
Drawing Stereo Disparity Images into Occupancy Grids:
Measurement Model and Fast Implementation

Franz Andert
German Aerospace Center (DLR)

Institute of Flight Systems, Unmanned Aircraft
38108 Braunschweig, Germany

franz.andert@dlr.de

Abstract— Mapping the environment is necessary for nav-
igation in unknown areas with autonomous vehicles. In this
context, a method to process depth images for occupancy grid
mapping is developed. Input data are images with pixel-based
distance information and the corresponding camera poses. A
measurement model, focusing on stereo-based depth images and
their characteristics, is presented. Since an enormous amount
of range data must be processed, improvements like image
pyramids are used so that the image analysis is possible in
real-time. Output is a grid-based image interpretation for sensor
fusion, i.e. a world-centric occupancy probability array contain-
ing information stored in a single image. Different approaches
to draw pixel information into a grid map are presented and
discussed in terms of accuracy and performance. As a final
result, 3D occupancy grids from aerial image sequences are
presented.

I. INTRODUCTION

For mapping, exploration, obstacle avoidance, and other
tasks that require information of previously unknown areas,
range sensors are used to recognize the environment. Since it
is quite common to use occupancy grids to integrate multiple
sensors and data sequences from different locations to only
one obstacle map, an approach to create grid-based obstacle
data is developed here. Inside robotic applications with
integrated sensor fusion, mapping, localization and planning
steps as mentioned in [1], the proper creation of occupancy
grids from sensor data consists of two main steps:
• interpretation of sensor data to occupancy values, and
• integration of multiple readings over time into one map.
The fusion of sensor data into occupancy maps requires a

representation of which map parts are occupied and which
are free. In general, map cells become occupied if they
are inside the field of view and if their coordinates can be
derived from distance measurements. If the global sensor
position and line of sight is known, world-centric grid
maps can be created and multiple measurements can be
combined by adding the cell values. With that, occupancy
information becomes more and more significant if measured
multiple times. While simple mapping approaches use grid
arrays where only occupancy information is counted for each
interpreted measurement [2], advanced methods include free
space information and allow noise reduction and a separation
between unknown and free map regions. An early work is
presented in [3] where a binary 3D grid is created from
range images. A quite successful approach is based on

distance measurements from sonar data [4], and it turned
out as very useful to store detailed occupancy probability
information for each grid cell to allow fuzzy representations
of obstacles, and to consider specific sensor properties, for
instance, range precision. Grid maps are widely used for
sensor fusion and in most cases, they are world-centric
samples of the environment with cubic cells of the same
size. As an addition, multi-scale maps are used to handle
especially far distances with fast algorithms [5].

Conclusions from sensor data to a map are drawn with
forward models (i.e. which range measurement is expected
for given obstacles) or with inverse models (i.e. which grid
cells are probably occupied for a given range measurement)
[6]. For most sensors, forward models are given by the
sensor accuracy and can be easily extended with noise and
maximum-range measurements for very far distances. Sensor
fusion turned out to be much easier with inverse models, and
they are used in most mapping approaches. Inverse models
can be derived from the forward model by using a learning
procedure with simulated random maps, sensor positions and
measurements [7].

A lot of approaches to interpret sensor data and to build
grid maps are presented in the literature: with robots using
sonar sensors, [4], laser scanning systems [8], [9] and passive
systems that use stereo vision [10] or a combination of stereo
vision and optical flow estimation [11]. For stereo-based
approaches, sensor measurements are easily to be interpreted
as object points with depth-dependent Gaussian error as
described by an early approach in [12]. By considering
the way of light between an object and its projection, free
space between a visible obstacle and both cameras can be
included [10]. This is advantageous for large baselines and
high resolution maps, but it hardly improves stereo image
interpretation where the cameras are close to one another
and often located at the same grid cell. In this case, the
interpretation of measurements as objects and free space
between the object and only one camera will provide suitable
results. In the more general case, images from three or
more viewpoints are used to estimate distances and to build
occupancy grids [13].

II. PAPER OVERVIEW

This paper deals only with the sensor interpretation step
mentioned in the beginning and acts as a basis for oc-

The 2009 IEEE/RSJ International Conference on
Intelligent Robots and Systems
October 11-15, 2009 St. Louis, USA

978-1-4244-3804-4/09/$25.00 ©2009 IEEE 5191

cupancy grid mapping algorithms explained in the related
literature. Further use has been published separately [14].
The presented approach is optimized for a stereo camera as
a special application for distance sensing, but, nevertheless,
the approach can easily be adapted to other sensors if their
special features are taken into account. Methods to interpret
range data are developed in the following steps:
• Characteristics of stereo vision are explained to be used

in the following sections. With that, depth images can
be regarded as 2D range sensor output.

• A model is introduced that concludes from sensor data
to occupied and free occupancy grid cells.

• Different methods of generating the grid-based occu-
pancy values using the measurement model are pre-
sented. The resulting algorithms return a world-centric
occupancy grid given depth images and corresponding
camera positions and attitudes.

• The usage of image pyramids data is tested. It is a
common technique to cope with a huge amount of
image data.

• Finally, the different approaches are compared.
All methods of sensor interpretation are applied to full 3D

environments and they are developed to be real-time capable.
Occupancy grids are always 3D arrays and camera poses are
given in six degrees of freedom.

The interpretation of real images to a geodetic map is
presented at the end of this paper. Application context is the
aerial robotics domain.

III. STEREO GEOMETRY AND DISPARITY IMAGES

A fast calculation of depth images uses the pinhole
camera model and requires a standard-stereoscopic view.
This is achieved through a calibration of estimated internal
and relative camera parameters and an image undistortion
and rectification step. Theoretical fundamentals are widely
explained in [15]. Depth images are two-dimensional dis-
parity functions d(x, y) that describe the correspondence
between two images. Different methods to estimate the
disparity function are explained e.g. in [16], they are mainly
based on finding corresponding regions in both images that
look similar and include improvements like filtering low-
confidence measurements or speck. Distance measurements
zc are reconstructed from the disparity values through

zc =
b · f
d
, (1)

with the baseline, i.e. the horizontal camera distance b. The
horizontal and vertical parts of the 3D coordinate pc =
(xc, yc, zc)T are

xc = zc ·
(x− x0)

f
, and yc = zc ·

(y − y0)
f

. (2)

In practice, d is limited to a maximal search range and a
minimal distance value zcmin > 0 can be stated for distance
measurements [17]. Zero disparities lead to infinite distances
and will be interpreted as free space information up to a

sensor range limit. Using a known global camera orientation
(R, t), geodetic coordinates of an object point pg are

pg = RT · pc + t. (3)

Since the given image coordinates are not exact, but have
an uncertainty ∆d, the range measurements zc given by the
disparity function have an error ∆zc called range resolution,
given by

∆zc =
z2
c

b f
·∆d. (4)

The literature measures or presents a variety of values
for pixel correlation uncertainties ∆d, e.g. 1

16 pixels [17]
or 0.2 pixels [18], and the measurement model can be
parameterized by this value. In the later sections, a very
conservative value of ∆d = 0.5 pixels is chosen as proposed
by [16]. The uncertainty of a measured obstacle coordinate
can be determined using zc ±∆zc and the results xc ±∆xc

and yc±∆yc from equation 2 with input values x±0.5 and
y ± 0.5, respectively, and it is

∆xc = ∆yc = zc ·
1

2f
. (5)

Objects that are far away are measured with lower accu-
racy than nearer objects.

IV. INVERSE MEASUREMENT MODELS

An inverse measurement model describes the transforma-
tion from sensor data to a map. It is the interpretation of
distance data and concludes which map parts are probably
occupied or free if distances have been measured from a
specific point of view. In the approach presented here, an
inverse model is postulated without a learning procedure by
taking the sensor accuracy and the assumption that obstacles
are not transparent.

Basically, a single distance measurement allows the inter-
pretation that an obstacle is supposed to be at a specific world
coordinate described in the previous section. Additionally,
there is usually free space in front of the measured obstacle
and no information about the area behind. In the case of
depth image processing, each valid depth image pixel leads
to a unique ray in space. Beginning at the camera center,
there is free, occupied, and unknown space.

In the measurement model described here, every depth
image pixel acts as a single distance measurement along
a ray in space that is defined by the pixel coordinate and
the camera pose. The ray begins at the camera center and
intersects with the object point. In camera coordinates, it is
pc = (xc, yc, zc)T and the measured distance lp defined by
the pixel is

lp =
√
x2

c + y2
c + z2

c (6)

with the depth-dependent uncertainty

∆lp = ∆zc ·
lp
zc
. (7)

It is known that lmin = zcmin > 0. To interpret the mea-
surement, the occupancy probability for a map cell s at a
world-centric coordinate must be defined for all points on the

5192

ray that depends on the camera pose and the pixel coordinate.
The function denoted as P (s(l)) iterates over the distance
l along the ray and defines occupancy values for cells at
these coordinates. Further, log odds L(s(l)) are calculated
since they are commonly stored in grid cell arrays to allow
fast additive Bayesian map updates (e.g. described in [19]).
Positive log odd values refer to high occupancy probabilities
and negative values to free space. Zero values are an indicator
for unknown information. It is

L(s(l)) = ln
(

P (s(l))
1− P (s(l))

)
(8)

where the probabilities are stated through

P (s(l)) = Pocc(l)+

(
k

∆lp
√

2π
+0.5–Pocc(l)

)
e
- 1

2

(
l−lp
∆lp

)2

(9)
with

Pocc(l) =

{
pmin, if 0 < l ≤ lp;
0.5, if l > lp.

(10)

Unlike the modeling of 3D object point uncertainties pro-
posed by [12], this model applies a 1D Gaussian error to the
measured distance along the measurement ray and considers
the other dimensions of uncertainty during the postprocessing
step as described in section VII. The error increases with the
measured distance. Occupancy probabilities (eq. 9) include
both occupancy and free space information, and they are
are modeled with respect to [4] where an inverse model
for a sonar sensor is presented. The parameter k specifies
the significance of a single measurement. The constraint
∀l ≥ lmin : P (s(l)) ∈ (0; 1) must be fulfilled to ensure that
the resulting probabilities are valid. Figure 1 shows typical
plots of occupancy probabilities derived from single depth
image pixels. Near distance measurements become more
significant than far ones since they are more accurate. Very
large distances are interpreted as free space up to a maximum
distance threshold.

Fig. 1. Inverse Measurement Model. Occupancy values with the parameters
k = 0.1 and pmin = 0.35, showing measurements of 10m (blue), 20m
(green) and 40m (red) along the optical axis (i.e. lp = zc). Camera
parameters are b = 0.3m, f = 700 pixels and ∆d = 0.5 pixels.

In practice, maximal occupancy values in an environment
around l are used since obstacles must not be skipped when
taking samples of L(s(l)) in the grid drawing process. It is

L̂(s(l)) = max (L(s(l)) : l ∈ [lp − c/2, lp + c/2]) (11)

where c is the grid cell size. L̂(s(l)) is approximated by
sampling L(s(l)) in the given interval with a high frequency.

Function values for distances inside the sensor range and
possible measurements are stored in a lookup table for a fast
grid calculation.

V. DEPTH IMAGE PROCESSING

This section describes methods to process depth image
pixels so that occupancy values can be drawn into a 3D
occupancy grid. Both input image and target map are discrete
arrays where an iteration over the elements can be applied.
Hence, there are two basic approaches for the extraction of
occupancy data from depth images:
• Iteration over depth image pixels (line drawing). For

each depth image pixel, calculate the projection ray and
occupied and free coordinates of the grid. The result is
a 3D line that is drawn into the grid map. Points on the
line have values according to the inverse model.

• Iteration over the target grid (ray tracing). For each grid
cell, the projection coordinate on the depth image is cal-
culated. Using the cell position, the corresponding depth
pixel value and the measurement model, an occupancy
value is assigned to the grid cell.

There is an additional approach, but it ignores free space
information [19]. Obstacle point clouds are directly calcu-
lated from distance measurements and set into the grid array.
This point drawing method is not considered here. Even
though it is simple, fast, and allows better resolution in the
same computation time, point drawing does not reduce errors
due to spurious measurements because the grid maps contain
no information to disprove occupancy. Since the described
measurement model cannot be used, the results are very
different and not drawn to comparison here.

A. Line Drawing

In the case of drawing 3D occupancy grids, line drawing
means to iterate over the input data, i.e. the 2D depth image,
and calculate occupancy values of the 3D grid for every pixel.
The algorithm consists of the following three steps:

1) For a depth image pixel (x, y) with valid depth infor-
mation d, calculate the projected world coordinate pg

and distance lp (eqs. 3, 6).
2) Draw a line through the camera center and pg (Bre-

senham algorithm, extended to 3D) and,
a) calculate l for every grid cell s drawn, and
b) set the occupancy value to L̂(s(l)) (eq. 11). If s

is already occupied with a higher value, leave it
(obstacle priority). This occurs when drawn lines
overlap.

3) Proceed with step 1 taking the next depth image pixel
until lines are drawn for the whole image.

B. Ray Tracing

Unlike line drawing, ray tracing calculates occupancy
values the other way round. The iteration is done over the 3D
target grid instead of iterating over the input depth image.
For every grid cell inside the viewable area, the projected
pixel coordinate is calculated. If the disparity value of that
pixel or its environment leads to an obstacle where the grid

5193

cell is located, the occupancy probability of that cell is set
to a high value. It is done as follows:

1) Calculate the sensor range. The view frustum is de-
termined by the camera center and the projection of
the 4 image corner pixels, taking a maximal distance
threshold. For ease of use, an aligned bounding box is
used in the next step.

2) For each cell s = pg inside the sensor range
a) calculate Euclidean distance l of the cell from the

camera,
b) calculate image projection pixel coordinate
c) take maximal disparity d̂ in environment

around (x, y), that is determined by the im-
age projection of the cell cube corners s +
(-0.5, -0.5, -0.5)T , . . . , s + (0.5, 0.5, 0.5)T ,

d) calculate lp using x, y, d̂, and
e) set the grid cell s to L̂(s(l)) using the inverse

sensor model (eq. 11).

VI. IMPROVEMENT WITH DEPTH IMAGE PYRAMIDS

A. Depth Images with Lower and Higher Resolution

A depth image contains a lot of measurements that must be
processed. As in classical intensity images, those with lower
resolution contain similar information with reduced complex-
ity and accuracy. Since the number of pixels is smaller, image
processing will be faster. Pyramidal approaches combine
images with lower and higher resolution and take advantages
of speed and precision.

An example is shown in figure 2. The projection of depth
pixels are points in space depending on pixel position and
depth value. Due to perspective transformation, the projec-
tions of neighboring pixels are closer to each other if the
distance from the camera is smaller. With that, neighboring
pixels may contain nearly the same information which is
rasterized to the same occupancy grid cells (1). Compressed
information of these pixels can be used in this case. No
change is required for projections where neighboring pixels
refer to neighboring grid cells (2) which is most likely if
the depth values are inside a certain range described later.
Additionally, if projections of neighboring pixels are too
distant, images with higher resolution can be used to fill
the grid without gaps (3).

Fig. 2. 2D illustration of depth image pixels projected to the grid map
without (a) or with (b) the use of image pyramids.

As it can be derived from equation 2, neighboring pixels
are projected to world coordinates that have the distance

∆p = zc ·
2i · 1 pixel

f
(12)

from each other. Here, i is the pyramid layer where the
neighboring pixels are taken from. The pyramid layers i > 0
refer to smaller images where the resolution is reduced by
the factor 2i. Vice versa, i < 0 refers to image enlargements.
The grid cell size is denoted as c and the constraint

0.5 · c < ∆p ≤ c (13)

is used here to define which pyramid layer is taken to project
a specific distance or disparity. If ∆p ≤ 0.5 · c, an image
with lower resolution fulfills the requirement and in the other
direction, if ∆p > c, an image with higher resolution does.

Inequality (eq. 13) takes into account that a lower depth
image resolution is suitable if projected neighboring pixels
are very close so that they may refer to the same grid cell
and, in the other direction, that a higher image resolution
are used if neighboring pixels refer to coordinates too distant
from each other so that image details are not lost. It is not
considered whether pixels are really referring to the same
grid cells since this depends on the actual camera pose
and would be slow. Here, the used pyramid level is only
dependent on the disparity values and can be stored in a
lookup table.

Figure 3 illustrates the connection between disparity val-
ues, distances, and the image pyramid layer for an example
grid with a resolution of 0.5m. Stereo camera parameters are
b = 0.3m and f = 700 pixels. As shown there, lower depth
image resolution is sufficient to project most distances. For
example, if the distances between 6 and 25m (disparities
approximatively between 8 and 32) are taken into account
and higher distances are interpreted as free space up to 25m,
only reduced depth image resolutions are needed to create a
grid map of 0.5m cell size. Hence, the grid calculation will
be fast.

Fig. 3. Size of 1-pixel objects (dotted), 2i-pixel objects (solid) and the
used depth image pyramid layer i, dependent on the disparity value.

For line drawing methods, pyramid levels with i < 0 are
useful for very large distances in high resolution maps so that
the chance of remaining holes in the map is decreasing. In
contrast to that, such levels are not useful for ray tracing
methods since no additional complexity is provided and
disparity values of the original depth image are suitable to
collect occupancy information.

B. Pyramidal Line Drawing

For line drawing algorithms, depth image pyramids are
created using the maximum distance, i.e. minimal disparity
of objects represented by an image region. If the input depth
image is denoted as d0(x, y) = d(x, y), it is recursive

5194

di+1(x, y) = min{di(2x, 2y), di(2x+1, 2y),
di(2x, 2y+1), di(2x+1, 2y+1)}

(14)

with i ≥ 0. In comparison to di, di+1 is an image with a
halved width, height, and image center coordinates. Larger
images with i ≤ 0 can be generated through

di−1(x, y) = di (bx/2c , by/2c) (15)

and the image size and parameters are doubled.
The image processing step starts at the maximal pyramid

level. If the distance from a given pixel value di(x, y) is
equal to or less than the valid value for this layer, draw a
line. Otherwise, try to draw lines for the pixels

di−1(2x, 2y), di−1(2x+ 1, 2y),
di−1(2x, 2y + 1), di−1(2x+ 1, 2y + 1).

The recursion ends at the minimal existing pyramid level
where lines are always drawn.

C. Pyramidal Ray Tracing

Improved ray tracing works by creating depth image
pyramids using the minimal distance, i.e. maximal disparity
of objects represented by an image region to ensure that
obstacles are not omitted. It is
di+1(x, y) = max{di(2x, 2y), di(2x+1, 2y),

di(2x, 2y+1), di(2x+1, 2y+1)}
(16)

with i ≥ 0. While processing the grid, step 2c of the ray
tracing algorithm (section V-B) is changed. For a projected
image coordinate q = (x, y, 1)T , the maximal disparity d̂ of
the environment defined by the four neighboring pixels

di(bx/2ic, by/2ic), di(bx/2ic+ 1, by/2ic),
di(bx/2ic, by/2ic+ 1), di(bx/2ic+ 1, by/2ic+ 1)

of the fitting depth image layer i is taken in order to
determine the occupancy value set to the actual grid cell.

VII. GRID POSTPROCESSING

After creating a grid map from a depth image, blurring
is applied to the grid in order to consider uncertainty in the
vehicle position and attitude. In comparison to a classical
Gaussian blur with constant standard deviation to all grid
cells, the approach described here takes into account that
angular uncertainties have a greater influence on larger
distance measurements.

It is assumed that translational and angular deviations
(σtrans and σangle, respectively) are not correlated and equal
for each axis. To cope with different deviations in each
dimension, the largest standard deviation value of the three
axes is taken. The total deviation σ in each direction of
obstacle points pg caused by vehicle uncertainty is

σ =
√
σ2

trans + (r · σangle)2 (17)

where r is the Euclidean distance between pg and the
geodetic vehicle position. With that, occupancy grid cells
are blurred with different Gaussian convolution kernels pa-
rameterized by the the rounded σ value. Figure 4 shows an
example how the kernel sizes can be distributed over the grid.

Grid cells far from the vehicle position become more and
more blurred. As an example, figure 5 illustrates the basic
output of the ray tracing algorithm (left) and the influence
of blurring techniques with a constant convolution mask
(center) and the advanced method described here (right).

Fig. 4. Example (2D) of convolution kernel sizes dependent on the cell
position.

Fig. 5. Example of a grid using the ray tracing method and additional
blurring (center, right), simplified 2D view. Vehicle position and viewing
direction is marked, darker pixels refer to higher occupancy values.

VIII. COMPARISON OF THE DIFFERENT APPROACHES

The presented methods are applied to a test image where
grids of different resolutions are built. Figure 6 illustrates
the test image (nearer distances are brighter green, invalid
pixels are white), the expected map (top view, 2D) with view
angle and object positions for a ground truth comparison,
created maps (without postprocessing) in a simplified 2D
view, and a 3D output of the segmented grid (cells from
pyramidal line drawing, with an occupancy value of L(s) >
0.1) that has been created with the pyramidal line drawing
algorithm. Camera parameters are in all cases: image size
640×480, baselength 0.3m, focal length 700 pixels, disparity
uncertainty 0.5 pixels. The grid array is large enough so
that a view frustum with a maximal range of 25m fits in all
viewing directions. It is calculated in different resolutions:
with a cell size of 1.0m, 0.5m, and 0.25m.

As a qualitative result, all objects are identified with
every algorithm, see the dark spots in the resulting maps.
Bresenham line drawing yields aliasing effects but the map
quality and precision seems to be satisfactory as visible. Ray
tracing methods tend to draw larger objects into the map.
Occluded areas behind objects are also larger. Pyramid usage
has only a little effect, especially for line drawing.

Further, the following quantities are identified to compare
the algorithms:
• Coordinate transfers: The number of coordinate trans-

forming calculations, i.e. from pixel to grid coordinates
or vice versa.

• Used image pixels: The number of memory accesses to
pixels of the depth image and its pyramid. The memory
accesses can be higher than the number of valid depth

5195

Fig. 6. Example of a testing depth image, expected map as ground truth including object distances, grid maps calculated with different resolutions
(simplified 2D), and binary 3D grid representation, slant side view.

image pixels if pixels are checked multiple times, or
they can be lower due to pyramid usage.

• Grid cells drawn: The number of occupancy values
calculated and assigned to grid cells.

• Different grid cells: The number of grid cells that have
changed at the end. Will be lower than the drawn grid
cells if some cells have been updated multiple times.

• Calculation time on a 1.8 GHz processor, without
blurring. No streaming CPU instructions or graphics
acceleration used.

algorithm coordinate
transfers

used
image
pixels

grid
cells
drawn

different
grid
cells

time
[ms]

1.0m grid (11400 cells):
line drawing 194048 194047 2002640 943 207.
line drawing, pyr. 653 652 5487 921 0.62
ray tracing 11405 7939260 11400 11400 50.0
ray tracing, pyr. 11405 13752 11400 11400 6.09

0.5m grid (86400 cells):
line drawing 194048 194047 4013218 5287 352.
line drawing, pyr. 1710 1709 27942 4739 2.50
ray tracing 86405 62875230 86400 86400 395.
ray tracing, pyr. 86405 106172 86400 86400 44.8

0.25m grid (674500 cells):
line drawing 194048 194047 7832833 32985 632.
line drawing, pyr. 5392 5391 189446 31946 15.9
ray tracing 674505 505599749 674500 674500 3171.
ray tracing, pyr. 674505 861312 674500 674500 346.

TABLE I
RESULTS OF THE ALGORITHM COMPARISON.

Table I shows the resulting performance when the given
test image is processed with the different algorithms. To in-
terpret the facts presented in the table, comparisons between
line drawing and ray tracing methods, and between pyramidal
and non-pyramidal approaches are drawn. Beside that, it is
trivial that a higher resolution has a negative effect on the
processing time.

In line drawing approaches, all valid pixels have to be
processed, independent from the grid resolution. It reduces
the amount of processed image pixels, especially on low grid
resolutions where high pyramid levels can be used. With that,
the amount of drawn lines decreases. The number of different

grid cells drawn is nearly equal as an indicator for similar
outputs. Since it is much lower than the drawn grid cells,
a lot of cells are drawn multiple times because drawn lines
overlay. The probability of drawing lines with exactly the
same start and end coordinate decreases, especially on near
distances.

Pyramid usage in ray tracing has the effect that the
image pixels that have to be checked is decreasing. All
other numbers do not change since all cells in the sensor
range are drawn once and not multiple times. For every
cell, a coordinate transform is done, plus five calculations
to determine the field of view.

As a conclusion, line drawing is faster, except for non-
pyramidal approaches and low grid resolutions. As expected,
in all cases, the calculation performance increases signif-
icantly with image pyramids. Especially when combining
image pyramids with low grid resolutions, the line draw
method is real-time capable. Tests on other images and
sequences not shown here offer similar results. Nevertheless,
there is a risk of remaining holes in the map when using
line draw. Blurring can decrease the risk, but ray tracing can
really exclude holes; if it is required.

IX. APPLICATION TO AERIAL DEPTH IMAGES

The presented data interpretation method is a part of a
mapping and world modeling approach developed within the
ARTIS (Autonomous Rotorcraft Testbed for Intelligent Sys-
tems) research project that deals with unmanned helicopters.

The test vehicle is a model helicopter (fig. 8) with a main
rotor diameter of 3 meters and a total weight of maximal 25
kg. The image acquisition and processing equipment are a
30 cm baseline stereo camera (Videre Design STOC) and a
separate vision computer (Intel Pentium 4 Mobile).

Results from images taken in flight are presented in fig-
ure 7. Two scenarios are shown, the difference is mainly the
amount of valid depth pixels to process. The selected images
are a part of video sequences acquired during helicopter
flight. Geodetic occupancy grids with 0.25m resolution are
created using the pyramidal line drawing algorithm and the

5196

Fig. 7. Creation of 3D occupancy grids from aerial stereo image data. The first scenario illustrates a flight through obstacle posts and an example left
camera image (a), depth image (b) created map (L(s) > 0.1) from single image (c), final map (L(s) > 1.0) from complete sequence (d). The second
one is an urban scenario near houses and an example camera image (e), depth image (f), map from single image (g), map from complete sequence (h).
Ground plane added to the grid maps for illustration.

Fig. 8. The helicopter ARTIS flying through obstacle posts.

helicopter position taken from GPS/INS-based navigation
data. The image processing speed is close to the order of
magnitude predicted by the test image: 10 –15 ms for images
presented in the first scenario (fig. 7(a-d)) and 20 –25 ms for
images of the second one (fig. 7(e-h)). With that, real-time
3D grid mapping from stereo depth data is possible using
the presented algorithm.

X. CONCLUSION

This paper presents approaches to interpret depth images
in order to be fused with occupancy grid maps. The methods
are used as an update step of mapping techniques in the
form of the so-called inverse sensor model. To interpret depth
image pixels, a model is developed that copes with specific
range resolution in stereo vision, with probabilistic grid
representations, and with problems when sampling signals.
To draw single pixels into a map, line drawing and ray
tracing approaches are introduced and compared. In addition
to that, the use of image pyramids and a post-processing
step of the resulting grid is explained. It turns out that a
combination of line drawing and depth image pyramids is
a very efficient way for processing depth images capable
of real-time use. Eventually, the approach is proved using
images taken onboard an aerial vehicle.

REFERENCES

[1] S. Thrun, “Learning metric-topological maps for indoor mobile robot
navigation,” Artificial Intelligence, vol. 99, pp. 21–71, 1998.

[2] J. Borenstein and Y. Koren, “The vector field histogram – fast
obstacle avoidance for mobile robots,” IEEE Journal of Robotics and
Automation, vol. 7, no. 3, pp. 278–288, 1991.

[3] Y. Roth-Tabak and R. Jain, “Building an environment model using
depth information,” IEEE Computer, vol. 22, no. 6, pp. 85–90, 1989.

[4] A. Elfes, “Using occupancy grids for mobile robot perception and
navigation,” IEEE Computer, vol. 22, no. 6, pp. 46–57, 1989.

[5] M. Montemerlo and S. Thrun, “Large-scale robotic 3d mapping of
urban structures,” in Int. Symposium on Experimental Robotics, 2004.

[6] S. Thrun, “Learning occupancy grids with forward sensor models,”
Auton. Rob., vol. 15, pp. 111–127, 2003.

[7] M. C. Martin and H. P. Moravec, “Robot evidence grids,” Carnegie
Mellon University, Pittsburgh, Tech. Rep. CMU-RI-TR-96-06, 1996.

[8] M. Yguel, O. Aycard, and C. Laugier, “Efficient gpu-based construc-
tion of occupancy grids using several laser range finders,” in IEEE Int.
Conf. on Intelligent Robots and Systems, 2006, pp. 105–110.

[9] C. Plagemann, K. Kersting, P. Pfaff, and W. Burgard, “Gaussian beam
processes: A nonparametric bayesian measurement model for range
finders,” in Robotics: Science and Systems (RSS), 2007.

[10] H. P. Moravec, “Robot spatial perception by stereoscopic vision and
3d evidence grids,” Carnegie Mellon University, Tech. Rep., 1996.

[11] C. Braillon, C. Pradalier, K. Usher, J. Crowley, and C. Laugier,
“Occupancy grids from stereo and optical flow data,” in International
Symposium on Experimental Robotics, 2006.

[12] L. Matthies and S. A. Shafer, “Error modeling in stereo navigation,”
IEEE Journal of Rob. and Autom., vol. 3, no. 3, pp. 239–248, 1987.

[13] D. Murray and J. J. Little, “Using real-time stereo vision for mobile
robot navigation,” Auton. Rob., vol. 8, no. 2, pp. 161–171, 2000.

[14] F. Andert and L. Goormann, “A fast and small 3-d obstacle model
for autonomous applications,” in IEEE/RSJ Int. Conf. on Intelligent
Robots and Systems, 2008, pp. 2883–2889.

[15] R. Hartley and A. Zisserman, Multiple View Geometry in Computer
Vision. Cambridge: University Press, 2000.

[16] D. Scharstein and R. Szeliski, “A taxonomy and evaluation of dense
two-frame stereo correspondence algorithms,” International Journal of
Computer Vision, vol. 47, no. 1/2/3, pp. 7–42, 2002.

[17] K. Konolige, “Small vision systems: Hardware and implementation,”
in Eighth International Symposium on Robotics Research, 1997.

[18] Point Grey Research, Inc.: Stereo Products / Stereo Accuracy Chart
(Website). www.ptgrey.com, June 2009.

[19] D. Hähnel, “Mapping with mobile robots,” Ph.D. dissertation, Univer-
sität Freiburg, Germany, 2004.

5197

