
DOI: 10.1007/s004540010080

Discrete Comput Geom 25:405–418 (2001) Discrete & Computational

Geometry
© 2001 Springer-Verlag New York Inc.

Drawing Planar Graphs with Circular Arcs ∗

C. C. Cheng,1 C. A. Duncan,2 M. T. Goodrich,3 and S. G. Kobourov4

1 Mathematical Sciences Department, Johns Hopkins University,
Baltimore, MD 21218, USA

2 Department of Computer Science, University of Miami,
Coral Gables, FL 33124, USA

3 Department of Computer Science, Johns Hopkins University,
Baltimore, MD 21218, USA

4 Department of Computer Science, University of Arizona,
Tucson, AZ 85721, USA

Abstract. In this paper we address the problem of drawing planar graphs with circular
arcs while maintaining good angular resolution and small drawing area. We present a lower
bound on the area of drawings in which edges are drawn using exactly one circular arc. We
also give an algorithm for drawingn-vertex planar graphs such that the edges are sequences
of two continuous circular arcs. The algorithm runs inO(n) time and embeds the graph
on theO(n)× O(n) grid, while maintaining2(1/d(v)) angular resolution, whered(v) is
the degree of vertexv. Since in this case we use circular arcs of infinite radius, this is also
the first algorithm that simultaneously achieves good angular resolution, small area, and
at most one bend per edge using straight-line segments. Finally, we show how to create
drawings in which edges are smoothC1-continuous curves, represented by a sequence of
at most three circular arcs.

1. Introduction

The study of methods for rendering planar graphs is central in the graph drawing liter-
ature. In planar graph drawings, vertices are represented by distinct points in the plane
and edges are drawn as continuous curves that do not cross one another [1]. An important
characteristic of a graph drawing is its readability, and some of the essential qualities

∗ A preliminary version of this paper appeared in theProceedings of the7th Annual Symposium on Graph
Drawing, 1999. The first author was partially supported by ONR Grant N00014-96-1-0829, the other three
authors were partially supported by NSF Grant CCR-9732300 and ARO Grant DAAH04-96-1-0013.
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that determine readability include the following:

1. Edge smoothness: edges should be drawn with “smooth” curves. Ideally, we prefer
straight-line segments. If some other considerations prevent the use of straight
lines, then edges should be drawn as simple smooth low-degree curves or polylines
with few bends.

2. Area: vertices and bend points should be placed at integer grid points in as small a
box as possible. Ideally, vertices and bend points should be placed on anO(n)×
O(n) grid, wheren is the number of vertices in the graph.

3. Angular resolution: for each pairs andt of curves representing two consecutive
edges incident on a vertexv, the angle between the tangent ofsatv and the tangent
of t atv should be large. Ideally, we would like the measure of each such angle to
be2(1/d(v)), whered(v) denotes the degree ofv.

Thus, we are interested in a study of methods for drawing planar graphs with smooth
edges, small area, and ideal angular resolution. The particular emphasis in this paper is to
consider methods for drawing edges with polylines such that each piece of the polyline
is drawn with a circular arc. This is a strict generalization of the usual piecewise-linear
polylines [8], [11], since a straight-line segment can be viewed as an arc of a circle of
infinite radius. In this paper we address the following questions: What area is achievable
for drawings with good angular resolution that use single circle arcs for edges? What
area is achievable for drawings that use at most two circular arcs per edge and have
good angular resolution? What is the fewest number of circular arcs needed to achieve
O(n)× O(n) area, good angular resolution, andC1-continuity for edges?

1.1. Prior Related Work

There is a rich body of knowledge that has been developed for drawing planar graphs.
Early work by Wagner [15], F´ary [4], and Tutte [14] focused on drawings of planar graphs
using straight-line edges, without much attention paid to other aesthetic or complexity
issues. Indeed, the drawings produced using these early techniques can in many cases
require exponential area. Later de Fraysseix et al. [3] and then Schnyder [13] showed that
one can draw a planar graph with straight-line edges and vertices placed at grid points
in an O(n) × O(n) integer grid. Still, the drawings produced from these algorithms
have a weakness, which is not as prevalent in the algorithms based on Tutte’s approach:
namely, the area-efficient straight-line drawings can produce very small angles between
consecutive edges incident upon the same vertex (poor angular resolution). In fact, it has
been proven by Malitz and Papakostas [12] that there exist graphs that always require
exponential area for straight-line embeddings maintaining good angular resolution.

The problem of drawing planar graphs with good angular resolution was addressed
by Formann et al. [5], Garg and Tamassia [6], and Kant [9]–[11], who showed that one
could in fact simultaneously achieveO(n) × O(n) area and an angular resolution of
2(1/d(v)) for each vertexv, by drawing a planar graph using piecewise-linear poly-
lines with at most three bends each. Gutwenger and Mutzel [8] improved the constant
factors for such drawings, establishing that one could draw ann-vertex planar graph in a
(2n− 5) × (3n/2− 7/2) grid with at least 2/dmax angular resolution using piecewise-
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linear polylines with at most three bends each, wheredmax is the maximum degree of the
graph. Goodrich and Wagner [7] showed that one could in fact achieveO(n) × O(n)
area with an angular resolution of2(1/d(v)) for each vertexv, using piecewise-linear
polylines with only two bends each. They also showed that one could achieve the same
area and angular resolution bounds using smooth degree-3 (B´ezier) curves.

1.2. Our Results

In this paper we provide answers to the questions posed above. Specifically, we show
the following:

• There exists ann-vertex planar graphG that requires area exponential inn for any
drawing ofG that uses single circle arcs for edges and has good angular resolution.
• We can draw ann-vertex planar graphG in an O(n) × O(n) grid with angular

resolution2(1/d(v)) for each vertexv in G using at most two circular arcs per
edge. In fact, in this case we use circular arcs of infinite radius so that the polylines
are piecewise linear with at most one bend each, while still maintaining good
angular resolution andO(n)× O(n) area.
• We can draw ann-vertex planar graphG in an O(n) × O(n) grid with angular

resolution2(1/d(v)) for each vertexv in G using C1-continuous curves that
consist of at most three circular arcs.

Our lower-bound proof is based on a nontrivial analysis of a circular-arc drawing of the
well-known nested-triangles graph. Our algorithm is based on a careful modification of
the incremental approach to planar graph drawing utilized by de Fraysseix et al. [3] similar
to the approach used by Goodrich and Wagner [7]. We describe the main ideas behind
these results in the sections that follow, beginning our discussion with the algorithm.

2. Algorithm

We now describe an efficient algorithm,OneBend, to embed any planar graph on an
O(n)×O(n)grid while maintaining good angular resolution,2(1/d(v)), for each vertex
v, and using at most one bend per edge. Following the methods of de Fraysseix et al. [3]
and Kant [11], we insert vertices sequentially by their canonical ordering, generating
subgraphsG1,G2, . . . ,Gn in the process. Recall that in the canonical order, vertices are
labeledv1, v2, . . . , vn and graphGi is defined to be the subgraph induced on the vertices
v1, v2, . . . , vi . GraphGi is 2-connected and its external face is a cycleCi . Furthermore,
in graphGi+1, the new vertex,vi+1 has all of its neighbors on the external face ofCi .

In the manner of Goodrich and Wagner [7], we use a box around each vertex of size
proportional to its degree but guarantee that each edge drawn contains at most one bend
rather than the previous best known method using two. To generate a subgraphGk+1

from Gk by inserting a vertexvk+1 and its associated box, we need to perform a few
operations and maintain a few sets. Letw1 = v1, w2, . . . , wm = v2 be the vertices of the
exterior faceCk of Gk in order. For a particular subgraphGk and vertexvk+1, we refer
towl andwr as the leftmost and rightmost neighbors ofvk+1 onCk; see Fig. 1.
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Fig. 1. GraphGk+1 after insertingvk+1. The shaded part isGk and all unfilled vertices are part of the shifting
setMk+1(vk+1).

2.1. Vertex Joint Box

We associate with every vertexv ∈ V a joint boxcentered aroundv, rotated 45◦, and
having width and height 4d(v)+ 4 units, see Fig. 2. For notational convenience, ifv is
clear from the context, then we used to denote the degree,d(v), of v. Thus, ifv is located
at position(i, j ), the four corners of the box are(i ± 2d+ 2, i ) and(i, j ± 2d+ 2). We
break the box into two types of alternating regions,free regionsandport regions. For each

Fig. 2. The joint box for a vertex,v, in the drawing. Notice the shaded regions highlighting the three free
regions and the presence and location of ports inside the port regions.
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Fig. 3. The edge fromu to v has two edge segments. The free edge segment connectsu to M1. The port edge
segment connectsv to M1.

free region there is at most one edge passing through it tov. Each port region consists of
a collection ofd ports and every edge inside the port region passes through a unique port.

We define and name the free regions using angular coordinates clockwise aroundv:

• Free regionM lies between−45◦ and 45◦.
• Free regionR lies between 90◦ and 135◦.
• Free regionL lies between−135◦ and−90◦.

In between each of these regions are the port regions. For reference, we label the ports
betweenL and M upward asL1, . . . , Ld and similarly betweenR and M . The ports
betweenL andR are labeledM1,M2, . . . ,M2d in counterclockwise order.

The algorithm draws each edge inE by “routing” it through a port in the joint box of
one of the two endpoints. Each edge consists of two connected edge segments. The first
edge segment, theport edge segment, connects a vertex with one of the ports of its joint
box. The second edge segment, thefree edge segment, connects a vertex to one of its
neighbor’s ports. For example, for an edgee= (u, v), if we routee through portM1 in
v’s joint box, we would draw two line segments, see Fig. 3. Thefree edge segmentwould
pass fromu to M1 and theport edge segmentwould pass fromv to M1. This method of
construction enables us to guarantee that there is at most one bend per edge and that the
free edge segments always pass through free regions.

2.2. The Invariants

In order to construct our embedding incrementally, we maintain invariants similar to
those of de Fraysseix et al. [3] and Goodrich and Wagner [7] with two differences, a
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slight change in invariant three and a new invariant four:

1. The vertices and the ports of the joint boxes have integer coordinates.
2. Letw1 = v1, w2, . . . , wm = v2 be the vertices of the exterior faceCk of Gk in

order and letx(wi ) be thex-coordinate of vertexwi . Thenx(w1) < x(w2) <

· · · < x(wm).
3. For 0< i < m the free edge segment of the edge(wi , wi+1) has slope±1.
4. For every vertexv there is at most one (free) edge segment crossing each of its

free regions, see Fig. 2. All other edge segments are port edge segments.

Notice that if invariant four holds for the embeddingGk, by the definition of the joint
box and location of the port regions,Gk has angular resolution no worse than2(1/d(v)),
for each vertexv.

2.3. The Shifting Set

During each insertion, we must create space for the vertex joint box to “see” its leftmost
and rightmost neighbors without the box touching any of the neighbors along the face
in between. To do this, we need to shift the vertices along the external face by a certain
amount. However, in order for the invariants and planarity to be guaranteed other vertices
must also be shifted at the same time. As in de Fraysseix et al. [3] and Goodrich and
Wagner [7], we define the shifting set for a vertexwi on the external face ofGk as
Mk(wi ). For any graphGk, we defineMk(wi ) ⊆ V such that the following conditions
hold:

1. wj ∈ Mk(wi ) if and only if j ≥ i .
2. Mk(w1) ⊃ Mk(w2) ⊃ · · · ⊃ Mk(wm).

3. For any nonnegative numberδ1, δ2, . . . , δm if we sequentially translate all vertices
in Mk(wi ) with distanceδi to the right(i = 1,2, . . . ,m), then the embedding of
Gk remains planar.1

Recall that for a vertexv = vk+1,wl andwr are the leftmost and rightmost neighbors of
v onCk. Starting with the initial shifting set atk = 3, we constructMk+1(wi ) recursively
as follows:

• Mk+1(wi ) = Mk(wi ) ∪ vk+1, for i ≤ l .
• Mk+1(vk+1) = Mk(wl+1) ∪ vk+1.

• Mk+1(wj ) = Mk(wj ), for j ≥ r.

This construction allows us to guarantee that the above three conditions of the shifting
sets are maintained. Intuitively, after a vertexwi is removed from the external face by
another vertexvk+1, it always shifts exactly withvk+1. During any shift, vertices can only
get farther apart in thex-direction. Note that in our algorithm, when a vertex is shifted,
its joint box is also shifted, that is, the ports move as well.

1 Note that many vertices will move several times; e.g. all points inMk(wi )\Mk(wi+1) will be translated
by δ1 + δ2 + · · · + δi .
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2.4. The Construction

We first show how algorithmOneBend iteratively constructs the sequence of graphs
G1,G2, . . . ,Gn. It is trivial to construct the initial cases ofG1, G2, andG3, i.e., inserting
the first three vertices. Suppose we have embeddedGk with exterior faceCk. Let Ck =
(v1 = w1, w2, . . . , wm = v2) be the exterior face ofGk. To constructGk+1, letv = vk+1

be the next vertex in the canonical ordering and recall thatwl andwr are, respectively,
the leftmost and rightmost neighbors ofv on the faceCk. Let d,dl ,dr be the respective
degrees ofv, wl , andwr . Let pl be the first unusedRi port inwl ’s joint box. Similarly,
let pr be the first unusedLi port inwr ’s joint box. Recall since each port region has at
leastd ports available there is always an unused port.

We insertv by shifting all vertices in the shifting setMk(wl+1) by 2d+2 positions to
the right. Additionally we shift all vertices inMk(wr ) by an additional 2d+ 2 positions
to the right. This implies all vertices inMk(wr ) actually move 4d+ 4 positions. Finally,
we placev at the intersection of linesl andr wherel (respectivelyr ) is the line through
pl (respectivelypr ) with slope+1 (respectively−1). We route the edges betweenv and
wl throughpl and do the same forwr . To maintain invariants one and three, notice that
if the intersection point has integer coordinates these two invariants hold. Otherwise, by
shifting Mk(wr ) one additional unit, we guarantee that the intersection point has integer
coordinates.

To complete the insertion and the algorithm, we need to draw the edges betweenv and
wi , wherel < i < r . Letwj be the rightmost vertex with anx-coordinate less thanv. We
route the edges fromv to verticeswi , wherel < i ≤ j through consecutive increasing
ports fromM1 in v’s joint box. Similarly, we route the edges fromv to verticeswi , where
r > i > j through consecutive decreasing ports fromM2d in v’s joint box.

Lemma 1. After shifting, any free edge segment in the free region remains in the free
region.

Proof. We first look at free edge segments in theM regions. Notice that these segments
are created by a vertexv dominating another vertexw. In this case,w joinsv’s shifting
set and is only shifted wheneverv is shifted. Therefore, the slope remains constant and
the free edge segment remains withinM .

All other free edge segments lie insideL andR free regions. Without loss of generality,
we examine the case when a free edge segment lies in theL region. This implies that the
slope of the line segment is between 0 and+1. Since shifting only moves vertices farther
apart in thex-direction, the slope can get closer to 0 but it will always remain positive.
Thus the free edge segment will always remain in theL free region. The argument is
similar for free edge segments in theR free regions.

Lemma 2. After insertion, every free edge segment passes through a free region which
contains no other segment.

Proof. After inserting a vertexvk+1, there are two types of edges added, the edges
betweenvk+1 and the outside neighbors,wl andwr , and betweenvk+1 andwi where
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l < i < r . In both cases, each edge is routed through a port creating one free edge
segment and one port edge segment. By construction, a free edge segment of the first
type by construction has slope either+1 or−1 and so it lies insidevk+1’s joint box free
regionL or R. Sincevk+1 is a new vertex, there are no other segments inside these two
free regions.

A free edge segment of the second type intersects theM region ofwi ’s joint box.
Since this can happen at most once, as the vertex is now no longer on an external face,
there can be no other free edge segment inside this free region. To see that the segment
actually intersects theM free region, notice thatwi is bound betweenwl andwr and
is also added into a port on the proper side ofvk+1, i.e., the left or right side. Also, by
constructionwi is below the lowest port ofvk+1’s joint box. This implies that the slope
is bound either above+1 or below−1 and, therefore, the free edge segment lies inside
thewi ’s M region.

Lemma 3. If invariants1–4 hold for Gk, then they also hold for Gk+1.

Proof. By the nature of the shifting set, invariants one and two hold (see [7]). Note
that because shifting a vertex involves shifting the entire joint box simultaneously, after
every shift operation all port edge segments have unchanged slope. Also, after the two
shifting operations, all free edge segments on the exterior face have unchanged, albeit
±1, slope, except possibly the free edge segments(wl , wl+1) and(wr−1, wr ). However,
after insertion, these free edge segments are no longer on the exterior face and are
instead replaced by two free edge segments between(wl , v) and(v,wr ) with slope±1.
Therefore, invariant three holds.

By Lemmas 1 and 2 and the fact that port edge segments never change slope, we see
that invariant four also holds since all edges routed in algorithmOneBend created a port
segment and a free edge segment.

Theorem 1. Given a planar graph G, algorithmOneBend produces in O(n) time a
planar embedding on the30n× 15n grid with angular resolution2(1/d(v)) and using
any of the following types of edges: polylines with one bend, or two circular arcs with
C0-continuity and one knot, or three circular arcs with C1-continuity.

Proof. The original algorithm as stated produces polylines with one bend per edge.
This by definition can also be represented by two circular arcs, straight lines, which have
a discontinuity at the bend, or knot. Since the points are embedded on the grid, the bends
may also be replaced by circular arcs of a relatively small size to ensureC1-continuity
as well.

It has been shown by Chrobak and Payne [2] how to implement the algorithm of de
Fraysseix et al. [3] in linear time. Their approach can be easily extended to our algorithm.

It remains to show that the drawings produced by algorithmOneBend fit on the
30n×15n grid. Every time we insert a vertexvk, we increase the grid size by 4d(vk)+5
units. Summing over all the degrees of the vertices we get

∑
v∈V 4d(v) + 5 = 4(6n−

12) + 5n < 30n. The final drawing fits inside an isosceles triangle with sides of slope
0,+1,−1. The width of the base is 30n and so the height is less than 15n.
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3. Drawing with Circular Arcs

Malitz and Papakostas [12] showed that some planar graphs, drawn with straight lines
in the O(n)× O(n) grid, must have small angles. More specifically, they found a class
of planar graphs,H, whose straight-line planar drawings require exponential area if the
angular resolution is good. Suppose we relax the condition that each edge in a graph be
drawn with a straight-line segment so that each edge is drawn with a circular arc (where
a straight-line segment is considered an arc from a circle of radius infinity). Can we draw
the graphs inH with angular resolutionα > 0 in anO(n)×O(n) grid? Surprisingly, as
long asα is a constant, the answer is no.

Let H = {Hn,n ≥ 1} and H1 be a cycle on three verticesP1, Q1, and R1. For
n ≥ 2, the graphHn is constructed fromHn−1 by adding a cycle on three new vertices
Pn, Qn, Rn, and edges(Pn, Pn−1), (Qn, Qn−1), (Rn, Rn−1) and(Pn, Qn−1), (Qn, Rn−1),
(Rn, Pn−1), as shown in Fig. 4. It is easy to check that the graph is planar, triconnected,
and, thus, has a unique embedding. We show that for any planar, circular-arc drawing of
Hn with angular resolutionα > 0, there exists a constantcα > 1 such that the area of
the drawing isÄ(cn

α).
Let 0n be a planar circular-arc drawing ofHn with angular resolution 0< α ≤ π/3.

If (u, v) is an edge inHn, then we refer to the arc that represents(u, v) in 0n asûv, and
the line segment that connectsu andv asuv. (Sometimesu or v may not be a vertex of
Hn but a point on some arc of0n. In this case,̂uv refers to the portion of the arc that
starts atu and ends atv.) If S is a set of arcs in0n that bounds a region, then we let
Area(S) be its area.

We next define regionsS1, S2, andS3 as follows:

S1 = { ̂Pn−1Qn−1, Q̂n−1Pn, P̂n Pn−1},

S2 = { ̂Qn−1Rn−1, R̂n−1Qn, Q̂nQn−1},

S3 = { ̂Rn−1Pn−1, P̂n−1Rn, R̂n Rn−1}.

We show in the next two lemmas that the region enclosed by the three arcs inS1 cannot

Fig. 4. The graphHn is constructed fromHn−1 by adding verticesPn, Qn, and Rn along with the edges
shown above. The figure on the right showsHn drawn with circular arcs.
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Fig. 5. Arcŝa and̂b pass throughPn−1, Zn−1, andQn−1, Zn−1, respectively. Their tangents form an angleα
with the tangents of ̂Pn−1Zn−1 and ̂Qn−1Zn−1. The shape of the region bounded byâ and ̂Pn−1Zn−1 depends
on the concavity/convexity of ̂Pn−1Qn−1 andα.

be arbitrarily small. If all the arcs inHn are straight lines, this fact is easy to prove.
However, for circular-arc drawings, we need to take into account that the arcs can have
different curvatures. The requirement that the tangents of two incident arcs must form at
least an angleα > 0 will allow us to show thatArea(S1) is proportional to|Pn−1Qn−1|2.
Similarly, the areas of the regions enclosed by the arcs inS2 andS3 cannot be arbitrarily
small.

Let Zn−1 be the midpoint of ̂Pn−1Qn−1. Consider the two circular arcs that pass
throughPn−1 andZn−1 such that the tangents of the arcs form an angleα with ̂Pn−1Qn−1.
Let â be the arc that lies on the outside face ofHn−1. Let b̂ be the corresponding arc that
passes throughQn−1 andZn−1, see Fig. 5.

Lemma 4. Area(S1) ≥ Area({̂a, ̂Pn−1Zn−1}).

Proof. Let l be the perpendicular bisector ofPn−1Qn−1. Without loss of generality,
assume thatPn lies on l or on the same side ofl as Qn−1. Notice that if Pn 6= Zn−1,
P̂n−1Pn is always abovêa except at its endpoint,Pn−1. Otherwise, the angular resolution
of 0n is violated orPn lies belowâ and hence on the wrong side ofl . Furthermore,
Q̂n−1Pn cannot intersect̂a, except possibly atZn−1. If it does, it crossesl and has to
intersectP̂n−1Pn as well, contradicting the assumption that0n is a planar drawing. Thus,
both P̂n−1Pn and Q̂n−1Pn do not crosŝa; â must lie in the region enclosed byS1. By
symmetry, ifPn lies on the same side ofl asPn−1, then̂b must lie in the region enclosed
by S1. Our result follows.

Lemma 5. There exist positive constants kα and k′α such that

(i) Area({̂a, ̂Pn−1Zn−1}) ≥ kα|Pn−1Qn−1|2 and
(ii) Area({̂a, ̂Pn−1Zn−1}) ≥ k′α Area({ ̂Pn−1Qn−1, Pn−1Qn−1}).

Proof. Without loss of generality, we assume thatPn−1 is on the origin andQn−1 is on
the positivex-axis. The area enclosed bŷa and ̂Pn−1Zn−1 depends on the convexity or
concavity of ̂Pn−1Qn−1.when ̂Pn−1Qn−1 is convex and when ̂Pn−1Qn−1 is concave.

We assume ̂Pn−1Qn−1 is convex. Letγ <π be the angle formed betweenPn−1Qn−1

and the tangents of ̂Pn−1Qn−1 at Pn−1 and Qn−1. Whenγ ≤ 2α, â is concave. Let
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f (θ) = (θ − sinθ)/(1− cosθ). It is easy to verify that

• Area({̂a, Pn−1Zn−1}) = |Pn−1Zn−1|2 f (2α − γ )/4,
• Area({Pn−1Zn−1, ̂Pn−1Zn−1}) = |Pn−1Zn−1|2 f (γ )/4,
• Area({̂a, ̂Pn−1Zn−1}) = Area({̂a, Pn−1Zn−1})+ Area({Pn−1Zn−1, ̂Pn−1Zn−1}).
Thus,

Area({̂a, ̂Pn−1Zn−1}) = |Pn−1Zn−1|2 f (2α − γ )+ f (γ )

4

≥ |Pn−1Qn−1|2 f (α)

16 cos2(γ /2)

≥ |Pn−1Qn−1|2 f (α)

16
, (1)

where (1) follows from the fact thatf (θ) is monotonically increasing when 0<
θ < π and 0≤ γ ≤ 2α. Furthermore, sinceγ ≤ 2α, the largest possible value of
Area({ ̂Pn−1Qn−1, Pn−1Qn−1}) is |Pn−1Qn−1|2 f (4π/3)/4. Hence,

Area({̂a, ̂Pn−1Zn−1}) ≥ Area({ ̂Pn−1Qn−1}) f (α)

4 f (4π/3)
. (2)

If γ > 2α, then̂a is convex. Again, it is easy to verify that

• Area({̂a, Pn−1Zn−1}) = |Pn−1Zn−1|2 f (γ − 2α)/4.
• Area({̂a, ̂Pn−1Zn−1}) = Area({Pn−1Zn−1, ̂Pn−1Zn−1})− Area({̂a, Pn−1Zn−1}).
Thus,

Area({̂a, ̂Pn−1Zn−1}) = |Pn−1Zn−1|2 f (γ )− f (γ − 2α)

4

= |Pn−1Qn−1|2 2α f ′(ξ)
16 cos2(γ /2)

(γ − 2α ≤ ξ ≤ γ ) (3)

≥ |Pn−1Qn−1|2α f ′(0)
8

(4)

= |Pn−1Qn−1|2 α
24
. (5)

The equality in (3) follows from the Mean Value Theorem, which states thatf (γ ) −
f (γ −2α) = f ′(ξ)2α whereγ −2α ≤ ξ ≤ γ . Since f ′(θ) is monotonically increasing
when 0< θ < π , and 2α < γ < π , (4) follows as well.

It is easy to verify that

Area({ ̂Pn−1Qn−1, Pn−1Qn−1}) = |Pn−1Qn−1|2 f (2γ )

4

and f (2γ ) cos2(γ /2) ≤ (2π + 1)/8 sin2 α when 2α < γ < π . From (3) we have

Area({̂a, ̂Pn−1Zn−1}) = Area({ ̂Pn−1Qn−1}) α f ′(ξ)
2 cos2(γ /2) f (2γ )

≥ Area({ ̂Pn−1Qn−1})8α sin2(α)

6(2π + 1)
. (6)
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When ̂Pn−1Qn−1 is concave,̂a must be concave. Using a similar argument as above,
we can show that there exist constantsrα and r ′α such thatArea({̂a, ̂Pn−1Zn−1}) ≥
rα|Pn−1Qn−1|2 and thatArea({̂a, ̂Pn−1Zn−1}) ≥ r ′α Area({ ̂Pn−1Qn−1}). From (1) and (5)
and (2) and (6), then we have

kα = min

{
f (α)

16
,
α

24
, rα

}
,

k′α = min

{
f (α)

4 f (4π/3)
,

8α sin2 α

6(2π + 1)
, r ′α

}
.

Sinceα > 0, f (α) > 0 and sin2 α > 0. Thus,kα andk′α are positive numbers.

We emphasize that the constantskα andk′α are not dependent onγ and hence the

result can be extended to the other arcs,̂Qn−1Rn−1 and ̂Rn−1Pn−1. We are now ready for
the main result of this section.

Theorem 2. Any planar, circular-arc drawing of Hn that has constant angular reso-
lution α > 0 has areaÄ(cn

α) where cα > 1.

Proof. Let0∗n be a planar, circular-arc drawing ofHn with minimum areaAn. Let Bn−1

denote the area occupied byHn−1 in 0∗n. Clearly,Bn−1 ≥ An−1. Then

An ≥ Bn−1+ Area(S1)+ Area(S2)+ Area(S3)

≥ Bn−1+ 1
2[kα |Pn−1Qn−1|2+ k′α Area({ ̂Pn−1Qn−1, Pn−1Qn−1})

+ kα |Qn−1Rn−1|2+ k′α Area({ ̂Qn−1Rn−1, Qn−1Rn−1})
+ kα |Rn−1Pn−1|2+ k′α Area({ ̂Rn−1Pn−1, Rn−1Pn−1})] (7)

≥ Bn−1+ min(kα, k′α)
2

[|Pn−1Qn−1|2+ |Qn−1Rn−1|2+ |Rn−1Pn−1|2

+ Area({ ̂Pn−1Qn−1, Pn−1Qn−1})
+ Area({ ̂Qn−1Rn−1, Qn−1Rn−1})
+ Area({ ̂Rn−1Pn−1, Rn−1Pn−1})]

≥ Bn−1+ min(kα, k′α)
2

[Area({Pn−1Qn−1, Qn−1Rn−1, Rn−1Pn−1})
+ Area({ ̂Pn−1Qn−1, Pn−1Qn−1})
+ Area({ ̂Qn−1Rn−1, Qn−1Rn−1})
+ Area({ ̂Rn−1Pn−1, Rn−1Pn−1})] (8)

≥ Bn−1+ min(kα, k′α)
2

Bn−1

≥
(

1+ min(kα, k′α)
2

)
An−1.

Here (7) follows from Lemmas 4 and 5, while (8) follows from the fact that
Bn−1 ≥ Area({Pn−1Qn−1, Qn−1Rn−1, Rn−1Pn−1}) + Area({ ̂Pn−1Qn−1, Pn−1Qn−1}) +



Drawing Planar Graphs with Circular Arcs 417

Area({ ̂Qn−1Rn−1, Qn−1Rn−1}) + Area({ ̂Rn−1Pn−1, Rn−1Pn−1}). Let cα = 1 +
min(kα, k′α).

SinceA1 is at least some constanta1 > 0, by induction,An ≥ cn−1
α a1.

4. Conclusion and Open Problems

In this paper we prove that drawing a planar graph with good angular resolution using
one circular arc per edge requires exponential area. We then show how to draw planar
graphs with good angular resolution using polylines with at most one bend per edge on
a grid of size 30n × 15n. Reducing the constants seems possible but this problem has
not been explored yet.

The algorithm for drawing with one bend per edge immediately implies that we can
draw planar graphs using two circular arcs withC0-continuity, or using three circular
arcs withC1-continuity. However, it still remains to show whether we can draw using
two circular arcs, or possibly two other degree-2 curves, withC1-continuity.
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