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Abstract. In this paper we address the problem of drawing planar gra-
phs with circular arcs while maintaining good angular resolution and
small drawing area. We present a lower bound on the area of drawings
in which edges are drawn using exactly one circular arc. We also give
an algorithm for drawing n-vertex planar graphs such that the edges are
sequences of two continuous circular arcs. The algorithm runs in O(n)
time and embeds the graph on the O(n) × O(n) grid, while maintaining
Θ(1/d(v)) angular resolution, where d(v) is the degree of vertex v. Since
in this case we use circular arcs of infinite radius, this is also the first
algorithm to simultaneously achieve good angular resolution, small area
and at most one bend per edge using straight-line segments. Finally, we
show how to create drawings in which edges are smooth C1-continuous
curves, represented by a sequence of at most three circular arcs.

1 Introduction

The study of methods for rendering planar graphs is central in the graph drawing
literature. In planar graph drawings, vertices are represented by distinct points
in the plane and edges are drawn as continuous curves that do not cross one
another [1]. An important characteristic of a graph drawing is its readability, and
some of the essential qualities that determine readability include the following:

1. edge smoothness: edges should be drawn with “smooth” curves. Ideally, we
prefer straight line segments. If some other considerations prevent the use
of straight lines, then edges should be drawn as simple smooth low-degree
curves or polylines with few bends.

2. area: vertices and bend points should be placed at integer grid points in as
small a box as possible. Ideally, vertices and bend points should be placed
on an O(n) × O(n) grid, where n is the number of vertices in the graph.

3. angular resolution: for each pair s and t of curves representing two consecu-
tive edges incident on a vertex v, the angle between the tangent of s at v
and the tangent of t at v should be large. Ideally, we would like the measure
of each such angle to be Θ(1/d(v)), where d(v) denotes the degree of v.
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Thus, we are interested in a study of methods for drawing planar graphs with
smooth edges, small area, and ideal angular resolution. The particular empha-
sis in this paper is to consider methods for drawing edges with polylines such
that each piece of the polyline is drawn with a circular arc. This is a strict ge-
neralization of the usual piecewise-linear polylines [8,10], since a straight line
segment can be viewed as an arc of a circle of infinite radius. In this paper we
address the following questions: What area is achievable for drawings with good
angular resolution that use single circle arcs for edges? What area is achievable
for drawings that use at most two circular arcs per edge and have good angu-
lar resolution? What is the fewest number of circular arcs needed to achieve
O(n) × O(n) area, good angular resolution, and C1-continuity for edges?

1.1 Prior Related Work

There is a rich body of knowledge that has been developed for drawing planar
graphs. Early work by Wagner [14], Fary [4], and Tutte [13] focused on drawings
of planar graphs using straight line edges, without much attention paid to other
aesthetic or complexity issues. Indeed, the drawings produced using these early
techniques can in many cases require exponential area. Later de Fraysseix et

al. [3] and then Schnyder [12] showed that one can draw a planar graph with
straight line edges and vertices placed at grid points in an O(n) × O(n) integer
grid. Still, the drawings produced from these algorithms have a weakness, which
is not as prevalent in the algorithms based on Tutte’s approach: namely, the
area-efficient straight-line drawings can produce very small angles between cons-
ecutive edges incident upon the same vertex (poor angular resolution). In fact,
it has been proven [11] that there exist graphs that always require exponential
area for straight-line embeddings maintaining good angular resolution.

The problem of drawing planar graphs with good angular resolution was
addressed by Formann et al. [5], Garg and Tamassia [6], and Kant [9,10], who
showed that one could in fact simultaneously achieve O(n) × O(n) area and an
angular resolution of Θ(1/d(v)) for each vertex v, by drawing a planar graph
using piecewise linear polylines with at most three bends each. Gutwenger and
Mutzel [8] improved the constant factors for such drawings, establishing that
one could draw an n-vertex planar graph in a (2n − 5) × (3n/2 − 7/2) grid with
at least 2/dmax angular resolution using piecewise linear polylines with at most
three bends each, where dmax is the maximum degree of the graph. Goodrich
and Wagner [7] showed that one could in fact achieve O(n) × O(n) area with an
angular resolution of Θ(1/d(v)) for each vertex v, using piecewise linear polylines
with only two bends each. They also showed that one could achieve the same
area and angular resolution bounds using smooth degree-3 (Bézier) curves.

1.2 Our Results

In this paper we provide answers to the questions posed above. Specifically, we
show the following:
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– There exists an n-vertex planar graph G that requires area exponential in
n for any drawing of G that uses single circle arcs for edges and has good
angular resolution.

– We can draw an n-vertex planar graph G in an O(n)×O(n) grid with angular
resolution Θ(1/d(v)) for each vertex v in G using at most two circular arcs
per edge. In fact, in this case we use circular arcs of infinite radius so that
the polylines are piecewise linear with at most one bend each, while still
maintaining good angular resolution and O(n) × O(n) area.

– We can draw an n-vertex planar graph G in an O(n)×O(n) grid with angular
resolution Θ(1/d(v)) for each vertex v in G using C1-continuous curves that
consist of at most three circular arcs.

Our lower-bound proof is based on a non-trivial analysis of a circular-arc drawing
of the well-known nested-triangles graph. Our algorithm is based on a careful
modification of the incremental approach to planar graph drawing utilized by
de Fraysseix et al. [3] similar to the approach used by Goodrich and Wagner [7].
We describe the main ideas behind these results in the sections that follow,
beginning our discussion with the algorithm.

2 Algorithm

We now describe an efficient algorithm, OneBend, to embed any planar graph
on an O(n) × O(n) grid while maintaining good angular resolution, Θ(1/d(v)),
for each vertex v, and using at most one bend per edge. Following the methods
of de Fraysseix et al. [3] and Kant [10], we insert vertices sequentially by their
canonical ordering, generating subgraphs G1, G2, . . . , Gn in the process. Recall
that in the canonical order, vertices are labeled v1, v2, . . . , vn and graph Gi is
defined to be the subgraph induced on the vertices v1, v2, . . . , vi. Graph Gi is
2-connected and its external face is a cycle Ci. Furthermore, in graph Gi+1, the
new vertex, vi+1 has all of its neighbors on the external face of Ci.

In the manner of Goodrich and Wagner [7], we use a box around each vertex
of size proportional to its degree but guarantee that each edge drawn contains
at most one bend rather than the previous best known method using two. To
generate a subgraph Gk+1 from Gk by inserting a vertex vk+1 and its associated
box, we will need to perform a few operations and maintain a few sets. Let
w1 = v1, w2, . . . , wm = v2 be the vertices of the exterior face Ck of Gk in order.
For a particular subgraph Gk and vertex vk+1, we refer to wl and wr as the
leftmost and rightmost neighbors of vk+1 on Ck; see Figure 1(a).

2.1 Vertex Joint Box

We associate with every vertex v ∈ V a joint box centered around v, rotated 45◦,
and having width and height 4d(v) + 4 units, see Figure 1(b). For notational
convenience, if v is clear from the context, then we will use d to denote the
degree, d(v), of v. Thus, if v is located at position (i, j), the four corners of the
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Fig. 1. (a) Graph Gk+1 after inserting vk+1. The shaded part is Gk and all unfilled vertices
are part of the shifting set Mk+1(vk+1). (b) The joint box for a vertex, v.

box are (i ± 2d + 2, i) and (i, j ± 2d + 2). We break the box into two types of
alternating regions, free regions and port regions. For each free region there is at
most one edge passing through it to v. Each port region consists of a collection
of d ports and every edge inside the port region passes through a unique port.
Define the free regions using angular coordinates clockwise around v as follows:

– Free region M lies between −45◦ and 45◦.
– Free region R lies between 90◦ and 135◦

– Free region L lies between −135◦ and −90◦.

In between each of these regions are the port regions. For reference, we label
the ports between L and M upward as L1, . . . Ld and similarly between R and
M . The ports between L and R are labelled M1, M2d in counterclockwise order.

The algorithm draws each edge in E by “routing” it through a port in the
joint box of one of the two vertices. Each edge consists of two connected edge
segments. The first edge segment, the port edge segment, connects a vertex with
one of its ports while the second segment, the free edge segment, connects the
vertex to one of its neighbor’s ports.

2.2 The Invariants

In order to incrementally construct our embedding, we maintain invariants si-
milar to those of de Fraysseix et al. [3] and Goodrich and Wagner [7] with two
important differences (a slight change in invariant three and a new invariant
four):

1. The vertices and the ports of the joint boxes have integer coordinates.
2. Let w1 = v1, w2, . . . , wm = v2 be the vertices on the exterior face Ck of Gk in

order. Then x(w1) < x(w2) < · · · < x(wm), where x(wi) is wi’s x-coordinate.
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3. Edge (wi, wi+1), for 0 < i < m has the free edge segment with slope ±1.
4. For every vertex v there is at most one edge segment crossing each of its free

regions. All other edge segments are port edge segments.

Notice that if invariant four holds for the embedding Gk, by the definition
of the joint box and location of the port regions, Gk has angular resolution no
worse than Θ(1/d(v)), for each vertex v.

2.3 The Shifting Set

During each insertion, we must create space for the vertex joint box to “see” its
leftmost and rightmost neighbors without the box touching any of the neighbors
along the face in between. To do this, we need to shift the vertices along the
external face by a certain amount. However, in order for the invariants and
planarity to be guaranteed other vertices must also be shifted at the same time.
As in de Fraysseix et al. [3] and Goodrich and Wagner [7], we define the shifting
set for a vertex wi on the external face of Gk as Mk(wi). For any graph Gk, we
define Mk(wi) ⊆ V so that the following conditions hold:

1. wj ∈ Mk(wi) if and only if j ≥ i.
2. Mk(w1) ⊃ Mk(w2) ⊃ · · · ⊃ Mk(wm).
3. For any nonnegative numbers δ1, δ2, . . . , δm, if we sequentially translate all

vertices in Mk(wi) with distance δi to the right (i = 1, 2, . . . , m), then the
embedding of Gk remains planar.1

Recall that for a vertex v = vk+1, wl and wr are the leftmost and rightmost
neighbors of v on Ck. Starting with the initial shifting set at k = 3, we construct
Mk+1(wi) recursively as follows: Mk+1(wi) = Mk(wi) ∪ vk+1, Mk+1(vk+1) =
Mk(wl+1) ∪ vk+1, Mk+1(wj) = Mk(wj), for i ≤ l and j ≥ r.

This construction allows us to guarantee that the above three conditions of
the shifting sets are maintained. Intuitively, after a vertex wi is removed from the
external face by another vertex vk+1, it always shifts exactly with vk+1. During
any shift, vertices can only get farther apart in the x-direction. Note that in our
algorithm, when a vertex is shifted, its joint box is also shifted, i.e., the ports
move as well.

2.4 The Construction

We now show how algorithm OneBend iteratively constructs graphs G1, G2, . . . ,
Gn. It is trivial to construct the initial cases of G1, G2, and G3, i.e. inserting the
first three vertices. Suppose we have embedded Gk with exterior face Ck. Let
Ck = (v1 = w1, w2, . . . , wm = v2) be the exterior face of Gk. To construct Gk+1,
let v = vk+1 be the next vertex in the canonical ordering and recall that wl and
wr are, respectively, the leftmost and rightmost neighbors of v on the face Ck.

1 Note that many vertices will move several times; e.g. all points in Mk(wi)\Mk(wi+1)
will be translated by δ1 + δ2 + · · · + δi.
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Let d, dl, dr be the respective degrees of v, wl, and wr. Let pl be the first unused
Ri port in wl’s joint box. Similarly, let pr be the first unused Li port in wr’s
joint box. Recall since each port region has at least d ports available there is
always an unused port.

We insert v by shifting all vertices in the shifting set Mk(wl+1) by 2d + 2
positions to the right. Additionally we shift all vertices in Mk(wr) by an addi-
tional 2d + 2 positions to the right. This implies all vertices in Mk(wr) actually
move 4d + 4 positions. Finally, we place v at the intersection of lines l and r
where l (respectively r) is the line through pl (respectively pr) with slope +1
(respectively −1). We route the edges between v and wl through pl and do the
same for wr. To maintain invariants one and three, notice that if the intersection
point has integer coordinates these two invariants hold. Otherwise, by shifting
Mk(wr) one additional unit, the intersection point has integer coordinates.

To complete the insertion and the algorithm, we need to draw the edges
between v and wi, where l < i < r. Let wj be the rightmost vertex with an x-
coordinate less than v. We route the edges from v to vertices wi, where l < i ≤ j
through consecutive increasing ports from M1 in v’s joint box. Similarly, we
route the edges from v to vertices wi, where r > i > j through consecutive
decreasing ports from M2d in v’s joint box.

Lemma 1. After shifting, free edge segments remain in their free regions.

Proof Sketch: Consider the free edge segments in the M regions. Notice that
these segments are created by a vertex v dominating another vertex w. In this
case, w joins v’s shifting set and is only shifted when v is shifted. Therefore, the
slope remains constant and the free edge segment remains within M .

Consider the case when the free edge segment lies in the L region. This
implies that the slope of the line is between 0 and +1. Since shifting only moves
vertices farther apart in the x-direction, the slope can only get closer to 0 while
still remaining in L. The argument is similar for R. ⊓⊔

Lemma 2. After insertion, every free edge segment passes through a free region

which contains no other segment.

Proof Sketch: After inserting a vertex vk+1, there are two types of edges added:
edges between vk+1 and the outside neighbors, wl and wr, and edges between
vk+1 and wi where l < i < r. In both cases the edge is routed through a port
creating one free edge segment and one port edge segment. By construction, a
free edge segment of the first type has slope either +1 or −1 and so it lies inside
vk+1’s joint box free region L or R, respectively. Since vk+1 is a new vertex,
there are no other segments inside these two free regions.

A free edge segment of the second type intersects the M region of wi’s joint
box. Since this can happen at most once, as the vertex is now no longer on an
external face, there can be no other free edge segment inside this free region. ⊓⊔

Lemma 3. If invariants 1-4 hold for Gk, then they also hold for Gk+1.
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Proof Sketch: By the nature of the shifting set, invariants one and two hold
(see [7]). Since shifting a vertex involves shifting the entire joint box simulta-
neously, after every shift operation all port edge segments have unchanged slope.
Also, after the two shifting operations, all free edge segments on the exterior
face have unchanged, albeit ±1 slope, except possibly the free edge segments
(wl, wl+1) and (wr−1, wr). However, after insertion, these free edge segments are
no longer on the exterior face and are instead replaced by two free edge segments
between (wl, v) and (v, wr) with slope ±1. Therefore, invariant three holds.

By lemmas 1 and 2 and the fact that port edge segments never change slope,
we see that invariant four also holds since all edges routed in algorithm OneBend

created a port segment and a free edge segment. ⊓⊔

Theorem 1. Given a planar graph G, algorithm OneBend produces in O(n) time

a planar embedding on the 30n×15n grid with angular resolution Θ(1/d(v)) and

using any of the following types of edges: polylines with one bend, or two circular

arcs with C0-continuity and one knot, or three circular arcs with C1-continuity.

Proof Sketch: The original algorithm as stated produces polylines with one
bend per edge. This by definition can also be represented by two circular arcs,
straight lines, which have a discontinuity at the bend, or knot. Since the points
are embedded on the grid, the bends may also be replaced by circular arcs of a
relatively small size to ensure C1-continuity as well.

It has been shown by Chrobak and Payne [2] how to implement the algorithm
of De Fraysseix, et al. [3] in linear time. Their approach can be easily extended
to our algorithm. It remains to show that the drawings produced by algorithm
OneBend fit on the 30n× 15n grid. Every time we insert a vertex vk, we increase
the grid size by 4d(vk) + 5 units. Summing over all the degrees of the vertices
we get

∑
v∈V 4d(v) + 5 = 4(6n − 12) + 5n < 30n. The final drawing fits inside

an isosceles triangle with sides of slope 0,+1,−1. The width of the base is 30n
and so the height is less than 15n. ⊓⊔

3 Drawing with Circular Arcs

Malitz and Papakostas [11] showed that some planar graphs, drawn with straight
lines in the O(n) × O(n) grid must have small angles. More specifically, they
found a class of planar graphs, H, whose straight-line planar drawings require
exponential area if the angular resolution is good. Suppose we relax the condition
that each edge in a graph be drawn with a straight line segment so that each
edge is drawn with a circular arc (where a straight line segment is considered an
arc from a circle of radius infinity). Can we draw the graphs in H with angular
resolution α > 0 in an O(n)×O(n) grid? Surprisingly, as long as α is a constant,
the answer is no.

Let H = {Hn, n ≥ 1} and H1 be a cycle on 3 vertices P1, Q1 and R1.
For n ≥ 2, the graph Hn is constructed from Hn−1 by adding a cycle on
three new vertices Pn, Qn, Rn, and edges (Pn, Pn−1), (Qn, Qn−1), (Rn, Rn−1) and
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Fig. 2. Graph Hn is constructed from Hn−1 by adding vertices Pn, Qn, Rn and the edges
shown above. The figure on the right shows Hn drawn with circular arcs.

(Pn, Qn−1), (Qn, Rn−1), (Rn, Pn−1), as shown in Figure 2. It is easy to check that
the graph is planar, triconnected and thus, has a unique embedding. We show
that for any planar, circular-arc drawing of Hn with angular resolution α > 0,
there exists a constant cα > 1 such that the area of the drawing is Ω(cn

α).
Let Γn be a planar circular-arc drawing of Hn with angular resolution 0 <

α ≤ π/3. If (u, v) is an edge in Hn then we shall refer to the arc that represents
(u, v) in Γn as ûv, and the line segment that connects u and v as uv. (Sometimes
u or v may not be a vertex of Hn but a point on some arc of Γn. In this case,
ûv refers to the portion of the arc that starts at u and ends at v.) If S is a set
of arcs in Γn that bounds a region, then we let Area(S) be its area.

Define regions S1, S2 and S3 as follows: S1 = { ̂Pn−1Qn−1, ̂Qn−1Pn, ̂PnPn−1},

S2 = { ̂Qn−1Rn−1, ̂Rn−1Qn, ̂QnQn−1} and S3 = { ̂Rn−1Pn−1, ̂Pn−1Rn, ̂RnRn−1}.
We shall show in the next two lemmas that the region enclosed by the three arcs
in S1 cannot be arbitrarily small. If all the arcs in Hn are straight lines, this fact
is easy to prove. However, for circular-arc drawings, we need to take into account
that the arcs can have different curvatures. Nonetheless, the requirement that
the tangents of two incident arcs must form at least an angle α > 0 will allow
us to show that, regardless of the curvatures of the three arcs in S1, Area(S1)

is proportional to |Pn−1Qn−1|
2 as well as the area enclosed by ̂Pn−1Qn−1 and

Pn−1Qn−1. Similarly, the areas of the regions enclosed by the arcs in S2 and S3

cannot be arbitrarily small.
Let Zn−1 be the midpoint of ̂Pn−1Qn−1. Consider the two circular arcs that

pass through Pn−1 and Zn−1 such that the tangents of the arcs form an angle

α with ̂Pn−1Qn−1. Let â be the arc that lies on the outside face of Hn−1. Let b̂
be the corresponding arc that passes through Qn−1 and Zn−1, see Figure 3.

Lemma 4. Area(S1) ≥ Area({â, ̂Pn−1Zn−1}).

Proof: Let l be the perpendicular bisector of Pn−1Qn−1. Without loss of gene-
rality, assume that Pn lies on l or on the same side of l as Qn−1. Notice that

if Pn 6= Zn−1, ̂Pn−1Pn is always above â except at its endpoint, Pn−1. Other-
wise, the angular resolution of Γn is violated or Pn lies below â and hence on
the wrong side of l. Furthermore, ̂Qn−1Pn cannot intersect â, except possibly at

Zn−1. If it does, it crosses l and has to intersect ̂Pn−1Pn as well, contradicting

the assumption that Γn is a planar drawing. Thus, both ̂Pn−1Pn and ̂Qn−1Pn
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Fig. 3. Arcs â and b̂ pass through Pn−1, Zn−1 and Qn−1, Zn−1 respectively. Their tangents
form an angle α with the tangents of ̂Pn−1Zn−1 and ̂Qn−1Zn−1. The shape of the region
bounded by â and ̂Pn−1Zn−1 depends on the concavity/convexity of ̂Pn−1Qn−1 and α.

do not cross â; â must lie in the region enclosed by S1. By symmetry, if Pn lies
on the same side of l as Pn−1, then b̂ must lie in the region enclosed by S1. ⊓⊔

Lemma 5. There exists positive constants kα and k′
α such that

i. Area({â, ̂Pn−1Zn−1}) ≥ kα|Pn−1Qn−1|
2 and

ii. Area({â, ̂Pn−1Zn−1}) ≥ k′
αArea({ ̂Pn−1Qn−1, Pn−1Qn−1}).

The proof of the above lemma is omitted from this extended abstract.
Note that kα and k′

α are not dependent on γ and hence the result can be

extended to the other arcs, ̂Qn−1Rn−1 and ̂Rn−1Pn−1.

Theorem 2. Any planar, circular-arc drawing of Hn that has constant angular

resolution α > 0 has area Ω(cn
α) where cα > 1.

Proof: Let Γ ∗
n be a planar, circular-arc drawing of Hn with minimum area An.

Let Bn−1 denote the area occupied by Hn−1 in Γ ∗
n . Clearly, Bn−1 ≥ An−1. Then,

An ≥ Bn−1 + Area(S1) + Area(S2) + Area(S3)

≥ Bn−1 +
1

2
[kα |Pn−1Qn−1|

2 + k′
α Area({ ̂Pn−1Qn−1, Pn−1Qn−1}) +

kα |Qn−1Rn−1|
2 + k′

α Area({ ̂Qn−1Rn−1, Qn−1Rn−1}) +

kα |Rn−1Pn−1|
2 + k′

α Area({ ̂Rn−1Pn−1, Rn−1Pn−1})] (1)

≥ Bn−1 +
min(kα, k′

α)

2
[|Pn−1Qn−1|

2 + |Qn−1Rn−1|
2 + |Rn−1Pn−1|

2

+Area({ ̂Pn−1Qn−1, Pn−1Qn−1}) + Area({ ̂Qn−1Rn−1, Qn−1Rn−1})

+Area({ ̂Rn−1Pn−1, Rn−1Pn−1})]

≥ Bn−1 +
min(kα, k′

α)

2
[(Area({Pn−1Qn−1, Qn−1Rn−1, Rn−1Pn−1}) +

Area({ ̂Pn−1Qn−1, Pn−1Qn−1}) + Area({ ̂Qn−1Rn−1, Qn−1Rn−1}) +

Area({ ̂Rn−1Pn−1, Rn−1Pn−1})] (2)

≥ Bn−1 +
min(kα, k′

α)

2
Bn−1 ≥ (1 +

min(kα, k′
α)

2
)An−1.
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Note that (1) follows from lemmas 4 and 5 and (2) from the fact that Bn−1 ≥

Area({Pn−1Qn−1, Qn−1Rn−1, Rn−1Pn−1}) + Area({ ̂Pn−1Qn−1, Pn−1Qn−1})+

Area({ ̂Qn−1Rn−1, Qn−1Rn−1}) + Area({ ̂Rn−1Pn−1, Rn−1Pn−1}). Let cα = 1+
min(kα, k′

α). Since A1 is at least some constant a1 > 0, by induction, An ≥
cn−1
α a1. ⊓⊔
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