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Abstract. We consider the problem of representing size information in
the edges and vertices of a planar graph. Such information can be used,
for example, to depict a network of computers and information traveling
through the network. We present an efficient linear-time algorithm which
draws edges and vertices of varying 2-dimensional areas to represent the
amount of information flowing through them. The algorithm avoids all
occlusions of nodes and edges, while still drawing the graph on a compact
integer grid.

1 Introduction

An important goal of information visualization is presenting the information
hidden in the structure of a graph to a human viewer in the clearest way pos-
sible. Most graph drawing algorithms fulfill this by making visually pleasing
drawings that minimize the number of crossings, condense the area, ensure ap-
proximately uniform edge lengths, and optimize for many other aesthetics [2].
Without these techniques, the graph may appear “cluttered” and confusing, and
difficult to study for a human. But in addition to being aesthetically pleasing, a
graph drawing may need to convey additional information beyond connectivity of
nodes. Our “graphs” are in reality development processes or computer networks
or many, many other things. In the example of a network, it is often useful to
know the amount of traffic traveling across each edge and through each node, to
visualize such network problems as imbalances or Denial-of-Service attacks. The
commonly-used graph-drawing algorithms do not handle this sort of additional
information and do not have any method for displaying it.

A simple solution that maintains the current drawing of the graph is labeling
each edge (or node) with a number corresponding to the volume of information
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passing through (or being generated by or received by). Although this technically
is a display of the information, it is nevertheless not fully using the visual element
of the display. For example, a user would need to individually examine each edge
and its label just to select the maximum. Therefore, we believe that visualizing
traffic in a network requires that we modify the representation of the nodes and
edges to best indicate levels of that traffic.

Before we describe our approach, we would like to first mention some trivial
approaches that require little modification to current techniques. It would be
fairly easy, for example, to simply send animated pulses along an edge with
density or rate proportional to the data flow. All we need in this case is space for
the pulses to be drawn (since, if edges were too close together, their pulses might
be indistinguishable). Nevertheless, this solution doesn’t differentiate volume
well (as short high-volume edges might get missed), it requires a dynamic display,
and it is potentially confusing.

Another approach that requires a few algorithmic modifications is introduc-
ing a chromatic variation in the edges, similar to that used by weather forecasters
in Doppler radar images. The two possible implementations of this involve using
several distinct color levels and a corresponding key (which does not allow for
much variation), or a continuous spectrum of colors. But edges in most graph
drawing are thin, and it is not easy to compare two different edges in the con-
tinuous scale (particularly for those who are color-blind or color-deficient, which
includes 8% of all men).

Instead, the approach we advocate is to differentiate between nodes and edges
of varying volume by drawing them in varying sizes, possibly augmenting such
a display with labels if exact values are needed. This approach is inspired by
Minard’s classic graphic of the march of Napoleon’s army in Russia [16, p. 41]1

(see Figure 1), which geometrically illustrates the army’s movements while using
edge widths to depict its strength. The benefits of width-based drawings include
that they easily separate low- and high-volume nodes and edges, and that they
can be depicted on any medium. There is an additional challenge of using width
to represent edge and vertex weights, however, in that increasing edge and vertex
size introduces the possibility of occlusion of vertices or edges. Such occlusion
considerations are not present in other graph drawing problems, which usually
consider vertices and edges to be drawn as points and curves, respectively. When
we allow vertices and edges to take on significant two-dimensional area, especially
if they are large enough to stand out, then they may obscure each other, which is
unacceptable. We therefore need algorithms for drawing graphs with wide edges
and large vertices that avoid edge and vertex occlusions.

1.1 Standard Approaches and Previous Related Work

One way to avoid occlusions when introducing vertex and edge width is to ensure
a sufficiently large edge separation and a bounded angular resolution around
vertices. Then, one can scale up the entire drawing and increase the width of
1 Attributed to E.J. Marey, La Méthode Graphique (Paris, 1885), p. 73.
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Fig. 1. Image taken from Tufte [16], showing the movements of Napoleon’s army in
Russia. Edge widths depict army strength, with exact values labeling most edges. Note
that this graph has four degree-three vertices and at least 32 edges. Also, two shades
are used, with retreating armies shown with solid black edges.

weighted vertices and edges as a proportional fraction of this factor. The easiest
approach to perform this scaling is to define a parameter w as the maximum
width of any edge, and expand the drawing output from a bounded-angular
resolution algorithm to ensure an edge separation of at least w + 1. Then edges
can be drawn at a weighted proportion of the maximum width w. The problem
with this approach is that it produces a drawing with area Θ(Aw2), where A is
the original (unweighted) drawing area. We would prefer a method without such
a quadratic blow-up in area. Note, in addition, that the overall width and height
of a drawing made according to this method would be a multiplicative factor of
w + 1 times the width and height of the drawing with an edge separation of 1.
Thus, when such a drawing is compressed to fit on a standard display device,
the result would be the same as if we took the original algorithm and simply
drew the edges wider within the space already allotted to them (up to a width
of w/(w + 1)), since it would be compressed w + 1 times as much in height and
width. Ideally, we would like a weighted graph-drawing algorithm that “shifts”
edges and vertices around to make room for edges and vertices of larger widths.

The aesthetics of bounded angular resolution and edge separation have been
studied by several researchers (see, e.g., [3,7,9,10,11,12,13,15]). One significant
early result is by Malitz and Papakostas [15], which proves that a traditional
straight-line drawing of a planar graph with bounded angular resolution can re-
quire area exponential in the complexity of the graph. Goodrich and Wagner [11]
describe an algorithm for computing a straight-line drawing of a planar graph on
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n vertices with at most two bends per edge on an integer grid in O(n2) area with
an asymptotically optimal angular resolution upper bound. An improvement to
this, by Cheng et al. [3], reduces the maximum to one bend per edge, but the
constants in the area bound increase slightly. Both algorithms are based on a
classic algorithm by de Fraysseix, Pach, and Pollack [8], which introduces the
“canonical ordering” for drawing vertices of a planar graph used in [11,3] and
elsewhere. Their original algorithm produces a planar straight-line drawing of
the graph in an O(n) × O(n) area, but does not bound angular resolution.

A few works dealt with compaction of graphs with vertices of prescribed
sizes [1,6,14]. The only work on drawing graphs with “fat” edges, that we are
aware of, is that of Duncan et al. [5]. It describes a polynomial-time algorithm
for computing, given a graph layout, the thickest possible edges of the graph.

1.2 Our Results

In this paper we give an algorithm to draw a maximally planar graph with a given
set of edge traffic amounts. The resulting graph fits in an O(n + C) × O(n + C)
integer grid (C is the total cost of the network, defined below), with vertices
centered at grid points. The algorithm draws nodes as solid diamonds, but other
shapes such as circles could also be used. Edges are drawn as “pipes” of varying
size with a minimum separation of one unit at the base of each edge. There are
no bends in the drawing, though edges can leave nodes at various angles. The
drawing contains no edge crossings or occlusions of nodes or edges.

One of the main advantages of our algorithm is that it benefits from the
disparity between low and high volume levels in the weights of different edges
and nodes. Intuitively, our algorithm uses this disparity to take less space for
drawing edges and nodes when possible. We use as the upper limit for the traffic
on an edge a capacity of that edge, and we upper bound the sum of the capacities
of adjacent edges as the capacity of a node. We assume that traffic information
is supplied as a normalized list of edge thicknesses in the range [0..w], for some
parameter w (an edge of width 0 would be considered to have been added to make
the graph maximally planar and would not be included in the final drawing).
For the graph layout, we will consider edge weights to be integers, though in
the rendering stage edges can easily be drawn with noninteger width within the
integer space allocated to them (and in fact can be drawn with dynamic values
changing over time, as long as they are less than the capacity). Denote the degree
of a node v by d(v). Define the thickness or cost of an edge e to be c(e), and
the size or weight of a node v to be w(v) = Σc(e) for all edges adjacent to v.
For edges added to the graph to make it maximally planar, they can be given
a cost of 0. Let C = Σvw(v) = 2 ∗ Σec(e) be the total cost of the network. As
mentioned above, our algorithm draws a weighted planar graph with edge- and
vertex-widths proportional to their weights in an O(n + C) × O(n + C) integer
grid. Thus, the total area is O(n2 + C2). Note that, if w denotes the maximum
width of an edge in a given graph G, then the area of our drawing of G is never
more than O(n2w2), for C is O(nw) in a planar graph. Moreover, the area of
one of our drawings can be significantly below the corresponding O(n2w2) upper
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bound for the naive approach. For example, if C is O(w), then the area of our
drawing is O(n2 + w2), and even if C is O(n + wn0.5), then the area is still at
most O(n2 + nw2).

2 The Algorithm

Suppose we are given a maximally planar graph G with n vertices and integer
weights in the range [0, w] assigned to its edges. Our algorithm for drawing G is as
follows. Order the vertices of a maximally planar graph v1, v2, . . . , vn according
to their canonical ordering [8]. The following are then satisfied, for all k ≥ 3:

Fig. 2. A sample canonical ordering.

1. For the graph Gk restricted to the
first k vertices in the canonical or-
dering, Gk is biconnected (inter-
nally triconnected), and the cycle
Ck of the external vertices of Gk

contains (v1, v2).
2. The vertex vk+1 is in the exte-

rior face of Gk+1 and has at least
two neighbors in Gk all of which
are consecutive on (Ck − (v1, v2)).
These are the only neighbors of
vk+1 in Gk.

Such an ordering exists for every maximally planar graph
and can be constructed in linear time (see, e.g., [4,8]). Figure 2
shows a sample graph with the canonical ordering of its vertices.

Fig. 3. A sample hub with a pair of edges

Let us define a structure called a hub
around each vertex (see Figure 3).
This is a diamond-shaped area with
corners w(v)+d(v) unit spaces above,
below, left, and right of the vertex,
similar to the join box of [11]. The di-
agonal of each unit square along the
perimeter of the hub (see Figure 4) is
called a slot, and a collection of se-
quential slots used by a single edge is
called a port. Each edge is allocated at
insertion time a port containing one
slot per unit cost (if 0-cost edges are allowed, then the edge is drawn at the
boundary between two slots), leaving a free slot between edges.

In order to show that an edge separation of at least 1 is maintained, we give
a few conditions (adapted from invariants in [11]) that must be met for all Gk:

1. The vertices and slot boundaries of Gk are located at lattice points (have
integer coordinates).
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2. Let c1 = v1, c2, c3, . . . , cm = v2 (for some m = m(k)) be the vertices along
the exterior cycle Ck of Gk. Then the cj ’s are strictly increasing in x.

3. All edges between slots of c1, c2, . . . , cm have slope +1 or −1, with the ex-
ception of the edge between v1 and v2, which has slope 0.

4. For each v �∈ {v1, v2} in Gk, the slots with the left and right corners as their
top boundaries have been used. Also, any slots used in the upper half of
the hub are consecutive above either the left or right corner (with a space
left in between), except for the slot used by the final edge when a node is
dominated (see Section 2.2).

5. Each edge is monotone in both x and y.

Fig. 4. An edge of width 1 using mini-
mum and maximum perimeter space. Note
that if the entry angle were shallower than
the right image, the edge would no longer
be monotone, since once inside the hub it
needs to go up to reach the center.

Fig. 5. The hub of Figure 3 drawn with a
circular vertex.

2.1 Geometry

There are a few geometric issues with drawing thick edges out from a diamond-
shaped box. We are focusing on the drawing of the edges outside the hub, since we
intend to draw the entire hub solid as a node in the final graph. The perimeter
length allocated to an edge of thickness t ∈ Z is actually t

√
2 since it is the

diagonal of a square of side length t. This may be necessary, though, as the
perimeter space needed by an edge can vary based on the angle it makes with
the side of the hub. Thanks to monotonicity of edge segments (condition 5), the
allocated length is sufficient to draw the edge, since the angle made between
the incoming edge segment and the side of the hub is at least π/4, meaning the
intersection segment in the unit square is of length at most 1/ cos(π/4) =

√
2

(see Figure 4).
Because of this, we also do not need to concern ourselves with bends in the

edges, as we can simply not draw the interior portion, only drawing the segment
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between hubs, and drawing it at the correct angle when it leaves the node. If an
edge does not need the full space, simply use the center of the allocated port.

The idea of monotonicity is no longer as obvious when we are not drawing
the interior portions of the edges. One can extend the edges to the center of the
node, and consider the monotonicity of the lines on the boundaries of our edges
and ensure monotonicity of these, which we will refer to as the monotonicity of
the entire thick edge.

It is also possible to draw the nodes as circular in shape, by using any circle
centered within the diamond. This is a simple implementation detail; bend the
edges at the segment of the hub, and narrow the edge as it approaches the node.
This can be accomplished by bending the sides of the edge differently, pointing
each perpendicular to the circle (Figure 5).

The above proves the following lemma:

Lemma 1. If the five conditions listed above are maintained, then a port con-
taining one slot per integer thickness of an edge is sufficient to draw the edge at
its thickness, regardless of its incoming angle, without occluding other adjacent
edges.

2.2 The Construction

We now describe the incremental construction of the graph.
First two vertices. Refer to Figure 6. Build the canonical ordering and

place the center of node v1 at the origin of a 2-dimensional x, y graph. Center
v2 at (x, 0) where x = w(v1) + d(v1) + 1 + w(v2) + d(v2). Our nodes are drawn
solid as the entire hub, so this placement of v2 creates the minimum acceptable
separation of one unit between the right corner of v1 and the left corner of v2.
This graph, G2, clearly maintains the five conditions (conditions 3 and 4 are
trivial with only two nodes).

Fig. 6. Sample graph G2. Fig. 7. Sample graph G3.

Inserting v3. refer to Figure 7. By the properties of the canonical ordering,
v3 must have edges to v1 and v2. Use the lowest slots available on the appropriate
segments of v1, v2 (upper-right for v1, upper-left for v2) and the slots in v3 whose
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top points are the left and right corners. Shift v2 horizontally to the right to allow
the edges to be drawn at the correct slopes and to allow v3 to be drawn without
occluding edge (v1, v2). Set v3 at height h = 2 ∗ (w(v3) + d(v3)). The top of
the edge (v1, v2) is at y = 0, so the top of v3 must be at y = h + 1 to clear
it. The top of v3 is also the intersection of the lines of slope +1 and −1 drawn
from the tops of the ports allocated to the edges (v1, v3) and (v2, v3) on v1 and
v2, respectively. Since we are dealing with lines of slope ±1, starting from even
integer grid points (as assured for v2, see below), their intersection is an integer
grid point.

We need the intersection of the lines from these two ports to be at height
h + 1. This requires that their x-coordinates (if extended to the line y = 0) be
2h + 2 units apart. The actual distance necessary between v1 and v2 is (2h +
2)− (2∗ (c((v1, v3))+1))− (2∗ (c((v2, v3))+1)). Shift v2 right one unit less than
this (since it is currently one unit to the right).

The case of inserting v3 should be handled separately because it is the only
situation where the top boundary of the initial graph contains edges not of slope
±1. We will generalize to handle the remaining cases.

Induction. Refer to Figure 8. Assume as an inductive hypothesis that the
graph Gk maintains the five conditions and has an edge separation of 1 be-
tween all edges. we now need to insert vertex vk+1 and its incident edges
to Gk. Let cl, cl+1, ...cr be the neighbors of vk+1 in Gk+1. By the proper-
ties of the canonical ordering these neighbors are sequential along the outer
face of Gk. Before inserting vk+1, we need to make room for it and its
edges to be drawn, and to ensure that the five conditions are still main-
tained for Gk+1. In order to do this, we shift the vertices along the ex-
terior cycle Ck to the right. We also need to shift vertices in the inte-
rior portion of the graph to preserve planarity and to prevent occlusions.

Fig. 8. Induction on the number of nodes.

A node u is dominated when it is
one of the neighbors of vk+1 in
Gk other than cl or cr. A dom-
inated node u has used its last
edge (since it is an interior node
in Gk+1 and therefore additional
edges would make Gk+1 nonpla-
nar), and is included in the shift-
ing set of vk+1 (see below), so any
slots remaining on u can be used
to connect to vk+1 without creat-
ing edge crossings or occlusions in
the shifting process. This enables
edge (u, vk+1) to select a port on
u to maintain monotonicity.
Shifting sets. The paper by de
Fraysseix et al. [8] outlines the
concept of shifting sets for each
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vertex on the outer cycle Ck of Gk, which designate how to move the interior
vertices of the graph. We will use the same concept in our algorithm. The shift-
ing set Mk(ci) for all ci (1 ≤ i ≤ m) on Ck contains the set of nodes to be
moved along with ci to avoid edge crossings and occlusions. Define the Mk’s
recursively, starting with M3(c1 = v1) = {v1, v2, v3}, M3(c2 = v3) = {v2, v3},
M3(c3 = v2) = {v2}. Then, for the shifting sets used in Gk+1, let:

– Mk+1(ci) = Mk(ci) ∪ {vk+1} for i ≤ l;
– Mk+1(vk+1) = Mk(cl+1) ∪ {vk+1};
– Mk+1(cj) = Mk(cj) for j ≥ r.

The sets obey the following claims for all k:

1. cj ∈ Mk(ci) if and only if j ≥ i;
2. Mk(c1) ⊃ Mk(c2) ⊃ Mk(c3) ⊃ . . . ⊃ Mk(cm);
3. For any nonnegative numbers αi (1 ≤ i ≤ m), sequentially shifting Mk(ci)

right by αi maintains planarity,2 and does not introduce any edge or node
occlusions.

The proofs of the first two claims are found in [8]. For the third, it is clearly
true for the base case k = 3. Consider the graph Gk+1, vk+1, and the ver-
tices c1, c2, . . . , cm along the cycle Ck of the exterior face of Gk. Let us fix shift
amounts α(c1), α(c2), . . . , α(cl), α(vk+1), α(cr), . . . , α(cm) corresponding to the
vertices along the cycle Ck+1. The graph under the cycle Ck satisfies the condi-
tion by induction: set α(cl+1) = 1+2∗(w(vk+1)+d(vk+1))+α(vk+1) (the sum of
the first two terms is the amount cl+1 will be shifted when vk+1 is inserted, and
the last term is how much cl+1 and nodes in its shifting set will be shifted because
of the shifting of vk+1) and all other interior α’s (α(cl+2) through α(cr−1)) to 0,
and the exterior α’s (α(c1), . . . , α(cl+1) and α(cr), . . . , α(cm)) to their above val-
ues. The portion of the graph above Ck, with the exception of the edges (cl, vk+1)
and (cr, vk+1), is shifted in a single block with vk+1. The edge (cl, vk+1) cannot
be forced to occlude or intersect the next edge, (cl+1, vk+1), since the latter edge
can only be pushed farther away, moving along with the former when it shifts.
Similarly, (cr−1, vk+1) cannot occlude or intersect (cr, vk+1) (see Figure 8(b)).

This proves the following lemma:

Lemma 2. For all Gk, sequentially shifting the nodes in the shifting sets of each
node in the exterior cycle of Gk by any nonnegative amount cannot create edge
crossings or node or edge occlusions.

Shifting and placement. Similar to [3], we will shift twice. First, shift Mk(cl+1)
by the width of node vk+1 + 1, which is 2 ∗ (w(vk+1) + d(vk+1)) + 1. Also shift
Mk(cr) by the same amount. (To ensure that cr and cl are separated by an even
amount of units, shift Mk(cr) by one more unit if necessary.) The intuition behind
this is simple. We cannot allow node vk+1 to occlude any portion of Gk. Since the
2 This property of the shifting sets is stronger than what we need. Our algorithm

performs only two shifts per iteration.
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graph could rise as high in y as half the distance between cl and cr in x, placing
vk+1 at the intersection of the edges of slope ±1 from these nodes could place it
on top of another vertex. Separating cl and cr by 2 + 2 ∗ (width/height of vk+1)
moves vk+1 half that much higher, allowing it to clear the graph.

Now that we have sufficiently shifted all nodes in Gk, we can place vk+1. De-
fine l1 (resp., l2) as the line of slope +1 (resp., −1) from the top of the port of cl

(resp., cr) allocated to the edge (cl, vk+1) (resp., (cr, vk+1)). Select the ports of cl

and cr that maintain condition 4’s requirement of minimum separation between
edges. If the top corner of vk+1 is placed at the intersection of l1 and l2, all the
edges between vk+1 and nodes in Ck can be drawn monotonically in x and y with-
out creating occlusions. Note also that this placement of vk+1 assigns the edge
(cl, vk+1) to the port whose top is the left corner of vk+1, and likewise (cr, vk+1)
is assigned to the port at the right corner of vk+1. These edges are clearly mono-
tone. Monotonicity for the new interior edges is ensured by selecting a port from
the side of the vk+1 facing the target node, and a port from the target node facing
vk+1. Since each of the four sides of every node is of size d(v) + w(v), ports can
be chosen on arbitrary sides (maintaining condition 4, of course), and sufficient
space for the edge is guaranteed. Also, since the edges are at least a distance of
1 apart on vk+1, and their destination ports are all on different nodes each of
which are at least a unit apart in x, no occlusions or intersections can be created.

Fig. 9. The upper-right quadrant of a node.

By the third detail of the shifting sets,
this movement cannot cause edge oc-
clusions or intersections. It remains to
show that the graph maintains the five
conditions listed above, however. The
first is obviously true since everything
is shifted by integer values. Likewise
the second is true, since vk+1 is in-
serted between cl and cr, and each
node is shifted at least as much to the
right as the node before it, so their or-
dering remains intact. Since the edges
before cl and after cr have not been
changed (both endpoints of each have been moved by the same amounts), and
the edges (cl, vk+1) and (cr, vk+1) were inserted at slopes of ±1, condition 3 is
still true. Monotonicity is maintained regardless of any horizontal shifting, so
the edges of Gk remain monotone. The outside edges (cl, vk+1) and (cr, vk+1)
are clearly monotone, and the interior edges were assigned ports on each node
to make them monotone.

When vk+1 is inserted, its left- and rightmost neighbors on Ck are assigned
the slots whose tops are at the left and right corner, thus maintaining the first
portion of condition 4. The rest is maintained by selecting the correct ports of cl,
cr, and the interior nodes. Such ports must be available at every node, since each
side of a node is large enough to support every edge adjacent to it. Therefore
the graph Gk+1 meets all conditions and has a minimum edge separation of 1.
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2.3 Analysis

After inserting all vertices, the graph G still maintains the five conditions, and
thus is planar, without crossings or occlusions, and has an edge separation of
at least 1. The question of angular resolution is not necessarily relevant, since
most or all of the hub area is drawn as a solid node for significance. But if one
extended the edges to a point node at the center of the hub, then the boundary
lines of the edges have a minimum angular resolution of O(1/(w(n) + d(n)) for
all nodes (see Figure 9).

We also would like a well-bounded area for the complete drawing of G.

Theorem 1. The area of the grid necessary to draw the graph is O(n + C) ×
O(n + C), where C is the total cost of the network, defined as C = Σuw(u) =
2 ∗ Σec(e) for a given input set of edge costs c(e) (and for each node u, w(u) =
Σe∈Adj[u]c(e)).

Proof. Since G is drawn within the convex hull of v1, v2, and vn, the width is
equal to the distance between the left corner of v1 and the right corner of v2.
This initial distance at G2 is 1 plus the widths of v1 and v2. Shifting all vi for
i ≥ 4 moves v2 to the right by at most 3+4∗(w(vi)+d(vi)), and the insertions of
v1 through v3 can be upper bounded by this. Therefore the width of the drawing
is bounded above by

∑n
i=1(3 + 4 ∗ w(vi) + 4 ∗ d(vi)) = 3n + 4C + 8|E|, where

E is the set of edges in the graph. Since in any planar graph |E| ≤ 3n − 6, the
width is bounded above by 27n + 4C. The resulting drawing is approximately
an isosceles triangle with slope ±1 (approximately since the edges begin below
the peak of v1 and v2, thus slightly lowering the top of the triangle). The height,
therefore, is bounded by 14n + 2C, except that the nodes v1 and v2 actually
extend below the graph by half their height, and this height is not previously
accounted for as it is outside the triangle. Therefore the bound on the height of
the drawing is actually 14n+2C +max(w(v1)+d(v1), w(v2)+d(v2)). The max()
term is bounded above by n + C, however, and the theorem holds.

Fig. 10. A sample graph drawn by our method.

For running time analysis, we
refer the reader to the O(n) time
implementation of the algorithm
of de Fraysseix et al. [8] by
Chrobak and Payne [4]. This so-
lution can be extended so as to
implement our algorithm without
changing the asymptotic running-
time complexity.

See Figure 10 for a sample
drawing of a weighted version of
Figure 2. The used edge weights and induced vertex sizes are listed in Figure 11.
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Edge v1 v2 v3 v4 v5 v6 v7 v8 v9 v10 v11 v12

v1 - 1 0 5 - - 1 - - - - -
v2 1 - 4 - 0 2 - - - 1 - -
v3 0 4 - 3 0 - - - - - - -
v4 5 - 3 - 4 - 0 1 - - 0 -
v5 - 0 0 4 - 4 - 1 1 - - 3
v6 - 2 - - 4 - - - 0 4 - -
v7 1 - - 0 - - - - - - 1 -
v8 - - - 1 1 - - - - - 3 2
v9 - - - - 1 0 - - - - - 2
v10 - 1 - - - 4 - - - - - -
v11 - - - 0 - - 1 3 - - - -
v12 - - - - 3 - - 2 2 - - -

Vertex v1 v2 v3 v4 v5 v6

Size 11 13 11 19 20 14
Vertex v7 v8 v9 v10 v11 v12

Size 5 11 6 7 7 10

Fig. 11. Sample graph: edge weights and vertex sizes.

3 Future Work

There are many possibilities for future related work:

– Combine awareness of edge thicknesses with force-directed graph drawing
techniques by modifying the forces of nodes and edges according to their
individual weights in order to ’make room’ for them to be drawn larger.

– Establish an asymptotic lower bound on the area necessary to draw a graph
with edge thickness as used in our paper. Node size can be reduced as long
as the perimeter is of sufficient length to support all edges with a bounded
separation. It is possible such a drawing could be done in o((n + C)2) area.

– Allow general graphs and edge crossings when necessary, but still use thick
edges and large nodes and prevent occlusions, except in edge crossings.

– Combine the algorithms above with graph clustering techniques to repre-
sent potentially very large networks. One could add the sizes of nodes and
edges clustered together. It could also be useful to represent the amount of
information flowing within a cluster node in addition to between the nodes.

– Extend to 3D. The algorithm used here would not extend well, but drawings
of graphs in three dimensions with thick edges and large nodes could be
useful. Projections of such a graph to 2D would not be aesthetic.

– Study common network traffic patterns to optimize the algorithm based on
real world data.
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