
Acta Informatica 22, 187-201 (1985) 

�9 Springer-Verlag 1985 

Drawing Plane Graphs Nicely 

Norishige Chiba, Kazunori Onoguchi, and Takao Nishizeki 

Department of Electrical Communications, Faculty of Engineering, 
Tohoku University, Sendal 980, Japan 

Summary. This paper presents two efficient algorithms for drawing plane 
graphs nicely. Both draw all edges of a graph as straight line segments 
without crossing lines. The first draws a plane graph "convex" if possible, 
that is, in a way that every inner face and the complement of the outer face 
are convex polygons. The second, using the first, produces a pleasing 
drawing of a given plane graph that satisfies the following property as far 
as possible: the complements of 3-connected components, together with 
inner faces and the complement of the outer face, are convex polygons. The 
running time and storage space of both algorithms are linear in the number 
of vertices of the graph. 

1. Introduction 

The problem of drawing a planar graph often arises in applications, including 
Design Automation of VLSI circuits. In this paper we are not interested in a 
specific practical application, but in producing a pleasing drawing of a given 
planar graph. We assume throughout this paper that an embedding of a planar 
graph is given, that is, a plane graph is given. Linear time algorithms are 
known for embedding planar graphs without edge crossing [1, 5]. Restricting 
given graphs to trees, some recent papers have studied the problem of produc- 
ing well-shaped drawings [7, 8, 12, 13]. Obviously there are no absolute 
criteria that accurately capture our intuitive notion of nice drawings of plane 
graphs. However it seems that the following are desirable properties of pleas- 
ing drawings: 

(a) all the edges are drawn by straight line segments without crossing lines; 
(b) a facial cycle (i.e. a boundary of a face) is drawn as a convex polygon; 
(c) an outer facial cycle of a 3-connected component is drawn as a convex 

polygon. 
The justification for property (a) above is rather self-evident. For example, 

compare the two drawings of the same graph depicted in Fig. l a and b. One 



N. Chiba et al. 188 

Fig. 1. a A planar graph drawn by curves; b a drawing by straight lines; e a convex drawing; d a 
convex drawing of a 2-connected graph; e our drawing 

may  feel that  the drawing in Fig. 1 b by straight line segments is more  pleasing 
than the drawing in Fig. 1 a by curves. It is known that  every planar  graph can 
be drawn by straight lines without  crossing lines [3, 9]. Plane graphs corre- 
sponding to three-dimensional  convex polytopes are most  typical examples 
whose edges must  be drawn as straight line segments. 

We next consider the justification for property (b). See a "convex"  drawing 
of the same graph in Fig. lc, in which every facial cycle is a convex polygon. 
One may  feel that  the convex drawing is more  pleasing than the drawing in 
Fig. lb.  Thus one can approve  of  proper ty  (b). It should be noted that not 
every plane graph has a convex drawing a l though every 3-connected plane 
graph has a convex one. 

Al though a convex drawing seems pleasing, this is not  always the case. 
Compare  the two drawings of  a graph depicted in Fig. l d  and e. The drawing 
in Fig. 1 d is convex, while the drawing in Fig. le is not. One may feel that  the 
latter drawing, which we intend to produce,  is more  pleasing than the former 
convex one. Such an intuitive feeling seems to come from the following 
difference. In Fig. l d, drawing the entire graph convex forces 3-connected 
components  to be drawn in rather ill-shapes. To the contrast,  each 3-connected 
componen t  is drawn convex in Fig. l e; this makes the 3-connected compo-  
nents easily recognizable f rom the drawing. Thus one can approve of property 
(c). 

The properties (b) and (c) are competing,  that  is, both are not  always 
satisfied simultaneously. Therefore we first let a drawing satisfy (c) and then (b) 
as far as possible. 



Drawing Plane Graphs Nicely 189 

We may assume that a given plane graph is 2-connected. If a given plane 
graph is not 2-connected, then the entire drawing can be constructed by one of 
the following two alternative methods: (1) draw each 2-connected component 
separately, and then combine them into an entire drawing; (2) first augment 
the graph into a 2-connected plane graph, draw the graph, and then delete the 
added edges from the drawing. 

This paper is organized as follows. In Sect. 2 we present some preliminary 
definitions. In Sect. 3 we give a linear-time algorithm for drawing a planar 
graph convex. In Sect. 4 we present an algorithm which, given a 2-connected 
plane graph, produces a drawing satisfying properties (a)-(c) as far as possible. 
The running time and storage space are both linear in the number of vertices 
of a graph. In Sect. 5 we give some computated examples produced by an 
implementation of the presented material. 

2. Preliminaries 

In this section, we first define some terms, and then give illustrative examples 
for the terms. 

Let G=(V, E) be a simple graph, that is, having no loops or multiple edges, 
which has vertex set V and edge set A. The vertex set of a graph G is often 
denoted by V(G). A graph G'=(V', E') is called a subgraph of G if V ' c V  and 
E'cE.  G - V '  denotes the maximal subgraph of G with vertex set V-V' .  A 
graph G is connected if every two vertices of G are joined by a path. The 
connected components of G are its maximal connected subgraphs. A cut vertex 
of G is a vertex whose removal increases the number of connected components. 
A graph G having no cut vertex is called 2-connected. The blocks of a graph 
are its maximal 2-connected subgraphs. A graph is planar if it is embeddable in 
the plane without edge crossing. A plane graph G is a planar graph which is 
embedded in the plane. A plane graph divides the plane into connected regions 
called faces. The unbounded face is called the outer face of G. We assume that 
a 2-connected plane graph G is given. Since G is 2-connected, the boundary of 
a face is a cycle, which is called a facial cycle. Especially the boundary of the 
outer face is called an outer cycle. A path joining vertices x and y is called an 
x - y  path. A drawing of a plane graph is convex if all edges are drawn by 
straight line segments without any crossing in such a way that all the facial 
cycles are convex polygons. Since all the edges are drawn by straight lines, a 
convex drawing of a plane graph is uniquely determined only by the positions 
of vertices. Let S be the outer cycle of G, and let S* be a convex polygonal 
drawing (a convex polygon in short) of S. S* is extendible if there exists a 
convex drawing of G having S* as the outer cycle. 

We borrow some of the following definitions from [4]. A pair {x, y} of 
vertices of a 2-connected graph G=(V, E) is a separation pair if there exist two 
subgraphs G' 1 = (V 1, E'I) and G~ =(V 2, E~) satisfying the following conditions: 

(a) V = V l ~ V  2, VlnVz={X,y};  
t t t t ~ t (b) E= EI ~ E 2, Ea ~E2=O, JEll>2, IE21=2. 



190 

1 

N. Chiba et al. 

1 1 

k / 
2 d ", 3 

2< ~o3 

6 7 

4 ~ s  

1 

F i i ~ 3H I 

2 ~ ~ /" F3 k 3 ~ -- ~ 
2 * ,b3 2 OQ~ " ~3 H 2 

.... -.-~ 2 ~C__ --m3 ~ 

F6 2 ~ 3 H5 

4 C ~  5 
F 7 

Fig. 2a-d. Decompositions of a graph, where virtual edges are written by dashed lines: a a 2- 
connected graph G; b split components of G; c 3-connected components of G; and d {2, 3}-split 
components of C with one exception H 3 

A 2 - c o n n e c t e d  graph G is said to be  3-connected if  G has no  separat ion  
pair. F o r  the  s epara t ion  pair  {x,y}, Gt=(Vt,E'I+(x,y)) a n d  G2=(V2, E' 2 
+ ( x ,  y)) are ca l led  split graphs of  G. A l t h o u g h  G is s imple ,  G 1 and  G 2 are no t  
a l w a y s  s imple .  T h e  n e w  edges  (x, y) a d d e d  to G1 and  G 2 are ca l led  virtual 
edges. D i v i d i n g  a graph G into  t w o  spl i t  graphs  G~ and  G 2 is ca l led  splitting. 



Drawing Plane Graphs Nicely 191 

Reassembling the two split graphs Ga and G 2 into G is called merging. 
Merging is the inverse of splitting. Suppose a graph G is split, the split graphs 
are split, and so on, until no more splits are possible (each remaining graph is 
3-connected). The graphs constructed in this way are called split components of 
G. The split components of a graph G are of three types: triple bonds (i.e. a set 
of three multiple edges), triangles (i.e. a cycle consisting of three edges), and 3- 
connected graphs. The bonds and the rings are obtained from triple bonds and 
triangles, respectively, by merging as far as possible. We call these bonds, rings, 
and 3-connected graphs the 3-connected components of G. (To avoid confusion 
we use "ring", instead of "polygon" used in [4].) The split components of a 
graph G are not necessarily unique, but the 3-connected components of G are 
unique. 

We illustrate the decompositions of a 2-connected graph in Fig. 2. The 
graph G depicted in Fig. 2a has six separation pairs {1, 2}, {1, 3}, {2, 3}, {2, 7}, 
{3, 6}, and {4, 5}. The graph G is decomposed into nine split components as 
shown in Fig. 2b, and into seven 3-connected components F 1, F 2 . . . . .  F 7 as 
shown in Fig. 2c. The components F1, F 2, and F 6 are 3-connected graphs; F3, 
F 5, and F 7 are rings; and F 4 is a bond. 

We now introduce new terms. Suppose that {x, y} is a separation pair of a 
graph G and that G is split at {x, y}, the split graphs are split at {x, y}, and so 
on, until no more split are possible at {x, y} (the remaining graphs are not 
necessarily 3-connected). A graph constructed in this way is called an {x, y}- 
split component of G if it has at least one real (i.e. non-virtual) edge. In Fig. 2d, 
the components H1, H 2, H 4, and H~ are the {2, 3}-split components. 

3. Convex Drawing Algorithm 

In this section we present a linear-time algorithm for producing a convex 
drawing of a given plane graph (if it exists). Tutte gave a "barycentric map- 
ping" method for producing a convex drawing, which solves a system of O(n) 
linear equations [11]. The system of equations can be solved in O(n 3) time and 
O(n 2) space using the ordinary Gaussian elimination method, or in O(n 1"5) time 
and O(n log n) space using the sparse Gaussian elimination method [-6]. Thus 
the barycentric mapping method leads to an O(n LS) time convex drawing 
algorithm. He also established a necessary and sufficient condition for a plane 
graph to have a convex drawing [-10]. The following lemma is a strong version 
of his result obtained by Thomassen [9]. Roughly speaking, the lemma states 
that if a plane graph G has a convex drawing, then almost all the separation 
pairs must lie on the outer cycle S of G. More precise intuitive interpretation 
of the lemma is presented in [2]. 

Lemma 1 (Thomassen [9]). Let G=(V, E) be a 2-connected plane graph with the 
outer cycle S, and let S* be a convex k-gon of S. Let P1, P2 . . . . .  Pk be the paths in 
S, each corresponding to a side of S*. (It should be noted that not every vertex of 
the cycle S is an apex, i.e., a geometrical vertex of the polygon S*.) Then S* is 
extendible if and only if Condition I below holds. 



192 N. Chiba et al. 

v 

vp-1 
v 3 

Fig. 3. Reduction of the convex 
drawing of G into subproblems 

Condition I (a) for each vertex v of G - V ( S )  having degree at least three in G, 
there exist three paths disjoint except v, each joining v and a vertex of S; 

(b) G - V ( S )  has no connected componen t  C such that all the vertices on S 
adjacent to vertices in C lie on a single path P~; and an edge joins two vertices 
of P~ only if it is in P~; and 

(c) any cycle of G which has no edge in c o m m o n  with S has at least three 
vertices of degree > 3 in G. 

Suppose that  a 2-connected plane graph G is given together with an 
extendible convex polygon S* of the outer cycle S. (If there is an extendible 
convex drawing of S, then one can easily be obtained by taking the vertices of  
S on a circle.) Our  algori thm extends S* into a convex drawing of G in linear 
time. The algori thm is based on Thomassen 's  proof  of Lemma 1. The outline is 
as follows. We reduce the convex drawing of G to those of several subgraphs of 
G: delete f rom G an arbitrary apex v of S* together with the edges incident to 
v; divide the resulting graph G ' = G - v  into the blocks B~, B 2 . . . . .  B r, p >  1 (see 
Fig. 3); determine a convex polygon S* of the outer cycle S i of each Bi so that 
B i with S* satisfies Condi t ion  I, and recursively apply the algori thm to each B i 
with S* to determine the positions of vertices not in Si. The details are as 
follows. 

procedure CONVEX-DRAW (G, S, S*); 
begin 

{Let G be a given 2-connected plane graph, let S be the outer cycle, and 
let S* be an extendible convex polygon of S. For  simplicity we reduce 
the drawing of G to that of a graph G' which has no vertex of degree 
two not  on S.} 
for each vertex v of degree two not on S 

do replace v together with the two edges incident to v by a single 
edge joining the vertices adjacent to v; 

let G' be the resulting graph;  
E X T E N D  (G', S, S*); {extend S* into a convex drawing of G'.} 
for each deleted vertex of degree 2 

do determine a position for the vertex on the straight line segment 
joining the two vertices adjacent to it 

end. 



Drawing Plane Graphs Nicely 193 

procedure E X T E N D  (G, S, S*); 
{This procedure extends a convex polygon S* of the outer cycle S of a 
plane graph G into a convex drawing of G, where G has no vertex of degree 
2 not on S} 
begin 

if G has at least four vertices {otherwise, a convex drawing of G has 
been obtained} 
then 

begin 
select an arbitrary apex v of S*, and let G' . .=G-v;  
divide the plane graph G'  into the blocks B~ (1 <i<p); 
let v 1 and vp+ 1 be the two vertices on S adjacent to v, and let 
v~, 2<i<p ,  be the cut vertices of G' such that vI~V(BI), 
vp+l~V(Bv) and vi= V(Bi_I)c~V(Bi); {see Fig. 3.} 
{Every v~, 1 < i < p + l ,  is necessarily on S since the extendible 
S* with G satisfies Condition I and G has no vertex of degree 
two not on S.} 
for each block B~ 

do begin 
{We determine a convex polygon S* of the outer 
cycle S~ of B i below. Since the positions of the 
vertices in V(Si)~V(S ) have already been determi- 
ned on S*, we should determine the positions of the 
vertices in V(Si) - V(S).} 
place the vertices in V(Si) -V(S)  in the interior of 
the triangle v.v, .v ,+ 1 in such a way that the ver- 
tices adjacent to v are apices of a convex polygon S* 
and the others are on the straight line segments of 
s*; 
E X T E N D  (B~, S~, S*); 
{extend S* to a convex drawing of Bi. } 

end 
end 

end. 

We have the following result on the algorithm. 

Theorem 1. Let G be a 2-connected plane graph, let S be the outer cycle S, and 
let S* be an extendible convex polygon of S. Then the algorithm Convex-Draw 
extends S* into a convex drawing of G, and uses linear time and space. 

Proof. Since G satisfies Condition I, the graph G' with no vertices of degree two 
not on S also satisfies Condition I and is simple, that is, no multiple edges 
appear  in G'. In the produced drawing, the inner facial cycles containing the 
apex v are all triangles, and hence convex polygons. (See Fig. 3.) Therefore, in 
order to prove inductively the correctness of the algorithm, one should show 
that every block B, with S* satisfies Condition I and B~ has no vertex of degree 
two not on S~. We omit the proof  since it is similar to that of Theorem 5.1 in 
[9]. Thus we shall establish the claims on time and space. 



194 N. Chiba et al. 

As a data structure to represent a plane graph G=(V, E), we use doubly 
linked adjacency lists, in each of which the edges adjacent to a vertex are 
stored in a list in the order of the plane embedding, clockwise around the 
vertex. The two copies of each edge (v, w) in the adjacency lists of v and w are 
linked together so that one can be accessed directly from the other. Given an 
edge e, one can directly access the edge clockwise next to e around an end of e. 
Clearly such a data structure uses linear space. 
Evidently deletions and insertions of all vertices having degree two can be 
executed in O(n) time. Therefore we shall prove that E X T E N D  spends at most 
linear time. Let P be the v 1 -Vp+~ path of G ' = G - v  which newly appears on 
the outer cycle S' of G'. While traversing P, one can easily (1) find the cut 
vertices vi, 2 < i < p ,  which are also on S, (2) obtain the outer cycle S i of B i as 
the union of the traversed vi-vi+ 1 path on P and the vi+ 1 - v  i path on S, and 
(3) decides the positions of the vertices of Sg as specified in EXTEND.  Thus the 
time required by the procedure EXTEND,  exclusive of recursive calls to itself, 
is proport ional  to the number of the traversed edges in P. Hence the time is 
proport ional  to the number  of the edges newly appeared on the outer cycles. 
Since every edge appears on an outer cycle at most once, the number of edges 
traversed during an execution of E X T E N D  is at most [Eh in total. Thus 
E X T E N D  runs in linear time. Q.E.D. 

4. Drawing Algorithm 

In this section we present an algorithm which, given an arbitrary 2-connected 
plane graph G, produces a pleasing drawing satisfying properties (a)-(c) in 
Sect. 1 as far as possible. It should be noted that an extendible convex polygon 
S* of the outer cycle is not assumed in the algorithm of this section unlike that 
in the preceding section. The algorithm proceeds as follows. 

(1) decompose G into 3-connected components;  
(2) by merging some components, construct a subgraph, called a frame; 
(3) produce a convex drawing of the frame, which will work as the core of 

an entire drawing of G; 
(4) draw all the components convex, one by one, or two by two; 
(5) embed the drawings of components into the drawing of the frame. 
We first show how to choose the frame of G. 

Lemma  2. Let G be a 2-connected plane graph, and let S be the outer cycle. Split 
G at a separation pair if exactly one of the resulting split graphs contains no 
edge of S, and then abandon the split graph. Repeat this operation for all 
separation pairs. Let G' be the resulting graph for which any splitting produces 
split graphs both having edges of S. Then G' contains S and has a convex 
drawing. 

Proof Immediately follows from Lemma 1. Q.E.D. 



Drawing Plane Graphs  Nicely 195 

c 1 
C 1 

c 4 

c 4 c2 

r c 3 d c 3 

Fig. 4a-d .  An illustrative example of L e m m a  2: a a given graph; b the maximal  subgraph G' of G 
having a convex drawing; r a convex drawing of G'; and d a straight line drawing of G' 

We illustrate Lemma 2 in Fig. 4. An original 2-connected plane graph G is 
depicted in Fig. 4a, and G' in Fig. 4b. G' can be drawn convex as in Fig. 4c. 

In Fig. 4c split components having edges of S, such as C 1, C 2, and C 3, are 
drawn in rather ill-shapes (not round), as we pointed earlier in the introduc- 
tion. Therefore we do not use G' as the frame, but furthermore split from G' 
{x, y}-split components  having edges of S. Thus we split C 1, C 2 and C 3 from 
G'. Since the 3-connected component  C 4 is parallel with two other compo- 
nents, G' has no straight-line drawing in which the outer cycle of C4 is drawn 
round. Hence we do not split C 4 from G' although C 4 has edges of S. More  
precisely, we do not split from G' any {x, y}-split component  if G' has edge 
(x, y). The resulting graph is called a frame F of G. We draw F convex, and 
embed the convex drawings of splitted components into the drawing of F. The 
resulting drawing is depicted in Fig. 4d. 

The algorithm is not so simple as above, because a splitted component,  C 2 
for example, may also have a split component.  Thus we must use recursion. 
Our algorithm proceeds as follows. 



196 N. Chiba et al. 

procedure DRAW (G); 
{G is a 2-connected plane graph.} 
begin 

determine a frame F of G; 
let S r be the outer cycle of F; 
choose as S* an appropriate  extendible convex polygon of SF; 
draw the frame convex by C O N V E X - D R A W  (F, S F, S*); 
for each virtual edge e i in F 

do find in the drawing of F a region R i, called a usable region, in 
which the 3-connected component  C i corresponding to e i can be 
drawn; 

while there exists a virtual edge e~ in the drawing already obtained 
do begin 

let C~ be a 3-connected component  having a virtual edge e~ 
which is not drawn so far; 
determine in the usable region R~ an appropriate extendible 
convex polygon S* of the outer cycle S i of C i - e l ;  
draw C i - e  i by C O N V E X - D R A W  ( C ~ - e  i, S i, S*); 
embed the convex drawing of C ~ - e  i into R~ in the drawing 
obtained so far 
for each new virtual edge ej 

do find a usable region Rj  
end 

end; 

An execution of the algorithm is illustrated in Fig. 5. We now consider 
more precisely how to draw a 3-connected component  C~. First consider the 
case that Ci is a ring. In this case we can easily draw C~-e~ by placing the 
vertices of Cz on the straight line between the two ends of e~. Next consider the 
case that Ci is 3-connected. In this case one can easily show that C i - e  ~ 
satisfies Condition I and hence we draw C~-e~ convex by CONVEX-DRAW.  
Finally consider the case that C~ is a bond. Let x and y be the ends of ei. 
Clearly C i - e  ~ cannot be drawn convex. Therefore we draw the 3-connected 
components  having virtual edges (x, y) as follows. (We illustrate the case in 
Fig. 6.) While there exist two or more 3-connected components which have not 
been drawn so far, iterate the following: 

(a) merge a pair of them with respect to the common virtual edge (x, y); 
(b) draw it convex in the usable region R~; 
(c) redefine R i as a convex region (shaded in Fig. 7c) determined appropri-  

ately in the interior of the drawing of the pair. 
When the iteration above terminates, there are four possibilities. 
(1) The entire drawing of C~-e~ has been obtained; 
(2) Exactly one 3-connected component  C having virtual edge (x, y) remains 

undrawn; 
(3) Exactly one real edge (x, y) remains undrawn; and 
(4) Exactly one real edge er=(x,  y) and one 3-connected component  C 

having virtual edge e = (x, y) remain drawn. 



a
a

~
" 

-4
--

--
 

"=
=

 
iN

 V
 

"U
 

=
~

 
z 

N
'~

 
~

-.
 

a 
.

.
.

.
.

 
~ 

~
, 

\ 
~ 

1
\ 

9 

\\
 

,, 

" 
J(

_W
 i

o 



198 N. Chiba et al. 

' 

e. I I  ] i ~ 1  / I I 

,' ',,',,t l,; 

Cj C~ 

e 

Fig. 6a-e.  Illustrations of drawing a bond: a a part of a given graph; b the {x,y}-split com- 
ponents;  e a drawing of a graph constructed by merging Cj and C~; d an entire drawing of the 
{x, y}-split components ;  e an ill-shaped drawing 

In Case (2) we draw C - ( x ,  y) convex in R i. In Case (3) we simply draw the 
real edge (x, y) as a straight line in R i. Finally in Case (4) we draw ( C - e ) u e ,  
convex in R i. One can easily verify that ( C - e ) w e ,  satisfies Condition I. To 
avoid an ill-shaped drawing as shown in Fig. 6e, we draw 3-connected com- 
ponents in parallel as above, although it may change the given embedding of 
G. 

We now consider how to determine a usable region Ri for each virtual edge 
e i. First consider the case in which e i is in F. We first place a point in each 
interior face (for example, at the centroid of the convex polygon). Then draw 
straight lines going from the point to each apex of the convex polygon 
containing the point. Thus convex polygons are divided into triangles. If a 
virtual edge e~ is not on the outer cycle S F of F, then we determine R~ as the 
union of the two triangles adjacent to e i (see Fig. 7a). If a virtual edge e i is on 
SF, then we determine R~ as the union of the two triangles, a triangle adjacent 
to e~ and the mirror image (see Fig. 7b). Next consider the case in which e~ is 
not in F. Assume that e~ is contained in a 3-connected component  Cj drawn so 
far. Let ej be the virtual edge contained in C j, and let Rj be the usable region 
for ej in which C j - e j  is drawn. Rj is a quadrangle which is divided into two 
triangles by ej. If a virtual edge el is not on the outer cycle of a component, 



Drawing Plane Graphs Nicely 

/ 
/ \ \ \ j  

199 

><" 
/ \ 

\ / \ / \ / 

I ",/,,L~// -\ / / \ / \ 
/ \ \ 

/ \ / \ / \ ~ j  / /  
\ \  / 

Fig. 7a-d. Illustrations of usable regions: a, b in case of the frame graph; and c, d otherwise 

then we determine R i in the same way as in Fig. 7a (see Fig. 7c). If virtual edge 
el is on the outer cycle (see Fig. 7d), then we determine R~ as the union of two 
triangles, one is a triangle adjacent to e~ in the drawing of C j, and the other is 
a triangle with three apices: the two ends of e~ and the apex of R~ which lies on 
the same side as e v 

A usable region R i obtained as above is necessarily a quadrangle which is 
divided into two triangles by el. Although Ri is not necessarily convex, we can 
determine in R~ a convex polygon of the outer facial cycle of a component  C v 
Moreover it is obvious that all the usable regions are pairwise disjoint. Thus 
we have the following theorem. 

Theorem 2. Given a 2-connected plane graph G, the algorithm Draw produces a 
straight line drawing of G in linear time. 

Proof Using Hopcroft  and Tarjan's decomposition algorithm [4], we can 
determine a frame and 3-connected components  within linear time. Algorithm 
C O N V E X - D R A W  produces the drawings of the frame and the remaining 3- 
connected components  in linear time. Therefore a drawing of the whole graph 
G is obtained within time and space proport ional  to the total number  of real 



and virtual edges. It is clear from the definition of splitting that the number of 
virtual edges is at most three times of real edges [4]. Therefore the total is 
linear in the size of G. Thus we can conclude that D R A W  runs in linear 
time. Q.E.D. 

5. Examples  

/ 

.7 

In this section we present computational  examples. The algorithms CONVEX-  
D R A W  and D R A W  have been implemented in PASCAL and run on a small 
computer  F A C O M  230/38 s. 

Figure 8a, b, and c depict three drawings obtained by our algorithm 
DRAW. The shape of a drawing depends on not only a convex drawing 

200 N. Chiba et al. 

c Fig. 8a-c. Computational examples 

t 



Drawing Plane Graphs Nicely 201 

a l g o r i t h m  e m p l o y e d  b u t  also a n  e m b e d d i n g  of  a g raph .  I t  is n o t  o b v i o u s  which  
e m b e d d i n g  gives us a f avo rab l e  d rawing .  O n e  r e a s o n a b l e  choice  is to e m b e d  a 
g r aph  so tha t  the  o u t e r  cycle c o n t a i n s  as m a n y  s e p a r a t i o n  pairs  as possible .  
H o w e v e r  for p rac t ica l  app l i ca t ions ,  it is sufficient  to choose  a p l eas ing  d r a w i n g  
f rom several  d r a w i n g s  o b t a i n e d  by execu t ing  the a l g o r i t h m  for va r i ous  era- 
beddings .  I t  r e m a i n s  o p e n  to i m p r o v e  the  d r a w i n g  a l g o r i t h m  so t ha t  it gives 
m o r e  f avorab le  d r a w i n g s  wi th  respect  to a n o t h e r  cr i te r ion ,  for example ,  in  a 
way  tha t  the  a reas  of faces are ba l anced .  

Acknowledgement. We wish to thank professor Nobuji Saito for stimulating discussion on the 
subjects, and also the referees for many helpful comments which improved the presentation of the 
paper. 

References 

1. Chiba, N., Nishizeki, T., Abe, S., Ozawa, T.: A linear algorithm for embedding planar graphs 
using PQ-trees. J. Comput. Syst. Sci. (To appear) 

2. Chiba, N., Yamanouchi, T., Nishizeki, T.: Linear algorithms for convex drawings of planar 
graphs. In: Progress in Graph Theory (J.A. Bondy, U.S.R. Murty, eds.), pp. 153-173. Toronto: 
Academic Press 1984 

3. Fary, I.: On straight representations of planar graphs. Acta Sci. Math. Szeged 11, 229-233 
(1948) 

4. Hopcroft, J.E., Tarjan, R.E.: Dividing a graph into triconneeted components. SIAM J. Comput. 
2, 3, 135-158 (1973) 

5. Hopcroft, J.E., Tarjan, R.E.: Efficient planarity testing. J. ACM 21,549-568 (1974) 
6. Lipton, R.J., Rose, D.J., Tarjan, R.E.: Generalized nested dissection. SIAM J. Numer. Anal. 16, 

2, 346-358 (1979) 
7. Reingold, E.M., Tilford, J.S.: Tidier drawings of trees. IEEE Trans. Software Eng. 3, 223 228 

(1981) 
8. Supowit, K.J., Reingold, E.M.: The complexity of drawing trees nicely. Acta Inf. 18, 377-392 

(1983) 
9. Thomassen, C.: Planarity and duality of finite and infinite graphs. J. Comb. Theory, Ser. B 29, 

244-27l (1980) 
10. Tutte, W.T.: Convex representations of graphs. Proc. Lond. Math. Soc., (3) 10, 304-320 (1960) 
11. Tutte, W.T.: How to draw a graph. Proc. Lond. Math. Soc. 13, 743-768 (1963) 
12. Vaucher, J.G.: Pretty-printing of trees. Software, Pract. Exper. 10, 553-561 (1980) 
13. Wetherell, C., Shannon, A.: Tidy drawings of trees. IEEE Trans. Software Eng. 5, 514-520 

(1970) 

Received January 27, 1984/September 27, 1984 


