidhuber, Jürgen. Long short-

term memory. Neural computation, 9(8):1735–1780,

1997.

Kingma, Diederik and Ba, Jimmy. Adam: A

method for stochastic optimization. arXiv preprint

arXiv:1412.6980, 2014.

Kingma, Diederik P and Welling, Max. Auto-encoding

variational bayes. In Proceedings of the International

Conference on Learning Representations (ICLR), 2014.

Krizhevsky, Alex. Learning multiple layers of features

from tiny images. 2009.

Larochelle, Hugo and Hinton, Geoffrey E. Learning to

combine foveal glimpses with a third-order boltzmann

machine. In Advances in Neural Information Processing

Systems, pp. 1243–1251. 2010.

Larochelle, Hugo and Murray, Iain. The neural autoregres-

sive distribution estimator. Journal of Machine Learning

Research, 15:29–37, 2011.

LeCun, Yann, Bottou, Léon, Bengio, Yoshua, and Haffner,

Patrick. Gradient-based learning applied to document

recognition. Proceedings of the IEEE, 86(11):2278–

2324, 1998.

Mnih, Andriy and Gregor, Karol. Neural variational infer-

ence and learning in belief networks. In Proceedings of

the 31st International Conference on Machine Learning,

2014.

Mnih, Volodymyr, Heess, Nicolas, Graves, Alex, et al. Re-

current models of visual attention. In Advances in Neural

Information Processing Systems, pp. 2204–2212, 2014.

Murray, Iain and Salakhutdinov, Ruslan. Evaluating prob-

abilities under high-dimensional latent variable models.

In Advances in neural information processing systems,

pp. 1137–1144, 2009.

Netzer, Yuval, Wang, Tao, Coates, Adam, Bissacco,

Alessandro, Wu, Bo, and Ng, Andrew Y. Reading dig-

its in natural images with unsupervised feature learning.

2011.

Raiko, Tapani, Li, Yao, Cho, Kyunghyun, and Bengio,

Yoshua. Iterative neural autoregressive distribution es-

timator nade-k. In Advances in Neural Information Pro-

cessing Systems, pp. 325–333. 2014.

Ranzato, Marc’Aurelio. On learning where to look. arXiv

preprint arXiv:1405.5488, 2014.

Rezende, Danilo J, Mohamed, Shakir, and Wierstra, Daan.

Stochastic backpropagation and approximate inference

in deep generative models. In Proceedings of the 31st In-

ternational Conference on Machine Learning, pp. 1278–

1286, 2014.

Salakhutdinov, Ruslan and Hinton, Geoffrey E. Deep boltz-

mann machines. In International Conference on Artifi-

cial Intelligence and Statistics, pp. 448–455, 2009.

Salakhutdinov, Ruslan and Murray, Iain. On the quantita-

tive analysis of Deep Belief Networks. In Proceedings

of the 25th Annual International Conference on Machine

Learning, pp. 872–879. Omnipress, 2008.

Salimans, Tim, Kingma, Diederik P, and Welling, Max.

Markov chain monte carlo and variational inference:

Bridging the gap. arXiv preprint arXiv:1410.6460, 2014.

Sermanet, Pierre, Frome, Andrea, and Real, Esteban. At-

tention for fine-grained categorization. arXiv preprint

arXiv:1412.7054, 2014.

DRAW: A Recurrent Neural Network For Image Generation

Sutskever, Ilya, Vinyals, Oriol, and Le, Quoc VV. Se-

quence to sequence learning with neural networks. In

Advances in Neural Information Processing Systems, pp.

3104–3112, 2014.

Tang, Yichuan, Srivastava, Nitish, and Salakhutdinov, Rus-

lan. Learning generative models with visual attention.

arXiv preprint arXiv:1312.6110, 2013.

Tieleman, Tijmen. Optimizing Neural Networks that Gen-

erate Images. PhD thesis, University of Toronto, 2014.

Uria, Benigno, Murray, Iain, and Larochelle, Hugo. A deep

and tractable density estimator. In Proceedings of the

31st International Conference on Machine Learning, pp.

467–475, 2014.

Zheng, Yin, Zemel, Richard S, Zhang, Yu-Jin, and

Larochelle, Hugo. A neural autoregressive approach

to attention-based recognition. International Journal of

Computer Vision, pp. 1–13, 2014.

