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Abstract We study methods for drawing trees with perfect angular resolution, i.e.,

with angles at each node v equal to 2π/d(v). We show:

1. Any unordered tree has a crossing-free straight-line drawing with perfect angular

resolution and polynomial area.

2. There are ordered trees that require exponential area for any crossing-free straight-

line drawing having perfect angular resolution.

3. Any ordered tree has a crossing-free Lombardi-style drawing (where each edge is

represented by a circular arc) with perfect angular resolution and polynomial area.

Thus, our results explore what is achievable with straight-line drawings and what more

is achievable with Lombardi-style drawings, with respect to drawings of trees with

perfect angular resolution.
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1 Introduction

Most methods for visualizing trees aim to produce drawings that meet as many of the

following esthetic constraints as possible:

1. straight-line edges,

2. crossing-free edges,

3. polynomial area, and

4. perfect angular resolution around each node.

These constraints are all well-motivated, in that we desire edges that are easy to

follow, do not confuse viewers with edge crossings, are drawable using limited real

estate, and avoid congested incidences at nodes. Nevertheless, previous tree-drawing

algorithms have made various compromises with respect to this set of constraints;

we are not aware of any previous tree-drawing algorithm that can achieve all these

goals simultaneously. Our goal in this paper is to show what is actually possible with

respect to this set of constraints and to expand it further with a richer notion of edges

that are easy to follow. In particular, we desire tree-drawing algorithms that satisfy

all of these constraints simultaneously. If this is provably not possible, we desire an

augmentation that avoids compromise and instead meets the spirit of all of these goals

in a new way, which, in the case of this paper, is inspired by the work of artist Mark

Lombardi [23].

1.1 Problem Statement

The art of Mark Lombardi involves drawings of social networks, typically using

circular arcs and good angular resolution. Figure 1 shows such a work of Lom-

bardi that is crossing-free and almost a tree. It makes use of both circular arcs

and straight-line edges. Inspired by this work, let us define a set of problems that

explore what is achievable for drawings of trees with respect to the constraints listed

above but that, like Lombardi’s drawings, also allow curved as well as straight-line

edges.

Fig. 1 Pat Robertson, Beurt Servaas and the UPI Takeover Battle, ca. 1985–1991. Drawing by Mark

Lombardi, 2000. Image courtesy of Pierogi

123



Discrete Comput Geom (2013) 49:157–182 159

A drawing of a graph G = (V, E) is an assignment of a unique point in the

Euclidean plane to each node in V and an assignment of a simple curve to each edge

(u, v) ∈ E such that the only two nodes in V intersected by the curve are u and v,

which coincide with the endpoints of the curve. A drawing is straight-line if every

edge is drawn as a straight-line segment. A drawing is planar if no two curves intersect

except at a common shared endpoint.

Given a graph G = (V, E), let d(u) denote the degree of a node u, i.e., the number

of edges incident to u in G. For a drawing of G, the angular resolution at a node u is

the minimum angle between any two edges incident to u. A node has perfect angular

resolution if its angular resolution is 2π/d(u), and a drawing has perfect angular

resolution if every node does.

Suppose that our input graph G is a rooted tree T . We say that T is ordered if

an ordering of the edges incident to each node in T is specified. Otherwise, T is

unordered.

In many drawings of graphs, nodes can be placed on an integer grid, allowing one

to get a bound on the area of the drawing by bounding the dimensions of the grid.

Drawings with perfect angular resolution cannot be placed on an integer grid unless

the degrees of the nodes are constrained. To see this, suppose we have a vertex u

and two of its (consecutive) neighbors all of which lie on Cartesian grid points. From

basic trigonometry, the area of the triangle defined by these points is 1
2

ab sin θ , where

a and b represent the lengths of the edges extending from u and θ = 2π/d(u) is

the angle between these two edges. By Pick’s theorem, the area of this triangle is

rational, and consequently so is the square of the area. Since a2 and b2 must also

be rational, we conclude that sin2 θ must be rational. This is false for nearly all val-

ues of d(u), for example, when d(u) = 10 and θ = π/5. Hence, if we wish to

have perfect angular resolution, we cannot require the nodes to have integer coordi-

nates.

In this paper, our focus is on producing planar drawings of trees with perfect angular

resolution in polynomial area. When defining the area of a drawing, it is important

that the area measure prevents the drawing from being arbitrarily scaled down. Our

algorithms achieve polynomial area bounds according to the following three typical

area measures for non-grid drawings. In the first measure, the area is defined as the

ratio of the area of a smallest disk enclosing the drawing to the square of the length

of its shortest edge. As two non-neighboring nodes can be arbitrarily close using

this definition, one may be interested in using another definition of area instead, the

(squared) ratio of the farthest pair of nodes to the closest pair of nodes in the drawing.

This area measure can also be defined in terms of edges instead of nodes, i.e., as

the (squared) ratio of the farthest pair of edges to the closest pair of non-adjacent

edges.

We define a Lombardi drawing [11] of a graph G as a drawing of G with perfect

angular resolution such that each edge is drawn as a circular arc. When measur-

ing the angle formed by two circular arcs incident to a node v, we use the angle

formed by the tangents of the two arcs at v. Circular arcs are strictly more gen-

eral than straight-line segments, since straight-line segments can be viewed as cir-

cular arcs with infinite radius. Figure 2 shows an example of a straight-line drawing
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(a) (b)

Fig. 2 Two drawings of a tree T with perfect angular resolution and polynomial area as produced by our

algorithms. Bold edges are heavy edges, gray disks are heavy nodes, and white disks are light children. The

root of T is in the center of the leftmost disk

and a Lombardi drawing for the same tree. Thus, we can define our problems as

follows:

1. Is it always possible to produce a straight-line drawing of an unordered tree with

perfect angular resolution and polynomial area?

2. Is it always possible to produce a straight-line drawing of an ordered tree with

perfect angular resolution and polynomial area?

3. Is it always possible to produce a Lombardi drawing of an ordered tree with perfect

angular resolution and polynomial area?

1.2 Related Work

Tree drawings have interested researchers for many decades: e.g., hierarchical draw-

ings of binary trees date to the 1970s [31]. Many improvements have been proposed

since this early work, using space efficiently and generalizing to non-binary trees

[2,5,19,17,18,28–30]. These drawings fail to meet the four constraints mentioned

earlier, especially the constraint on angular resolution.

Several other methods directly aim to optimize angular resolution in tree drawings.

Radial drawings of trees place nodes at the same distance from the root on a circle

around the root node [12]. Circular tree drawings are made of recursive radial-type

layouts [26]. Bubble drawings [20] draw trees recursively with each subtree contained

within a circle disjoint from its siblings but within the circle of its parent. Balloon

drawings [24] take a similar approach and heuristically attempt to optimize space

utilization and the ratio between the longest and shortest edges in the tree. Convex

drawings [4] partition the plane into unbounded convex polygons with their boundaries

formed by tree edges. Although these methods provide several benefits, none of these

methods guarantees that they satisfy all of the aforementioned constraints.

The notion of drawing graphs with edges that are circular arcs or other nonlinear

curves is certainly not new to graph drawing. For instance, Cheng et al. [6] use circular

arcs to draw planar graphs in an O(n)× O(n) grid while maintaining bounded (but not

perfect) angular resolution. Similarly, Dickerson et al. [7] use circular-arc polylines

to produce planar confluent drawings of non-planar graphs, Duncan et al. [8] draw

graphs with fat edges that include circular arcs, and Cappos et al. [3] study simultaneous

embeddings of planar graphs using circular arcs. Finkel and Tamassia [15] use a force-
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directed method for producing curvilinear drawings, and Brandes and Wagner [1] use

energy minimization methods to place Bézier splines that represent connections in a

train network.

In a separate paper [11] we study Lombardi drawings for classes of graphs other

than trees. Unlike trees, not all planar graphs have planar Lombardi drawings [11,10]

and it is an interesting open question to characterize the graphs that have a planar

Lombardi drawing. Eppstein [14] recently proved that all planar subcubic graphs have

a planar Lombardi drawing, and that there are 4-regular planar graphs that do not

have a planar Lombardi drawing. He also characterized the planar graphs that have

planar Lombardi drawings corresponding to physical soap bubble clusters [13]. Löffler

and Nöllenburg [25] showed that all outerpaths, i.e., outerplanar graphs whose weak

dual is a path, have an outerplanar Lombardi drawing. In terms of the usability of

Lombardi drawings, two independent user studies [27,32] examined the performance

of Lombardi versus straight-line drawings for several graph reading tasks. While the

study of Purchase et al. [27] showed an advantage of straight-line drawings for two

out of three tasks, but esthetic preference for Lombardi drawings, the study of Xu et

al. [32] did not show significant performance differences between the two types of

drawings, but a strong esthetic preference for straight-line drawings.

1.3 Our Contributions

In this paper we present the first algorithm for producing straight-line, crossing-free

drawings of unordered trees that ensures perfect angular resolution and polynomial

area. In addition we show, in Sect. 3, that if the tree is ordered then it is not always

possible to maintain perfect angular resolution and polynomial drawing area when

using straight lines for edges. Nevertheless, in Sect. 4, we show that crossing-free

polynomial-area Lombardi drawings of ordered trees are possible. That is, we show

that the answers to the questions posed above are “yes,” “no,” and “yes,” respectively.

Both algorithms require linear time in a model of computation, in which we can

perform trigonometric computations and find roots of bounded degree polynomials in

constant time.

2 Straight-Line Drawings for Unordered Trees

Let T be an unordered tree with n nodes. We wish to construct a straight-line drawing

of T with perfect angular resolution and polynomial area.

The main idea of our algorithm is, similar to the common bubble and balloon tree

constructions [20,24], to draw the children of each node of the given tree in a disk

centered at that node; however, our algorithm differs in several key respects in order

to achieve the desired area bounds and perfect angular resolution.

2.1 Heavy-Path Decomposition

The initial step before drawing the tree T is to create a heavy path decomposition [22]

of T . To make the analysis simpler, we assume T is rooted at some arbitrary node r .

We let Tu represent the subtree of T rooted at u, and |Tu | the number of nodes in Tu . A
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Fig. 3 The tree T on the left highlights its heavy edges. The corresponding heavy-path decomposition tree

H(T ) on the right has each heavy path represented by a single node

node c is the heavy child of u if |Tc| ≥ |Tv| for all children v of u. In the case of a tie, we

arbitrarily designate one node as the heavy child. We refer to the non-heavy children as

light and let L(u) denote the set of all light children of u. The light subtrees of u are the

subtrees of all light children of u. We define l(u) = 1+
∑

v∈L(u) |Tv| to be the light size

of u. An edge is called a heavy edge if it connects a heavy child to its parent; otherwise

it is a light edge. The set of all heavy edges creates the heavy-path decomposition

of T , a disjoint set of (heavy) paths where every node in T belongs to exactly one

path (possibly of length 0); see Fig. 3. After an initial bottom-up traversal of T to

compute the number of descendants for every node, the heavy-path decomposition

can be computed by a depth-first search that always descends to the heavy child of

each node before visiting its light children in arbitrary order. This takes O(n) time.

The heavy-path decomposition has the following important property. If we treat

each heavy path as a node, and each light edge as connecting two heavy-path nodes,

we obtain a tree H(T ). This tree has height h(T ) ≤ log2 n since the size of each light

child is less than half the size of its parent. We refer to the level of a heavy path as the

depth of the corresponding node in the decomposition tree, where the root has depth 0.

We extend this notion to nodes, i.e., the level of a node v is the level of the heavy path

to which v belongs.

2.2 Drawing Algorithm

Our algorithm draws T incrementally in the order of a depth-first traversal of the

corresponding heavy-path decomposition tree H(T ), i.e., given drawings of the light

subtrees of a heavy-path node P in H(T ) we construct a drawing of P and its subtrees.

Let P = (v1, . . . , vk) be a heavy path. Then we draw each node vi of P in the center

of a disk Di and place smaller disks containing the drawings of the light children of vi

and their descendents around vi in two concentric annuli of Di . We guarantee perfect

angular resolution at vi by connecting the centers of the child disks with appropriately

spaced straight-line edges to vi . Next, we create the drawing of P and its descendents

within a disk D by placing D1 in the center of D and D2, . . . , Dk on concentric

circles around D1. We show that the radius of D is linear in the number n(P) of

nodes descending from P and exponential in the level of P . In this way, at each step

downwards in the heavy-path decomposition, the total radius of the disks at that level

shrinks by a constant factor, allowing room for disks at lower levels to be placed within
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Fig. 4 An (R, δ)-wedge and the

largest disk that can be placed

inside it

the higher-level disks. Figure 2a shows a drawing of an unordered tree according to

our method.

Before we can describe the details of our construction we need the following geo-

metric property. Define an (R, δ)-wedge, δ ≤ π as a sector of angle δ of a radius-R

disk; see Fig. 4.

Lemma 1 The largest disk that fits inside an (R, δ)-wedge has radius r = R
sin(δ/2)

1+sin(δ/2)
.

Proof The largest disk inside the (R, δ)-wedge touches the circular arc and both radii

of the wedge. Thus we immediately obtain a right triangle formed by the apex of the

wedge, the center of the disk we want to fit, and one of its tangency points with the two

radii of the wedge; see Fig. 4. This triangle has one side of length r and hypotenuse

of length R − r . From sin(δ/2) = r
R−r

we obtain r = R
sin(δ/2)

1+sin(δ/2)
. ⊓⊔

In the next lemma we show how to draw a single node v of a heavy path P given

drawings of all its light subtrees.

Lemma 2 Let v be a node of T at level j of H(T ). For each light child u ∈ L(v)

assume there is a disk Du of radius ru = 2·8h(T )− j−1|Tu | that contains a fixed drawing

of Tu with perfect angular resolution and such that u is in the center of Du . Then we

can construct a drawing of v and its light subtrees inside a disk D in O(d(v)) time

such that the following properties hold:

1. the edge between v and any light child u ∈ L(v) is a straight-line segment that

does not intersect any disk other than Du;

2. one or two rays that do not intersect any disk Du are reserved for drawing the

heavy edges incident to v or the light edge to the parent of v;

3. any two disks Du and Du′ for two light children u �= u′ are disjoint;

4. the angular resolution of v is 2π/d(v);

5. the angle between the two rays reserved for the heavy edges or the light parent

edge is at least 2π/3 and at most 4π/3 (if these two rays exist);

6. the disk D has radius rv = 8h(T )− j l(v).

Proof We assume that the ray ρ0 for the (heavy or light) edge to the parent of v is

directed horizontally to the left (for the root of T its unique heavy edge takes this

role). We draw a disk D with radius rv centered at v and create d(v) spokes, i.e., rays

extending from v, that are equally spaced by an angle of 2π/d(v) and include the ray

ρ0. In order to achieve the angular resolution (property 4), every neighbor of v must

123



164 Discrete Comput Geom (2013) 49:157–182

(a)(a) (b)

Fig. 5 Drawing a node v and the subtrees of its light children L(v)

be placed on a distinct spoke. The main difficulty is that there can be child disks that

are too large to place without overlap on adjacent spokes inside D.

Let Dmax be the largest disk Du of any u ∈ L(v) and let rmax be its radius. We

split D into an outer annulus A and an inner disk B by a concentric circle of radius

R = rv − 2rmax; see Fig. 5. We define a child u ∈ L(v) to be a small child, if

ru ≤ R
sin(π/d(v))

1+sin(π/d(v))
, and to be a large child otherwise. We further say Du is a small

(large) disk if u is a small (large) child. We denote the number of small children as

ns and the number of large children as nl . By Lemma 1 we know that any small disk

Du can be placed inside an (R, 2π/d(v))-wedge. This means that we can place all ns

small disks centered on any subset of ns spokes inside B without violating property 3.

So once we have placed all large disks correctly then we can always distribute the

small children on the unused spokes.

We place all large disks in the outer annulus A. Observe that

4
∑

u∈L(v)

ru = 4
∑

u∈L(v)

2 · 8h(T )− j−1|Tu | = 8h(T )− j
∑

u∈L(v)

|Tu | < 8h(T )− j l(v) = rv,

i.e., we can place all light children on the diameter of a disk of radius at most rv/4. If

we order all light children along that diameter by their size we can split them into one

disk containing the large disks and one containing the small disks; see Fig. 5a.

Assume that the large disks are arranged on the horizontal diameter of their disk

and that this disk is placed vertically above v and tangent to D as shown in Fig. 5a.

Since that disk has radius at most rv/4 we can use Lemma 1 to show that it always fits

inside an (rv, π/4)-wedge. If we now translate the large disks vertically upward onto

a circle centered at v with radius rv − rmax then they are still disjoint and they all lie in

the intersection of A and the (rv, π/4)-wedge. We now rotate them counterclockwise

around v until the leftmost disk Dmax touches the ray ρ0. Thus all large disks are placed

disjointly inside a π/4-sector of A. However, they are not centered on the spokes yet.

Beginning from the leftmost large disk, we rotate each large disk Du and all its right

neighbors clockwise around v until Du snaps to the next available spoke. Clearly, in

each of the nl steps we rotate by at most 2π/d(v) in order to reach the next spoke.
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We now bound the number nl of large children. By definition a child is large if ru =
2·8h(T )− j−1|Tu | > (rv−2rmax)

sin(π/d(v))
1+sin(π/d(v))

. We also have rv ≥ 8h(T )− j
∑

u∈L(v) |Tu |.
Let w be the light child of v with maximum disk radius rw = rmax. Then rw =
2 · 8h(T )− j−1|Tw| and hence rv − 2rmax ≥ 4 · 8h(T )− j−1(2

∑

u∈L(v) |Tu | − |Tw|). So

for a light child u to be large, its subtree Tu has to contain |Tu | > 2 · (2
∑

u∈L(v) |Tu |−
|Tw|) sin(π/d(v))

1+sin(π/d(v))
nodes. This yields

nl < 1 +
∑

u∈L(v) |Tu | − |Tw|

2 ·
(

2
∑

u∈L(v) |Tu | − |Tw|
)

sin(π/d(v))
1+sin(π/d(v))

< 1 + 1 + sin(π/d(v))

4 sin(π/d(v))
.

From this we obtain that for d(v) ≥ 5 we have nl < 3d(v)/8. So for d(v) ≥ 5 we

can always place all large disks correctly on spokes inside at most half of the outer

annulus A since we initially place all large disks in a π/4-wedge and then enlarge that

wedge by at most 3d(v)/8 · 2π/d(v) = 3π/4 radians. For d(v) ≤ 2 there are no light

children, for d(v) = 3 we immediately place the disk of the single light child on its

spoke without intersecting the other spokes, and for d(v) = 4 we place the disks of the

two light children on opposite vertical spokes separated by the two horizontal spokes,

which does not produce any intersections either. If v is the root of T and d(v) ≤ 4 the

disks of the light children (at most three) are placed analogously.

Since we require at most half of A to place all large children, we can assign the

second ray for a heavy edge (if it exists) to the spoke exactly opposite of ρ0 if d(v) is

even. If d(v) is odd, we choose one of the two spokes whose angle with ρ0 is closest

to π . Finally, we arbitrarily assign the ns small children to the remaining free spokes

inside the inner disk B.

Thus, the drawing for v and its light subtrees constructed in this fashion satisfies

properties 1–6.

It remains to show that the drawing can be constructed in O(d(v)) time. In order to

avoid unnecessary updates of the node coordinates, we store the position of each node

(in polar coordinates) relative to its parent, i.e., relative to v. Thus we can change the

placement of the whole subtree Tv by changing only the position of its root node v.

We first assign the large children in arbitrary order to their spokes. The next feasible

spoke is easily obtained from the position and radius of the previous disk and the

radius of the next disk. Then we place the small children on the remaining spokes

and reserve the stub for the heavy child. It is sufficient to assign a unique spoke ID in

{2, 3, . . . , d(v)} to each child, where spoke 1 connects to the parent of v. This spoke

order can be interpreted both clockwise and counterclockwise, which will be useful

for drawing the heavy paths in the next step. Since the placement of any child disk

requires constant time, the O(d(v)) time bound follows. ⊓⊔

Lemma 2 shows how to draw a single heavy node v and its light subtrees. It also

applies to the root of T if we ignore the incoming heavy edge, and to the root node

v1 of a heavy path P = (v1, . . . , vk) at level l ≥ 1 if we consider the light edge uv1

to its parent u as a heavy edge for v1. The last node vk of P is always a leaf, which

is trivial to draw. For drawing an entire heavy path P = (v1, . . . , vk) we need to link

the drawings of the heavy nodes into a path.
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(a) (b)

Fig. 6 Constructing the heavy-path drawing by appending drawings of its heavy nodes

Lemma 3 Given a heavy path P = (v1, . . . , vk) and a drawing for each vi and its

light subtrees inside a disk Di of radius ri , we can draw P and all its descendants

inside a disk D in O(k) time such that the following properties hold:

1. the heavy edge vivi+1 is a straight-line segment that does not intersect any disk

other than Di and Di+1;

2. the light edge connecting v1 and its parent does not intersect the drawing of P;

3. any two disks Di and D j for i �= j are disjoint;

4. the drawing has perfect angular resolution;

5. the radius r of D is r = 2
∑k

i=1 ri .

Proof Let v1 be the root of P and let u be the parent of v1 (unless P is the heavy

path at level 0). We place the disk D1 at the center of D and assume that the edge uv1

extends horizontally to the left. We create k − 1 vertical strips S2, . . . , Sk to the right

of D1, each Si of width 2ri ; see Fig. 6a. Each disk Di will be placed inside its strip Si .

We extend the ray induced by the stub reserved for the heavy edge v1v2 from v1 until

it intersects the vertical line bisecting S2 and place v2 at this intersection point. By

property 5 of Lemma 2 we know that the angle between the two heavy edges incident

to a heavy node is between 2π/3 and 4π/3. Thus v2 is inside a right-open 2π/3-wedge

W that is symmetric to the x-axis. Now for i = 2, . . . , k−1 we extend from vi the stub

of the heavy edge vivi+1 into a ray and place vi+1 at the intersection of that ray and

the bisector of Si+1. When placing the disk Di+1 centered at vi+1, Lemma 2 leaves

the two valid options of arranging the subtrees of vi+1 inside Di+1 in clockwise or

counterclockwise order. We pick the ordering for which the slope of the ray vi+1vi+2

is closer to 0, i.e., vi+1vi+2 makes a right turn if vivi+1 has a positive slope and a left

turn otherwise. (If � vivi+1vi+2 = π either way is fine.) Then by using induction and

property 5 of Lemma 2 the ray vi+1vi+2 stays within W .

Since each disk Di is placed in its own strip Si , no two disks intersect (property 3)

and since heavy edges are straight-line segments within two adjacent strips, they do

not intersect any non-incident disks (property 1). The light edge uv1 is completely to

the left of all strips and thus does not intersect the drawing of P (property 2). Since

we were using the existing drawings (or their mirror images) of all heavy nodes, their

perfect angular resolution is preserved (property 4).
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The current drawing has a width that is equal to the sum of the diameters of the

disks D1, . . . , Dk . However, it does not yet necessarily fit into a disk D centered at

v1 whose radius equals that sum of the diameters. To achieve this we create k − 1

annuli A2, . . . , Ak centered around v1, each Ai of width 2ri . Then, for i = 2, . . . , k,

we either shorten or extend the edge vi−1vi until Di is contained in its annulus Ai ;

see Fig. 6b. At each step i we treat the remaining path (vi , . . . , vk) and its disks

Di , . . . , Dk as a rigid structure that is translated as a whole and in parallel to the heavy

edge vi−1vi ; see the translation vectors indicated in Fig. 6b. In the end, each disk Di

is contained in its own annulus Ai and thus all disks are still pairwise disjoint. Since

we only stretch or shrink edges of an x-monotone path but do not change any edge

directions, the whole transformation preserves the previous properties of the drawing.

Clearly, all disks now lie inside a disk D of radius r = r1 + 2
∑k

i=2 ri ≤ 2
∑k

i=1 ri

(property 5).

It remains to show the O(k) time bound for drawing P . Here we store the

coordinates of each vi in P not only relative to the parent node vi−1 but also rela-

tive to the root v1 of P . Initially, each disk is placed in its vertical strip as shown in

Fig. 6a and the order of the children is selected as either clockwise or counterclock-

wise as needed. (Recall that changing the direction can be done in constant time.)

Then for i = 2, . . . , k each disk Di is translated into its annulus Ai ; see Fig. 6b. In

this process the coordinates of vi with respect to v1 can become temporarily invalid

but the coordinates relative to the predecessor node vi−1 remain valid. Given the final

position of Di in Ai and the current position of Di+1 with respect to vi we obtain the

final position of Di+1 in Ai+1, both with respect to v1 and to vi . The assignment of

the coordinates for every node of P thus takes O(k) time. ⊓⊔

Combining Lemmas 2 and 3 yields the following theorem:

Theorem 1 Given an unordered tree T with n nodes we can find, in O(n) time and

space, a crossing-free straight-line drawing of T with perfect angular resolution that

fits inside a disk D of radius 2 · 8h(T )n, where h(T ) is the height of the heavy-path

decomposition of T . Since h(T ) ≤ log2 n the radius of D is no more than 2n4.

Proof From Lemma 2 we know that, for each node v of a heavy path P at level j ,

the radius of the disk D containing v and all its light subtrees is rv = 8h(T )− j l(v).

Lemma 3 yields that P = (v1, . . . , vk) and all its descendants can be drawn in a disk

of radius r = 2
∑k

i=1 rvi
= 2 · 8h(T )− j

∑k
i=1 l(vi ) = 2 · 8h(T )− j n(P), where n(P) is

the number of nodes of P and its descendants. This holds, in particular, for the heavy

path P̂ at the root of H(T ).

It remains to show the linear time and space bound. As indicated in Sect. 2.1 the

heavy-path decomposition is computed in linear time and has linear size. Since the

drawing subroutines for nodes and heavy paths in Lemmas 2 and 3 both require linear

time and are called only once for each node and heavy path, respectively, these steps

take O(n) time in total. In the final step we set the coordinates of the root of T to

(0, 0) and propagate the absolute positions of all nodes from top to bottom. Thus the

entire process takes O(n) time. As we only store a constant amount of information

with each node of T , it follows that the space needed is also O(n). ⊓⊔
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Corollary 1 The drawing of T according to Theorem 1 requires polynomial area.

Proof Our first definition of area (the ratio of the area of the smallest enclosing disk

over the square of the length of the shortest edge) yields an area value of at most 4πn8

for the drawing of T since the shortest edges have length at least 1 and D has radius

at most 2n4. In the alternative notions of area defined by the (squared) ratio of the

farthest distance of any two nodes (or edges) to the smallest distance of any two nodes

(or non-adjacent edges) a similar polynomial area bound holds. Clearly the farthest

distance in both cases is at most the diameter 4n4 of D. Furthermore, every child node

in the drawing is contained in its own overlap-free disk of radius 1 and hence the

closest pair of nodes has distance at least 1. For the closest pair of edges there is also a

lower distance bound of 1. In every step of the recursive drawing procedure a subtree

Tu is drawn inside a disk Du with the property that there is an empty outer annulus

of width at least 1 in Du . When composing different subdrawings, this ensures that

their edges are kept far enough apart. Thus it is easy to see by induction that no pair

of edges can get closer than distance 1. ⊓⊔

3 Straight-Line Drawings for Ordered Trees

In many cases, the ordering of the children around each node of a tree is given; that is,

the tree is ordered (or has a fixed combinatorial embedding). In the previous section we

relied on the freedom to order subtrees as needed to achieve a polynomial area bound.

Hence that algorithm cannot be applied to ordered trees with fixed embeddings. As

we now show, there are ordered trees that have no straight-line crossing-free drawings

with perfect angular resolution and polynomial area.

Specifically, we present a class of ordered trees for which any straight-line crossing-

free drawing with perfect angular resolution requires exponential area. We define

the 3-legged Fibonacci caterpillar of length k to be an ordered caterpillar tree Tk ,

whose spine (the subgraph obtained after removing all leaves) is a k-node path

P = (p1, . . . , pk) in which every node pi has degree 5 in Tk , hence three legs. The

embedding of Tk specifies that in every node pi (i = 2, . . . , k − 1) the edge pi pi+1 is

the immediate counterclockwise successor of pi pi−1. Hence in any straight-line draw-

ing of Tk with perfect angular resolution, the spine is represented as a simple polyline

with k −2 right turns of 108◦, forming a 72◦ angle between adjacent edges; see Fig. 7.

We define a clockwise (counterclockwise) spiral to be a polyline (q1, . . . , qk) such

that for any index 3 ≤ i ≤ k − 1 the polyline (q1, . . . , qi ) lies to the right (left) of

(a)

(b) (c)

Fig. 7 (a) A Fibonacci caterpillar; (b) Lombardi drawing; (c) straight-line drawing with perfect angular

resolution and exponential area
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(a) (b) (c)

Fig. 8 Two locked edge sequences (a, b) and an open sequence (c)

the ray
−−−→
qi qi+1. First, we show that any drawing of the Fibonacci caterpillar contains

a large spiral.

Lemma 4 In any straight-line drawing with perfect angular resolution of Tk the spine

P contains a spiral consisting of at least k/2 nodes.

Proof For k ≤ 5, because of the required fixed angle turns, either P = (p1, . . . , pk)

is a clockwise spiral or its reverse P = (pk, . . . , p1) is a counterclockwise spiral.

So let k > 5. For i = 1, . . . , k − 1 we abbreviate the edge pi pi+1 as ei . We look at

sequences Si of four consecutive edges (ei , ei+1, ei+2, ei+3) of P and distinguish two

cases. If the extension of edge ei+3 into a ray
−−−−−→
pi+3 pi+4 intersects ei or ei+1, we say

the sequence Si is locked, and otherwise we say it is open; see Fig. 8. Starting from

i = 1 we scan the spine P for the first occurrence j of a locked sequence S j . Then

the prefix path (p1, . . . , p j+3) is a clockwise spiral.

Furthermore, for any i ≥ j the sequence Si is also locked, as can be seen by

induction. Let Si be a locked sequence. Then node pi+5 lies inside the quadrilateral

(or triangle) defined by edges ei , ei+1, ei+2 and the ray
−−−−−→
pi+3 pi+4, and due to the angle

of 72◦ between ei+3 and ei+4 the ray
−−−−−→
pi+4 pi+5 must intersect either ei+1 or ei+2; see

Fig. 8a, b. This means that Si+1 is also a locked sequence.

By observing that if a sequence Si = (ei , ei+1, ei+2, ei+3) is locked, then the

reverse sequence Si = (ei+3, ei+2, ei+1, ei ) is open, the same reasoning as before

yields that the suffix path (p j , p j+1, . . . , pk) in reverse order (pk, . . . , p j+1, p j ) is a

counterclockwise spiral. Clearly, one of the two spirals contains at least k/2 nodes. ⊓⊔
Now that we know that there is a large spiral in Tk we show that drawing the spiral

requires exponential area.

Lemma 5 The drawing of a spiral of length n requires exponential area �(cn) for

some c > 1.

Proof Without loss of generality we consider a path P of length n ≥ 6 that forms a

clockwise spiral. Figure 9 shows the construction of a minimum-area drawing of P .

Let the minimum length of any edge be 1. We draw e1 and e2 with an angle of 72◦

and length 1 each. Every subsequent edge ei for 3 ≤ i ≤ n − 1 is drawn just as long

as necessary so that the sequence Si is open. Obviously, no edge can be shortened and

increasing any edge only increases the area of the spiral.

This procedure creates a sequence of isosceles triangles �0, . . . ,�n−6 as indicated

in Fig. 9. Each �i has two long sides of length bi and a short side of length ai . The
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Fig. 9 Construction of a

minimum-area spiral based on

the angle α = 72◦

angles opposite the two long sides are α = 72◦ and the angle opposite the short

side is β = 36◦. By construction of the triangle sequence we obtain the recurrence

bi = bi−3 + ai−4, which is similar to the definition of the Fibonacci numbers. From

trigonometry we know that ai = sin 36◦/ sin 72◦ ·b1 = 1/(2 cos 36◦) ·bi ≈ 0.618 ·bi

and that the area of �i is Ai = 1/2 · b2
i sin 36◦. Using bi = bi−3 + ai−4 ≥ 2ai−4 and

ai ≥ ai−4/ cos 36◦ we can now bound Ai as follows:

Ai = 1
2

b2
i sin 36◦

≥ 2 sin 36◦a2
i−4

≥ 2 sin 36◦ 1
cos 36◦

⌊i/4⌋
a0

≥ 1.236⌊i/4⌋a0.

(1)

Clearly, the smallest disk containing the spiral has area at least An−6 and so by our

definition of the area of a drawing the whole spiral has area �(cn) for c = 4
√

1.236 ≈
1.054. ⊓⊔

By combining Lemmas 4 and 5 we immediately obtain the following theorem since

drawing the whole Fibonacci caterpillar Tk requires at least as much area as drawing

only its spine.

Theorem 2 Any straight-line drawing of the Fibonacci caterpillar Tk with perfect

angular resolution requires area �(ck) for some c > 1.

Similar reasoning was used by Frati [16] to show an exponential lower bound on

the area of upward straight-line drawings for ordered trees. The Fibonacci caterpil-

lar shows that we cannot maintain all constraints (straight-line edges, crossing-free,

perfect angular resolution, polynomial area) for ordered trees. However, as we show

next, using circular arcs instead of straight-line edges allows us to respect the other

three constraints; see Fig. 7b.
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4 Lombardi Drawings for Ordered Trees

In this section, let T be an ordered tree with n nodes. As we have seen in Sect. 3, we

cannot find polynomial area drawings for all ordered trees using straight-line edges.

However, by using circular arc edges instead of straight-line segments we can achieve

all remaining constraints as in the unordered case. That is, we can find crossing-free

circular arc drawings with perfect angular resolution and polynomial area. Recall

that a drawing with circular arcs and perfect angular resolution is called a Lombardi

drawing [11].

The flavor of the algorithm for Lombardi tree drawings is similar to our straight-

line tree-drawing algorithm of Sect. 2: We first compute a heavy-path decomposition

H(T ) for T , and then we recursively draw all heavy paths within disks of polynomial

area in a bottom-up fashion. More precisely, we ensure the following invariant for the

drawing of any heavy path and all its descendants.

Invariant 1 A heavy path P at level j of H(T ) and all its descendants are drawn

inside a disk D of radius 2 · 4h(T )− j n(P), where n(P) = |Tv| for the root v of P.

Given the logarithmic height of the heavy-path decomposition, this yields a drawing

of T with polynomial area.

In Sect. 4.1, we describe how to draw a heavy path P (but not yet its light subtrees)

under the assumption that each node of P is centered in a disk of given radius. Sub-

sequently, Sect. 4.2 shows how the light subtrees of a heavy-path node v, which are

themselves heavy paths of the level below and thus recursively drawn within disks of

fixed size according to Invariant 1, are placed within the space reserved around v in the

previous step. These two steps define the drawing of a heavy path P and all its descen-

dants, which we show satisfies Invariant 1, and which is then used as a component for

the drawing of the parent of P in H(T ).

4.1 Drawing Heavy Paths

Let P = (v1, . . . , vk) be a heavy path at level j of the heavy-path decomposition.

Since we will draw P incrementally starting from the leaf and ending with the root

of P , we assume that the last node vk is the root of P . We denote each edge vivi+1

by ei . Recall that the angle at an intersection point of two circular arcs is measured

as the angle between the tangents to the arcs at that point. We define the angle α(vi )

for 2 ≤ i ≤ k − 1 to be the angle between ei−1 and ei at node vi (measured counter-

clockwise). The angle α(vk) is defined as the angle at vk between ek−1 and the light

edge e = vku connecting the root vk of P to its parent u. Due to the perfect angular

resolution requirement for each node vi , the angle α(vi ) is obtained directly from the

number of edges between ei−1 and ei and the degree d(vi ).

Lemma 6 Given a heavy path P = (v1, . . . , vk) and a disk Di of radius ri for the

drawing of each vi and its light subtrees, we can draw P with each vi in the center of

its disk Di inside a large disk D in O(k) time such that the following properties hold:

1. each heavy edge ei is a circular arc that does not intersect any disk other than Di

and Di+1;
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Fig. 10 Drawing a heavy path P on concentric circles with circular-arc edges. The angles α(vi ) are marked

in gray; the edge stub to connect v7 to its parent is dotted

2. there is a stub edge incident to vk that is reserved for the light edge connecting vk

and its parent u;

3. any two disks Di and D j for i �= j are disjoint;

4. the angle between any two consecutive heavy edges ei−1 and ei is α(vi );

5. the radius of D is r = 2
∑k

i=1 ri .

Proof We draw P incrementally starting from the leaf v1 by placing D1 in the center

M of the disk D of radius r = 2
∑k

i=1 ri . We may assume that D1 is rotated such that

the edge e1 is tangent to a horizontal line at v1 and that it leaves v1 to the right. All

disks D2, . . . , Dk will be placed with their centers v2, . . . , vk on concentric circles

C2, . . . , Ck around M as shown in Fig. 10. The radius of Ci is r1 + 2
∑i−1

j=2 r j + ri so

that Di−1 and Di are placed in disjoint annuli separated by the circle Ĉi−1 of radius

r1 + 2
∑i−1

j=2 r j . Hence by construction no two disks intersect (property 3). Each disk

Di will be rotated around its center such that the tangent to Ci at vi is the bisector of

the angle α(vi ).

We now describe one step in the iterative drawing procedure that draws edge ei and

disk Di+1 given a drawing of D1, . . . , Di . Disk Di is placed such that Ci bisects the

angle α(vi ) and hence we immediately obtain the slope of the tangent to ei at vi . This

defines a family Fi of circular arcs emitted from vi with the same given tangent slope

at vi that intersect the circle Ci+1; see Fig. 11. We consider all arcs from vi until their

first intersection point with Ci+1. Observe that the intersection angles of Fi and Ci+1

bijectively cover the full interval [0, π ], i.e., for any angle α ∈ [0, π ] there is a unique

arc in Fi that has intersection angle α with Ci+1. Hence we choose for ei the unique

circular arc that realizes the angle α(vi+1)/2 and place the center vi+1 of Di+1 at the

endpoint of ei . Since the centers of all arcs a in Fi lie on a line ℓi , we parameterize

them as a = a(t) by a parameter t ∈ R ∪ {∞} that yields the corresponding circle

center on ℓi . Then we consider the angle of the tangents to a(t) and the circle Ci+1 in

their first intersection point p(t) and set it equal to α(vi+1)/2. Solving this equation
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Fig. 11 Any angle α ∈ [0, π ]
can be realized

for t requires finding the roots of a polynomial of bounded degree, which we assume

to be possible in constant time. We store the resulting arc center and radius together

with ei . We continue this process until the last disk Dk is placed. This drawing of P

realizes the angle α(vi ) between any two heavy edges ei−1 and ei (property 4). For

the edge from vk to its parent u we can only reserve a stub whose tangent at vk has

a fixed slope (property 2). The only information that we have about the edge vku is

that it belongs to the family Fk of arcs that intersect the circle Ĉk and have the given

tangent at vk . This ambiguity does not cause problems in the subsequent steps though,

and hence we can reserve all of the possible arcs simultaneously. Figure 10 shows an

example.

Each edge ei is contained in the annulus between Ci and Ci+1 and thus does

not intersect any other edge of the heavy path or any disk other than Di and Di+1

(property 1). Furthermore, the disk D with radius r = 2
∑k

i=1 ri indeed contains all

the disks D1, . . . , Dk (property 5).

It remains to show the time bound for computing the drawing of P . Similarly

to drawing heavy paths in Sect. 2, we store the position of each node vi in polar

coordinates relative to its predecessor and relative to the center M of D. This avoids

the need to update the positions of all descendants in every step and allows to assign

the final absolute coordinates in a top-down traversal of T . Given the position of node

vi (with respect to M) we can compute the position of vi+1 with respect to M in

constant time as described above. Once all nodes of P are placed, we additionally set

the coordinates of each node vi with respect to its parent vi+1. The required time is

O(k). ⊓⊔

Lemma 6 showed how to draw a heavy path P with prescribed angles between the

heavy edges and an edge stub to connect it to its parent. Since the root v of each heavy

path P (except the path at the root of H(T )) is the light child of a node on the previous

level of H(T ), the light edge from v to its parent is actually drawn when placing the

light subtrees of a node, the topic of the next section.

4.2 Drawing Light Subtrees

Once the heavy path P is drawn as described above, it remains to place the light

subtrees of each node vi of P . For each node vi the two heavy edges incident to

it partition the disk Di into two regions. We call the region that contains the larger

conjugate angle the large zone of vi and the region that contains the smaller conjugate
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Fig. 12 Placing a single disk D′
in the extended small zone of Di

(shaded gray)

angle the small zone. If both angles are equal to π , then we can consider both regions

as small zones. For the root node vk of P we only know one heavy edge to vk−1,

whereas the light edge to its parent u is not yet fully determined. In this case we define

the two zones of vk as the regions between the heavy edge and the leftmost/rightmost

possible arc for the light edge vku. Since the light subtrees of vk will be placed in the

small and large zones of vk , the node vk can always be connected to its parent u by an

arc that does not intersect any edge in Tvk
. We say that vk is exposed to its parent. Our

approach in this section proceeds in two steps. First, we find a disjoint placement of

the child disks in the small and large zone. In the second step, we actually draw the

light edges from vi to all its light children.

For a node vi at level j of H(T ) we define the radius ri of Di as ri = 4h(T )− j (1 +
∑

u∈L(vi )
|Tu |) = 4h(T )− j l(vi ). All light children of vi are at level j + 1 of H(T )

and thus by inductively assuming that Invariant 1 holds, every light child u of vi and

its subtree is drawn in a disk of radius ru = 2 · 4h(T )− j−1|Tu |. Thus we know that

ru ≤ ri/2; in fact, we even have
∑

u∈L(vi )
ru ≤ ri/2.

4.2.1 Light Subtrees in the Small Zone

Depending on the angle α(vi ), the small zone of a disk Di might actually be too narrow

to directly place the light subtrees in it. Therefore, we define the extended small zone

as the area bounded by ei−1, ei , Ĉi−1, Ĉi , and the horizontal ray to −∞ through

v1. Fortunately, we can always place another disk D′ of radius at most ri/2 in this

extended small zone such that D′ touches ei−1 and ei and does not intersect any other

previously placed disk; see Fig. 12. For a given radius of D′ the position of the center

of D′ with respect to vi can be computed in constant time. If there is a single child

u in the small zone then D′ = Du and we are done. The next lemma shows how to

place more than one child. Let l ≥ 2 be the number of light children of vi to be placed

in the (extended) small zone. We say that the disks D′
1, . . . , D′

l are correctly placed

in the (extended) small zone if their interiors are mutually disjoint and if every point

inside any disk D′
i can be reached by a circular arc from vi with given slope at vi such

that the arc does not intersect any other disk D′
j for j �= i .

Lemma 7 If a single disk D′ of radius r ′ can be placed in the (possibly extended) small

zone of the disk Di , then we can correctly place any sequence of l disks D′
1, . . . , D′

l

with radii r ′
1, . . . , r ′

l and
∑l

i=1 r ′
i = r ′ in the (extended) small zone of Di . This can be

done in O(l) time.
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(a) (b) (c)

Fig. 13 Placing disks D′
1 and D′′ inside the disk D′

Proof The idea of the algorithm for placing the l disks is to first place the disk D′ in

the small zone as before. The disks D′
1, . . . , D′

l will then be placed within D′ so that

no additional space is required.

In the first step of the recursive placement algorithm we either place D′
1 or D′

l

(whichever has smaller radius) and a disk D′′ containing the remaining sequence of

disks D′
2, . . . , D′

l or D′
1, . . . , D′

l−1, respectively. Without loss of generality, let r ′
1 ≤ r ′

l

and thus in particular r ′
1 ≤ r ′/2. In order to fit inside D′ the disks D′

1 and D′′ must

be placed with their centers on a diameter of D′; see Fig. 13a. The degree of freedom

that we have is the rotation of that diameter around the center of D′. Then the locus

of the tangent point of D′
1 and D′′ is a circle Ĉ of radius r ′ − 2r ′

1 around the center

of D′; see Fig. 13b. For any given tangent slope at vi , in particular the slope required

for the edge from vi to the light child in D′
1, there are exactly two circular arcs a1

and a2 that are tangent to Ĉ . They can be computed in constant time. Let the two

points of tangency on Ĉ be p1 and p2. Now we rotate D′
1 and D′′ such that their point

of tangency coincides with either p1 or p2 depending on which of them yields the

correct embedding order of D′
1 and D′′ around vi . Clearly, a1 or a2 are also tangent to

D′
1 and D′′ now. Assume we choose p1 and the corresponding arc a1 as in Fig. 13b.

We claim that we can connect any point in D′
1 to vi with the unique circular arc of

the required slope at node vi without creating any edge crossings. (We will describe

the exact placement of that arc later.) As in the proof of Lemma 6, there is a family

F of circular arcs that pass through vi with the given slope. We consider the subset

F
′ ⊂ F that intersects disk D′

1 and thus can be used as basis for the edge from vi to

the light child in D′
1. Any such arc stays inside the horn-shaped region ϒ that encloses

D′
1 and is formed by a boundary arc b of the small zone and a1 before it reaches D′

1.

Assume to the contrary that there is an arc a ∈ F
′ that does not completely lie inside

ϒ before reaching D′
1. The arc a cannot intersect a1 in a point other than v1 since both

a and a1 belong to F
′. So a must intersect the other boundary arc b of ϒ . However,

since a intersects b in vi and lies inside ϒ in some ε-neighborhood of vi it would

have to intersect b at least three times in order to reach a point of D′
1 ⊂ ϒ . This is

a contradiction. Since a1 separates D′
1 from D′′, none of the arcs in F

′ nor D′
1 can

interfere with any of the disks D′
2, . . . , D′

l and their respective edges as long as those

disks stay inside D′′ or the edges connect to points in D′′.
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For placing D′
2, . . . , D′

l we recursively apply the same procedure again, now

using D′′ as the disk D′ and a1 as one of the boundary arcs. Then after l steps,

we have disjointly placed all disks D′
1, . . . , D′

l inside the disk D′ such that their order

respects the given tree order and no two edges can possibly intersect. In other words

they are correctly placed and each step can be performed in constant time. Figure 13c

gives an example. ⊓⊔

We required that the edges ei−1 and ei are tangent to D′, which is possible only

for an opening angle α of the small zone of at most π . For any angle α ≤ π the arcs

a1 and a2 always stay within the extended small zone and form at most a semi-circle.

This does not hold for α > π .

4.2.2 Light Subtrees in the Large Zone

Placing the light subtrees of a node vi in the large zone of Di must be done slightly

different from the algorithm for the small zone since Lemma 7 holds only for opening

angles of at most π . On the other hand, the large zone does not become too narrow and

there is no need to extend it beyond Di . Our approach splits the large zone incident to

the heavy-path node vi into two parts that again have an opening angle of at most π

so that we can apply Lemma 7 and draw all the children of vi accordingly.

Let l be the number of light subtrees in the large zone of Di . We first place a

disk D′ of radius at most ri/2 that touches vi and whose center lies on the line

bisecting the opening angle of the large zone. The disk D′ is large enough to contain

the disjoint disks D′
1, . . . , D′

l for the light subtrees of vi along its diameter. We need

to distinguish whether l is even or odd. For even l we create a container disk D′′
1 for

disks D′
1, . . . , D′

l/2 and a container disk D′′
2 for D′

l/2+1, . . . , D′
l . Now D′′

1 and D′′
2 can

be tightly packed on the diameter of D′. Using a similar argument as in Lemma 7 we

separate the two disks by a circular arc through vi that is tangent to the bisector of

α(vi ) in vi . Since D′ is centered on the bisector this is possible even though the actual

opening angle of the large zone is larger than π . If l is odd, we create a container

disk D′′
1 for disks D′

1, . . . , D′
⌊l/2⌋ and a container disk D′′

2 for D′
⌈l/2⌉+1, . . . , D′

l . The

median disk D′
⌈l/2⌉ is not included in any container. Then we apply Lemma 7 to D′ and

the three disks D′′
1 , D′

⌈l/2⌉, D′′
2 along the diameter of D′; see Fig. 14a. The separating

circular arcs in vi are again tangent to the bisector of α(vi ), which is, since l is odd,

also the correct slope for the circular arc connecting vi to the median disk D′
⌈l/2⌉.

In both cases we split the large zone and the sequence of light subtrees to be placed

into two parts that each have an opening angle at vi of at most π between a separating

circular arc and the edge ei−1 or ei , respectively. Next, we move D′′
1 and D′′

2 along the

separating circular arcs keeping their tangencies until they also touch the edge ei−1 or

ei , respectively. Then we can apply Lemma 7 to both container disks and thus place all

light subtrees in the large zone; see Fig. 14b. The splitting of the large zone involves

finding tangent arcs to at most three disks and thus takes constant time. Combining

this with the running time in Lemma 7 for the two small subinstances all l disks in the

large zone can be placed in O(l) time.
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(a) (b)

Fig. 14 Placing light subtrees in the large zone by first splitting it into two parts (a) and then applying the

algorithm for small zones to each part (b)

4.2.3 Drawing Light Edges

The final missing step is how to actually connect a heavy node vi to its light children

given a position of vi and positions with respect to vi of all disks containing the light

subtrees of vi . Let u be a light child of vi and let Du be the disk containing the drawing

of Tu . When placing the disk Du in the small or large zone of vi we made sure that a

circular arc from vi with the tangent required for perfect angular resolution at vi can

reach any point inside Du without intersecting another edge or disk.

On the other hand, we know by Lemma 6 that u is placed in the outermost annulus

of Du and that it has reserved a stub for the edge e = uvi . This stub represents all arcs

in u that share the tangent for e required to obtain perfect angular resolution in u. Let

Cu be the circle that is the locus of u if we rotate Du and the drawing of Tu around

the center of Du .

There is again a family F of circular arcs with the required tangent at vi that all

lead towards Du and intersect the circle Cu . As observed in Lemma 6 the intersection

angles formed between F and Cu bijectively cover the full interval [0, π ], i.e., for any

angle α ∈ [0, π ] there is a unique circular arc in F that has an intersection angle of α

with Cu . In order to correctly attach u to vi we first compute the arc a in F that realizes

an intersection angle of α(u)/2 with Cu , where α(u) is the angle between e and the

heavy edge from u to its heavy child that is required for perfect angular resolution at

u. This arc a can be computed in constant time similarly to computing a heavy-path

edge in Lemma 6. Let p be the intersection point of a with Cu . Then we rotate Du

and the drawing of Tu around the center of Du until u is placed at p; see node v7 in

Fig. 10. This rotation is actually realized by setting the coordinates of u with respect

to its parent vi to those of p. We also store with u the rotation angle between the new

position of Du and its neutral position. Since the stub of u for e also has an angle of

α(u)/2 with Cu , the arc a indeed realizes the edge e with the required angles for perfect

angular resolution in both u and vi . Furthermore, a does not enter the disk bounded

by Cu and hence it does not intersect any part of the drawing of Tu other than u.

We can summarize our results for drawing the light subtrees of a node as follows:

Lemma 8 Let v be a node of T at level j of H(T ) with two incident heavy edges. For

every light child u ∈ L(v) assume there is a disk Du of radius ru = 2 · 4h(T )− j−1|Tu |
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that contains a fixed drawing of Tu with perfect angular resolution and such that u is

exposed to its parent v. Then we can construct in O(d(v)) time a drawing of v and its

light subtrees inside a disk D, potentially with an extended small zone, such that the

following properties hold:

1. the edge between v and any light child u ∈ L(v) is a circular arc that does not

intersect any disk other than Du;

2. the heavy edges do not intersect any disk Du;

3. any two disks Du and Du′ for u �= u′ are disjoint;

4. the angular resolution of v is 2π/d(v);

5. the disk D has radius rv = 4h(T )− j l(v).

Now we have all ingredients for drawing the entire tree T based on its heavy-

path decomposition. We combine Lemmas 6 and 8 to recursively obtain a Lombardi

drawing of T in a bottom-up fashion. In the final step, we set the coordinates of the

root of T to (0, 0) and propagate the absolute node and edge positions downward

using the relative positions and rotation angles stored during the recursive calls. We

conclude with the following theorem:

Theorem 3 Given an ordered tree T with n nodes we can find in O(n) time and

space a crossing-free Lombardi drawing of T that preserves the embedding of T and

fits inside a disk D of radius 2 · 4h(T )n, where h(T ) is the height of the heavy-path

decomposition of T . Since h(T ) ≤ log2 n the radius of D is no more than 2n3.

Corollary 2 The drawing of T according to Theorem 3 requires polynomial area.

Proof Since the shortest edges have again length at least 1, Theorem 3 implies that the

area of the Lombardi drawing of T is at most 4πn6 according to our first area measure.

Exactly the same arguments as used in Corollary 1 yield again that the polynomial

area bounds continue to hold for the two alternative definitions of area based on the

(squared) distance ratio of the farthest pair of nodes (or edges) to the closest pair of

nodes (or non-adjacent edges), where in this case the farthest pair has distance at most

4n3 and the closest pair again at least distance 1. ⊓⊔

Figure 2b shows a drawing of the ordered tree in Fig. 3 according to our method.

Instead of asking for perfect angular resolution, the same algorithm can also be used to

construct a circular-arc drawing of an ordered tree with an arbitrary given assignment

of angles between consecutive edges around each node that add up to 2π . The drawing

remains crossing-free and fits inside a disk of radius O(n3).

5 Implementation Details

Since tree drawings with perfect angular resolution are also of practical importance,

we have implemented a basic version of our straight-line drawing algorithm. The algo-

rithm, whose area is polynomially bounded, from a practical viewpoint is still far from

desirable. In particular, as Fig. 15a illustrates, there is significant space left between

sibling nodes. As Fig. 15b demonstrates, with some simple heuristical refinements,

far better use of space can be achieved.
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(b)(a)

Fig. 15 A partial snapshot of a tree drawing

(a) (b)

Fig. 16 A partial snapshot of a tree drawing demonstrating filling the disk associated with the light subtree

We highlight a few straightforward space-saving improvements to the algorithm

that still ensure the same area bound. In the original construction, only large nodes

are placed on the outer region with the smaller nodes placed inside the inner annulus.

By continuing with a greedy approach of repeatedly inserting the next largest node

in the outer region, skipping the spoke associated with the heavy edge, until no more

nodes fit, and filling the remaining spokes with the smaller children, we can insert

more nodes into the outer region. Moreover, the radii for many of the subtrees are far
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(a) (b)

Fig. 17 Example illustrations

smaller than necessary. After laying out the positions of each of the light subtrees, we

increase their radii so their disk fits maximally within their wedge region, thus using

considerably more of the allocated space. Noting that the heavy path also does not

completely fill the disk associated with its head node, we also increase this radius as

a constant factor after having laid out the main drawing. Figures 16 and 17 provide

further illustrations of these improvements.

6 Conclusion and Closing Remarks

We have shown that straight-line drawings of trees with perfect angular resolution and

polynomial area can be efficiently computed, by carefully ordering the children of each

node and by using a style similar to balloon drawings in which the children of any node

are placed on two concentric circles rather than on a single circle. However, using our

Fibonacci caterpillar example we also showed that this combination of straight-line

edges, perfect angular resolution, and polynomial area can no longer be achieved if the

order of the children of each node is fixed. Fortunately, for ordered trees with a fixed

embedding, Lombardi drawings (in which edges are drawn as circular arcs) allow us

to retain the other desirable qualities of absence of crossings, polynomial area, and

perfect angular resolution.

In addition to needing to implement the algorithm for an ordered tree, there remain

further improvements to the basic implementation for the unordered tree discussed

in Sect. 5. Since our intent was to highlight the key heavy path breakdown in our

algorithm, even when the heavy child could fit as one of the node’s light children,

we opted to place the heavy child separately, requiring more space than generally

necessary.
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Several problems in the study of Lombardi drawings of trees remain open. For

example, our polynomial area bounds are likely not tight. In fact, recently Halupczok

and Schulz [21] showed that any unordered n-node tree can be drawn within a disk

of radius n3.0367 using straight-line edges with perfect angular resolution. Moreover,

our method is impractically complex. It would be of interest to find simpler Lombardi

drawing algorithms that achieve perfect angular resolution for more limited classes

of trees, such as binary trees, with better area bounds. Finally, there are many open

problems in the area of plane Lombardi drawings of planar graphs.
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