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�e complex dynamical analysis of the parametric fourth-order Kim’s iterative family is made on quadratic polynomials, showing
theMATLAB codes generated to draw the fractal images necessary to complete the study.�e parameter spaces associated with the
free critical points have been analyzed, showing the stable (and unstable) regions where the selection of the parameter will provide
us the excellent schemes (or dreadful ones).

1. Introduction

It is usual to �nd nonlinear equations in the modelization
of many scienti�c and engineering problems, and a broadly
extended tools to solve them are the iterative methods.
In the last years, it has become an increasing and fruitful
area of research. More recently, complex dynamics has been
revealed as a very useful tool to deep in the understanding
of the rational functions that rise when an iterative scheme
is applied to solve the nonlinear equation �(�) = 0, with � :
C → C. �e dynamical properties of this rational function
give us important information about numerical features of
the method as its stability and reliability.

�ere is an extensive literature on the study of iteration
of rational mappings of complex variables (see [1, 2], for
instance). �e simplest and more deeply analyzed model
is obtained when �(�) is a quadratic polynomial and the
iterative process is Newton’s one. �e dynamics of this
iterative scheme has been widely studied (see, among others,
[2–4]).

In the past decade Varona, in [5] and Amat et al. in
[6] described the dynamical behavior of several well-known
iterative methods. More recently, in [7–14], the authors
studied the dynamics of di
erent iterative families. In most
of these studies, interesting dynamical planes, including some

periodical behavior and other anomalies, have been obtained.
In a few cases, the parameter planes have been also analyzed.

In order to study the dynamical behavior of an iterative
methodwhen it is applied to a polynomial�(�), it is necessary
to recall some basic dynamical concepts. For amore extensive
and comprehensive review of these concepts, see [3, 15].

Let � : Ĉ → Ĉ be a rational function, where Ĉ is the
Riemann sphere. �e orbit of a point �0 ∈ Ĉ is de�ned as
the set of successive images of �0 by the rational function,{�0, �(�0), . . . , ��(�0), . . .}.

�e dynamical behavior of the orbit of a point on the
complex plane can be classi�ed depending on its asymptotic
behavior. In this way, a point �0 ∈ C is a �xed point of � if�(�0) = �0. A �xed point is attracting, repelling, or neutral
if |��(�0)| is less than, greater than, or equal to 1, respectively.
Moreover, if |��(�0)| = 0, the �xed point is superattracting.

If �∗� is an attracting �xed point of the rational function�,
its basin of attractionA(�∗�) is de�ned as the set of preimages

of any order such that

A (�∗�) = {�0 ∈ Ĉ : �� (�0) �→ �∗�, � �→ ∞} . (1)

�e set of points whose orbits tends to an attracting �xed
point �∗� is de�ned as the Fatou set, F(�). �e complemen-

tary set, the Julia setJ(�), is the closure of the set consisting
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of its repelling �xed points and establishes the boundaries
between the basins of attraction.

In this paper, Section 2 is devoted to the complex analysis
of a known fourth-order family, due to Kim (see [16]).
�e conjugacy classes of its associated �xed point operator,
the stability of the strange �xed points, the analysis of
the free critical points, and the analysis of the parameter
and dynamical planes are made. In Section 3, the Matlab
code used to generate these tools is shown and the key
instructions are explained in order to help their eventual
modi�cation to adapt them to other iterative families. Finally,
some conclusions and the references used in this work are
presented.

2. Complex Dynamics Features of
Kim’s Family

We will focus our attention on the dynamical analysis of
a known parametric family of fourth-order methods for
solving a nonlinear equation �(�) = 0. Kim in [16] designed
a parametric class of optimal eighth-order methods, whose
two �rst steps are

�� = �� − � (��)�� (��) ,
��+1 = �� − 1 + �� + ��21 + (� − 2) � + ��2 � (�)�� (�) ,

(2)

where � = �(�)/�(�). If we suppose � = � = 0, the result is
a one-parametric family of iterative schemes whose order of
convergence is four, for every value of �.

In order to study the a�ne conjugacy classes of the
iterativemethods, the following scaling theorem can be easily
checked.

�eorem 1. Let �(�) be an analytic function, and let �(�) =��+�, with� ̸= 0, be an a�nemap. Let ℎ(�) = �(�∘�)(�), with� ̸= 0. Let �(�) be the �xed point operator of Kim’s method on�(�). 	en, � ∘  ℎ ∘ �−1(�) =  	(�); that is,  	 and  ℎ a�ne
conjugated by �.

�is result allows us to know the behavior of an iterative
scheme on a family of polynomials with just the analysis of a
few cases, from a suitable scaling.

In the following we will analyze the dynamical behavior
of the fourth-order parametric family (2), on quadratic
polynomial �(�) = (� − !)(� − "), where !, " ∈ C.

We apply the Möbius transformation

#(�) = � − !� − " , (3)

whose inverse is

[# (�)]−1 = �" − !� − 1 , (4)

in order to obtain the one-parametric operator

 � (�, �) = − �4 (1 − � + 4� + 6�2 + 4�3 + �4)−1 − 4� − 6�2 − 4�3 + (−1 + �) �4 , (5)

associated with the iterative method. In the study of the
rational function (5), � = 0 and � = ∞ appear as super-
attracting �xed points and � = 1 is a strange �xed point
for � ̸= 1 and � ̸= 16. �ere are also another six strange �xed
points (a �xed point is called strange if it does not correspond
to any root of the polynomial), whose analytical expression,
depending on �, is very complicated.

As we will see in the following, not only the number but
also the stability of the �xed points depend on the parameter
of the family. �e expression of the di
erential operator,
necessary for analyzing the stability of the �xed points and
for obtaining the critical points, is

 �� (�, �)
= −4�3(1 + �)4 (−(1 + �)4 + � (1 − � + �2 − �3 + �4))(1 + 4� + 6�2 + 4�3 − (−1 + �) �4)2 .

(6)

As they come from the roots of the polynomial, it is
clear that the origin and∞ are always superattractive �xed
points, but the stability of the other �xed points can change
depending on the values of the parameter �. In the following
resultwe establish the stability of the strange �xedpoint � = 1.
�eorem 2. 	e character of the strange �xed point � = 1 is
as follows.

(i) If |�−16| > 64, then � = 1 is an attractor and it cannot
be a superattractor.

(ii) When |� − 16| = 64, � = 1 is a parabolic point.
(iii) If |� − 16| < 64, being � ̸= 1 and � ̸= 16, then � = 1 is a

repulsor.

Proof. It is easy to prove that

 �� (1, �) = 6416 − � . (7)

So, $$$$$$$ 6416 − �$$$$$$$ ≤ 1 is equivalent to 64 ≤ |16 − �| . (8)

Let us consider � = !+&" an arbitrary complex number.�en,

642 ≤ 162 − 32! + !2 + "2. (9)

�at is,

(! − 16)2 + "2 ≥ 642. (10)

�erefore, $$$$$ �� (1, �)$$$$$ ≤ 1 i
 |� − 16| ≥ 64. (11)

Finally, if � veri�es |� − 16| ≤ 64, then | ��(1, �)| > 1 and� = 1 is a repulsive point, except if � = 1 or � = 16, values for
which � = 1 is not a �xed point.
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�e critical points are � = 0, � = ∞, and � = −1 (for� ̸= 0), and
cr1 (�)
= 14 [[[

1 + 1� − 1 −� −√2√−5� (6 − 7� + �
2)(� − 1)3 − (4 + �) �� − 1 ]]]

,
cr2 (�)
= 14 [[[

1 + 1� − 1 −� +√2√−5� (6 − 7� + �
2)(� − 1)3 − (4 + �) �� − 1 ]]]

,
cr3 (�)
= 14 [[[

1 + 1� − 1 +�− √2√−5� (6 − 7� + �
2)(� − 1)3 + (4 + �) �� − 1 ]]]

,
cr4 (�)
= 14 [[[

1 + 1� − 1 −� +√2√−5� (6 − 7� + �
2)(� − 1)3 + (4 + �) �� − 1 ]]]

,
(12)

where � ̸= 1 and � = (√5√(� − 1)2√�(4 + �))/(� − 1)2.
�e relevance of the knowledge of the free critical points

(critical points di
erent from the associated with the roots) is
the following known fact: each invariant Fatou component is
associated with, at least, one critical point.

Lemma 3. Analyzing the equation  ��(�, �) = 0, one obtains
the following.

(a) If � = 0, there is no free critical points of operator �(�, 0).
(b) If � = 16, then there are four free critical points: � =−1, DE1(16) = (1/4)(−(4/3) − (8√2/3)&), DE2(16) =(1/4)(−(4/3) + (8√2/3)&), and DE3(16) = DE4(16) = 1.
(c) If � = −4, then there are three di
erent critical points:� = −1, DE1(−4) = DE3(−4) = −&, and DE2(−4) =DE4(−4) = &.
(d) In case of � = 1, the set of critical points is {−1, −(1/2)+(√3/2)&, −(1/2) − (√3/2)&}.
(e) In any other case, � = −1, DE1(�), DE2(�), DE3(�), andDE4(�) are the free critical points.

Moreover, it can be proved that all free critical points are not
independent, as DE1(�) = 1/DE2(�) and DE3(�) = 1/DE4(�).

Some of these properties determine the complexity of the
operator, as we can see in the following results.

�eorem 4. 	e only member of the family whose operator

is always conjugated to the rational map �4 is the element
corresponding to � = 0.
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Figure 1: Parameter plane G1 associated with � = cr
, & = 1, 2.

Proof. From (5), we denote �(�) = 1 − � + 4� + 6�2 + 4�3 + �4
and H(�) = 1 + 4� + 6�2 + 4�3 − (−1 + �)�4. By factorizing
both polynomials, we can observe that the unique value of �
verifying �(�) = H(�) is � = 0.

In fact, the element of Kim’s class corresponding to � =0 is Ostrowski’s method. So, it is the most stable scheme
of the family, as there are no free critical points, and the
iterations can only converge to any of the images of the roots
of the polynomial. �is is the same behavior observed when
Ostrowski’s scheme was analyzed by the authors as a member
of King’s family in [14].

�eorem 5. 	e element of the family corresponding to � = 1
is a ��h-order method whose operator is the rational map

 � (�, �) = �5 (2 + �) (2 + 2� + �2)(1 + 2�) (1 + 2� + 2�2) . (13)

Proof. From directly substituting � = 1 in the rational
operator (5), (13) is obtained, showing that � = 1 is not a �xed
point in this particular case. Moreover,

 �� (�, �) = 20�4(1 + �)4 (1 + � + �2)(1 + 2�)2(1 + 2� + 2�2)2 , (14)

and there exist only three free critical points.

�en, in the particular case � = 1, the order of conver-
gence is enhanced to �ve, and although there are three free
critical points, they are in the basin of attraction of zero and
in�nity, as the strange �xed points are all repulsive in this
case. So, it is a very stable element of the family with increased
convergence in case of quadratic polynomials.
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(a) |� − 16| > 64
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(b) |� − 16| = 64

Figure 2: Dynamical planes for � verifying |� − 16| ≥ 64.
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(a) Detail of �1
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(b) Dynamical plane for � = 1

Figure 3: Around the origin.

2.1. Using the Parameter and Dynamical Planes. From the
previous analysis, it is clear that the dynamical behavior
of the rational operator associated with each value of the
parameter can be very di
erent. Several parameter spaces
associated with free critical points of this family are obtained.
�e process to obtain these parameter planes is the following:
we associate each point of the parameter planewith a complex
value of �, that is, with an element of family (2). Every value
of � belonging to the same connected component of the
parameter space gives rise to subsets of schemes of family (2)
with similar dynamical behavior. So, it is interesting to �nd
regions of the parameter plane as much stable as possible,
because these values of �will give us the best members of the
family in terms of numerical stability.

As cr1(�) = 1/cr2(�) and cr3(�) = 1/cr4(�) (see
Lemma 3), we have at most three independent free critical

points. Nevertheless, � = −1 is preimage of the �xed point � =1 and the parameter plane associated with this critical point
is not signi�cative. So, we can obtain two di
erent parameter
planes, with complementary information.When we consider
the free critical point cr1(�) (or cr2(�)) as a starting point
of the iterative scheme of the family associated with each
complex value of �, we paint this point of the complex plane
in red if the method converges to any of the roots (zero
and in�nity) and they are white in other cases. �en, the
parameter plane G1 is obtained; it is shown in Figure 1.

�is �gure has been generated for values of � in[−50, 80] × [−65, 65], with a mesh of 2000 × 2000 points
and 400 iterations per point. In G1 the disk of repulsive
behavior of � = 1 is observed, showing di
erent white
regions where the convergence to � ̸= 0 and � ̸=∞ has been
reached. An example of a dynamical plane associated with
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(a) Two periodic orbit for � = 16
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(b) Dynamical plane for � = 15.9 − 0.2

Figure 4: Around � = 16.

a value of the parameter is shown in Figure 2(a), where three
di
erent basins of attraction appear, two of them of the
superattractors 0 and ∞ and the other of � = 1, that is, a
�xed attractive point. It can be observed how the orbit (in
yellow in the �gure) converges asymptotically to the �xed
point. Also in Figure 2(b), the behavior in the boundary of
the disk of stability of � = 1 is presented, where this �xed
point is parabolic. An orbit would tend to the parabolic point
alternating two “sides” (up and down of the parabolic point
in this case).

�e generation of dynamical planes is very similar to
the one of parameter spaces. In case of dynamical planes,
the value of parameter � is constant (so the dynamical plane
is associated with a concrete element of the family of iterative
methods). Each point of the complex plane is considered
as a starting point of the iterative scheme, and it is painted
in di
erent colors depending on the point which it has
converged to. A detailed explanation of the generation of
these graphics, joint with the Matlab codes used to generate
them, is provided in Section 3.

In Figure 3(a), a detail of the region around � = 0 of G1
can be seen. Let us notice that region around the origin is
specially stable, speci�cally the vertical band between −4 and1 (see also Figure 3(b)).

In fact, for � = 0, the associated dynamical plane is the
same as the one of Newton’s, that is, it is composed by a
disk and its complementary in C. Around the origin is also
very stable, with two connected components in the Fatou set.
When � = 16, � = 1 is not a �xed point (see �eorem 2) and{−1, 1} de�ne a periodic orbit of period 2 (see Figure 4(a)).
�e singularity of this value of the parameter can be also
observed in Figure 4(b), in which a dynamical plane for � =15.9 − 0.2& is presented, showing a very stable behavior with
only two basin of attraction, corresponding to the image of
the roots of the polynomial by the Möbius map.
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Figure 5: Parameter space G2 associated with � = cr
, & = 3, 4.
It is also interesting to note in Figure 3(a) that white

�gures with a certain similarity with the known Mandelbrot
set appear. �eir antennas end in the values � = −4 and� = 1, whose dynamical behavior is very di
erent from the
near values of the parameter, as it was shown in Lemma 3.

A similar procedure can be carried out with the free
critical points, � = cr
, & = 3, 4, obtaining the parameter
planes G2, shown in Figure 5.

As in case of G1, the disk of repulsive behavior of � = 1 is
clear, and inside it di
erent “bulbs” appear, similar to disks.
�e biggest on the le� of the real axis corresponds to the set
of values of � where the �xed point � = 1 has bifurcated in
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(a) Two periodic orbit
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(b) Two attracting strange �xed points
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(c) Four periodic orbit
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(d) �ree periodic orbit

Figure 6: Some dynamical planes from G2.
a periodic orbit of period two, as can be seen in Figure 6(a).
In the right of the real axis a bulb is the loci of two conjugated
strange �xed points; see Figure 6(b).

�e bulbs on the top (see Figure 6(c)) and on the bottom
of the imaginary axis correspond to periodic orbits of period
4. �e rest of the bulbs surrounding the boundary of the
stability disk of � = 1 correspond to regions where periodic
orbits of di
erent periods appear. In fact, we can observe
in Figure 6(d)) a periodic orbit of period 3, obtained from� = 50 + 50&. By applying Sharkovsky’s theorem (see [15]),
we can a�rm that periodic orbits of arbitrary periodicity can
be found.

3. MATLAB Planes Code

�e main goal of drawing the dynamical and parameters
planes is the comprehension of the family ormethod behavior
at a glance. �e procedure to generate a dynamical or a
parameters plane is very similar. However, there are small
di
erences, so both cases are developed below.

3.1. Dynamical Planes. From a �xed point operator, that asso-
ciates a polynomial with an iterative method, the dynamical
plane illustrates the basins of attraction of the operator. �e
orbit of every point in the dynamical plane tends to a root (or
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(1) function [I, it]=dynamicalPlane (lambda, bounds, points, maxiter)

(2)

(3) \% Description

(4) \% - dynamicalPlane obtains the dynamical plane of the Kim iterative method

(5) \% when it is applied to a quadratic polynomial. The dynamical plane is obtained

(6) \% as a “points”-by-“points”-by-3 matrix “I”, and can be displayed as

(7) \% >> imshow (I);

(8) \% moreover, the “points”-by-“points” matrix “it” records the number of

(9) \% iterations of each point.

(10) \% - the method is iterated till the “maxiter” iterations is reached, or

(11) \% till the estimation is enough close to the root.

(12) \% - it is mandatory the previous execution of

(13) \% >> syms x

(14) \% bounds: [min (Re (z)) max (Re (z)) min (Im (z)) max (Im (z))]

(15) \% test: [I, it]=dynamicalPlane (0, [-1 1 -1 1], 400, 20);

(16) \% Values

(17) x0=bounds (1); xN=bounds (2); y0=bounds (3); yN=bounds (4);

(18) funfun=matlabFunction (fun);

(19)

(20) \% Fixed Point Operator

(21) syms x z

(22) \% Kim’s operator

(23) Op=

simple (−x. ∧ 4∗(1–lambda+4∗x+6∗x ∧ 2+4∗x ∧ 3+x ∧ 4)/(−1−4∗x–6∗x ∧ 2–4∗x ∧ 3+x ∧ 4∗(lambda−1)));
(24)

(25) \% Attracting points

(26) fOp=matlabFunction (Op);

(27) Opx=Op-x;

(28) pf=double (solve (Opx));

(29) dOp=diff (Op);

(30) pc=double (solve (factor (dOp)));

(31) adOp=matlabFunction (abs (dOp));

(32) inda=double (abs (adOp (pf)))<=1;
(33) pa=pf (inda==1);

(34) if isempty (pa)

(35) pa=double (solve (fun));

(36) end

(37)

(38) \% Preparing the image

(39) \% The image must have an odd number of points

(40) if (mod (points, 2)==0)

(41) points=points+1;

(42) end

(43)

(44) \% Complex mesh of points

(45) dx=xN− x0; dy=yN− y0; d=max (dx, dy);

(46) step=d/points;

(47) x=x0 : step : xN;

(48) y=y0 : step : yN;

(49) [X, Y]=meshgrid (x, y);

(50) z=complex (X, Y);

(51)

(52) \% Matrix startup

(53) it=zeros (size (z));

(54) r1=zeros (size (z)); r2=zeros (size (z)); r3=zeros (size (z));

(55) R=zeros (size (z)); G=zeros (size (z)); B=zeros (size (z));

(56)

(57) \% Colour of each point

(58) [f, col]=size (z);

(59) for j=1 : f

(60) for k=1 : col

Pseudocode 1: Continued.
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(61) s=z (j, k); rootfound=0;

(62) while (rootfound==0 && it (j, k)<maxiter)
(63) s=fOp (s);

(64) it (j, k)=it (j, k)+1;

(65) if norm ([real (s) − real (pa (1)) imag (s) − imag (pa (1))])<1e−3
5.1-retixam=)k,j(1r)66( ∗it (j, k);

;retixam/)k,j(1r=)k,j(R)76(

retixam/)k,j(1r=)k,j(G)86( ∗102/255;
;1=dnuoftoor)96(

(70) elseif length (pa)>1&&norm ([real (s)−real (pa (2)) imag (s)− imag (pa (2))])<1e−3
2-retixam=)k,j(2r)17( ∗it (j, k);

retixam/)k,j(2r=)k,j(R)27( ∗40/255;
retixam/)k,j(2r=)k,j(G)37( ∗80/255;
;retixam/)k,j(2r=)k,j(B)47(

;1=dnuoftoor)57(

)ap(htgnelfiesle)67( >2&&norm ([real (s)−real (pa(3)) imag (s)−imag (pa (3))])<1e−3
;)k,j(ti-retixam=)k,j(3r)77(

retixam/)k,j(3r=)k,j(R)87( ∗41/255;
retixam/)k,j(3r=)k,j(G)97( ∗230/255;
retixam/)k,j(3r=)k,j(B)08( ∗56/255;

;1=dnuoftoor)18(

dne)28(

dne)38(

(84) end

(85) end

(86) end

(87) end

(88)

(89) \% Image display

(90) I(:,:,1)=R(:,:);I(:,:,2)=G(:,:);I(:,:,3)=B(:,:);

(91) figure, imshow (I, “Xdata”, [x0 xN], “Ydata”, [y0 yN])

(92) axis on, axis xy, hold on

(93) plot (real (pa), imag (pa), “w∗”)

(94) xlabel (“Re\{z\}”); ylabel (“Im\{z\}”);
(95) axis xy

Pseudocode 1

to the in�nity); this information and the speed that the points
tend to the root can be displayed in the dynamical plane. In
our pictures, each basin of attraction is drawn with a di
erent
color.Moreover, the brightness of the color points the number
of iterations needed to reach the root of the polynomial.

Pseudocode 1 covers the Kim’s �xed point operator, when
it is applied to a quadratic polynomial. �is code has been
utilized to generate the dynamical planes of several papers, as
[9, 10, 14] or [17].

�e code is divided into �ve di
erent parts.

(1) Values (lines 17-18): the bounds are renamed and the
symbolic function introduced as fun is translated
into an anonymous function, recallable by the output
handle.

(2) Fixed point operators (line 23).

(3) Calculation of attractive �xed points (lines 26–36).

(4) Image creation (lines 39–94): once the �xed point
operator and the attracting points are set, the next

step consists of the determination of the basins of
attraction. �e combination of the input parameters
bounds and points set the resolution of the image,
and it establishes the mesh of complex points (lines
39–50).
Lines 58–87 are devoted to assign a color to each
starting point. It depends on the basin of attraction
and the number of iterations needed to reach the root.
If the orbit tends to the attracting point set in the
�rst index of line 35, the point is pictured in orange,
as lines 67–69 show; for the second and third cases,
the point is pictured in blue (lines 72–74) and green
(lines 78–80), respectively. Otherwise, the point is not
modi�ed, so its color is black.
As the number of iterations needed to reach conver-
gence increases, its corresponding color gets closer to
white (black in the decreasing case). A coe�cient in
each case (lines 66, 71, and 77) is high if the number of
iterations is low, and the RGB values are greater than
in the slow orbit instance.
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(1) function [a,I,c]=parametricplane (axini, axfin, ayini, ayfin, points, maxiter)

(2)

(3) \% Description

(4) \% - parametricplane obtains the parametricplane of the Kim iterative family

(5) \% when it is applied to a quadratic polynomial, associated with the free critical point cr 2.

(6) \% [axini, axfin, ayini, ayfin] define the rectangle for possible values of the parameter \lambda
(7) \% points defines the mesh of size “points”-by-“points”

(8) \% maxiter is the maximum number of iterations of the method per value of \lambda
(9)

(10) \% test: [a,I,c]=parametricplane (−2, 2, −2, 2, 500, 25);

(11) \% Values

(12)

(13) \% Preparing the image

(14) \% The image must have an odd number of points

(15) if (mod (points, 2)==0)

(16) points=points+1;

(17) end

(18)

(19) \% Complex mesh of points

(20) ax=linspace (axini, axfin, puntos);

(21) ay=linspace (ayini, ayfin, puntos);

(22) [AX, AY]=meshgrid (ax, ay);

(23) a=complex (AX, AY);

(24)

(25) \% Matrices startup

(26) I=zeros (puntos); c=zeros (puntos);

(27) R=zeros (puntos); G=zeros (puntos); B=zeros (puntos);\% Colour of each point

(29) for j=1 : points

(28)

(30) for k=1 : points

(31) it=0;

(32) aa=a(j,k);

(33) c1=−((−4− aa)/(4∗(−1+aa)))−(sqrt(5)∗sqrt(4∗aa+aa ∧ 2))/. . .
(34) (4∗sqrt(1−2∗aa+aa ∧ 2))+1/2∗sqrt((−4−aa) ∧ 2/(2∗(−1+aa) ∧ 2). . .
(35) −(−6+aa)/(−1+aa)−(−2+2∗aa)/(−1+aa)−((−((−4−aa) ∧ 3/(−1+aa) ∧ 3). . .
(36) +(4∗(−4− aa)∗(−6+aa))/(−1+aa) ∧ 2−(8∗(−4− aa))/(−1+aa))∗sqrt(1−2∗aa+aa ∧ 2)). . .
(37) /(2∗sqrt (5) ∗sqrt (4∗aa+aa ∧ 2)));
(38) while it<maxiter abs (c1)>1e−2 && it<maxiter && (abs (c1))<1000

=1c)93( −c1. ∧ 4∗(-aa+(1+c1) ∧ 4)/(−1−4∗c1− 6∗c1 ∧ 2−4∗c1 ∧ 3+c1 ∧ 4∗(aa−1));
;1+ti=ti)04(

(41) end

(42) c(j, k)=c1;

(43) if abs (c1)<1e−2
;retixam/ti=)k,j(R)44(

(45) else if abs (c1)>=1000 | | ∼is finite (c1)

;retixam/ti=)k,j(R)64(

esle)74(

;1=)k,j(R)84(

;1=)k,j(G)94(

;1=)k,j(B)05(

dne)15(

(52) end

(53) end

(54) end

(55) \% Image display

(56) I(:, :, 1)=R(:, :); I(:, :, 2)=G (:, :); I(:, :, 3)=B(:, :);

(57) figure, imshow (I, “Xdata”, [x0 xN], “Ydata”, [y0 yN])

Pseudocode 2: Continued.
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(59) axis on, axis xy, hold on

(60) plot (real (pa), imag (pa), “w∗”)
(61) xlabel (“Re\{z\}”); ylabel (“Im\{z\}”);
(62) axis xy

Pseudocode 2

(5) Image display (lines 90–94): the image display is
based on the imshow command. Images are usually
displayed in matrix form (from top to bottom and
from le� to right). In this case, the image is composed
of complex points, so the natural display is the
Cartesian one (from bottom to top and from le� to
right). With this purpose, axis xy is written in line
95.

Once the program is executed, the output values are the
image I and the number of iterations of each point it. Our
recommendation is the use of the surf command to plot the
number of iterations, in combination with the shading one.

In order to apply the introduced code to di
erent �xed
point operators, the only part to be changed is the �xed point
operators corresponding one. If the method can converge to
more than three points, just add another else if structure
(as lines 79–84) and set a color as many times as necessary.

3.2. Parameter Planes. Pseudocode 2 is divided into �ve dif-
ferent parts.

(1) Generation of the mesh of values of � (lines 19–23).
(2) Matrices startup (line 26-27).

(3) Iterative process (lines 31–44).�e value of the critical
point depends on �, so in lines 33–37 is obtained. Its
orbit is calculated in lines 38–41.

(4) Colors assignment (lines 43–51). If the critical point
converges, it is drawn by a red−family color (lines 43–
46)—otherwise, it is plotted in white (lines 47–51).

(5) Image display (lines 55–61): the image display is based
on the imshow command. Images are usually dis-
played in matrix form (from top to bottom and from
le� to right). In this case, the image is composed of
complex points, so the natural display is the Cartesian
one (from bottom to top and from le� to right). With
this purpose, axis xy is written in line 62.

Once the program is executed, the output values are the
image I and the number of iterations of each point it. Our
recommendation is the use of the surf command to plot the
number of iterations, in combination with the shading one.

In order to apply the introduced code to di
erent �xed
point operators, the only part to be changed is the �xed point
operators corresponding one. If the method can converge to
more than three points, just add another else if structure
(as lines 79–84) and set a color as many times as necessary.

4. Conclusions

We have analyzed the dynamical properties of the parametric
Kim’s family showing stability regions and elements of the
family with interesting dynamical behavior but bad numer-
ical features. �e main tools used to get this aim are the
parameter and dynamical planes implemented in Matlab,
whose code is presented in the last section.
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