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Abstract

This paper presents a software environment for processing, segmenting, quantifying,

representing and manipulating digital microstructure data. The paper discusses the

approach to building a generalized representation strategy for digital microstructures

and the barriers encountered when trying to integrate a set of existing software tools

to create an expandable codebase.
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Background

In recent years, two major initiatives have been introduced that promise to affect how

the materials science community integrates with the larger system design process. These

initiatives, known as Integrated Computational Materials Engineering (ICME) and the

Materials Genome Initiative (MGI), are built on the ability to represent materials digitally,

both in a structural and performance context. Under the ICME construct [1], materials

engineering can be treated as a series of models (empirical or physical) that link a process-

ing history to a suite of properties (mechanical, optical, electromagnetic, etc.). In themost

general terms, processing models predict the internal structure of materials under some

processing conditions, either directly or through a correlation with continuum state vari-

ables like thermal history and strain path. Similarly, property models predict a material’s

performance under some operating conditions, given a description of its internal struc-

ture. Thus, it becomes obvious that the natural link between these models is the internal

structure of the material that is output from one and input to the other. The internal

structure of nearly all materials is complex, multi-scale and not easily defined by a small

number of parameters. As such, there exists an opportunity in materials engineering to

advance the quantitative description of internal structure andmove further away from ad-

hoc, word-based descriptors (i.e. equiaxed, acicular, basket-weave, etc.). Historical efforts

have been made to quantify selected aspects of microstructure (ASTM grain size, etc.),

but generally the metrics chosen stopped at average quantities, which in part has been

driven by the limited description of microstructure in models. The MGI has challenged

the materials community to develop a framework for describing materials in a consistent
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and quantitative way [2], more similar to the approach applied to sequencing the human

genome.

Two critical themes in these initiatives are the move to the digital basis and the call for

tools with clear and understandable inputs/settings (be they software or hardware). There

are ‘easy-to-use’ software tools that exist in both the processing (ProCast, Deform, etc)

and property (Darwin, Abaqus, Deform, etc) modeling regimes. However, there is a lack

of easy-to-use software tools that exist to process, quantify and represent microstructure

in a general sense, especially in three dimensions (3D). This becomes a problem if one is

attempting to validate the predictions of processing models or provide property models

with accurate input. The work discussed in this paper is aimed at developing a software

architecture that is both open and scalable to address the growing needs for quantitative,

digital analysis of microstructural data. The ultimate goal of this effort is to fill the gap in

the ICME chain with respect to ‘easy-to-use’ microstructure quantification and represen-

tation tools across all material classes and length scales. Another important goal of this

work is to standardize the format of material microstructure data, so that the increasing

demand for access to scientific research data can be met [3].

It should be mentioned that the initial focus of DREAM.3D was far less general and

pervasive than the ideas discussed in this paper. It was only during this initial develop-

ment effort that the authors encountered the difficulties that will be discussed here and

subsequently broadened the scope and vision of DREAM.3D. This broader vision is in

line with efforts in the biological community [4,5] and the authors see a potential for

further integration with that community. Many of the examples in this paper reflect the

personal experiences of the authors and within this context, we highlight the path needed

for the advancement of digital microstructure analysis. Note that microstructure is used

throughout this paper as a general term for the internal structure of materials and does

not refer to a specific length-scale.

Barriers to integration/development

At the outset of this work, many computational tools existed for treating various aspects

of microstructure quantification, post-processing/clean-up, data visualization, etc. How-

ever, these tools remained disjointed and generally non-transferable between researchers.

It became clear, both to the authors of this work and authors of many of the disjointed

tools, that a larger integrated environment was needed to be developed to fully realize the

utility of any of the individual tools. Integrating computational codes into a larger ecosys-

tem presents many barriers, for example: storage format of the data, usability of the codes

(Graphical User Interface (GUI) vs. Command-Prompt), documentation and Intellectual

Property (IP) rights, to name a few. In the typical case, each of these issues needs to be

addressed in order for the code to be widely usable by other researchers. A critical com-

ponent for efficiently solving these issues in a consistent way is having a long-range vision

for how the software will be used and any possible growth opportunities. In the follow-

ing subsections, some of the most critical barriers are highlighted and how the authors

addressed them in the development of DREAM.3D will be discussed.

Data structure and storage

One of the critical barriers to integration of software codes is ensuring that down-

stream algorithms can properly interpret the data produced by upstream algorithms.
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Misunderstanding how data is structured can lead to a significant barrier that prevents

algorithms from being integrated. During the development process, often the researcher

is mainly focused on the correct implementation of the algorithm and gives less time

to designing a data and file format that is both efficient from a computational stand-

point and shareable with other researchers. This leads to input and output files that

are not written in any standardized format. Subsequently, substantial effort may go into

manipulating the output files of one algorithm so that the next algorithm can use the

data as an input, which is highly inefficient whether done manually or by a computer.

A basic example of this problem is an algorithm that stores data as a comma sep-

arated list of values and another algorithm that reads values from a space separated

list of values. In order for these algorithms to work seamlessly together, one or both

of the codes would need to be modified or commonly a third program would be cre-

ated to ‘translate’ between the data structures. Developing software this way hinders

the reusability of the codes and will present a barrier to the adoption of the codes in

the greater community. DREAM.3D aims to use a widely available open-source format

to store both archival and processed data. However, this only addresses the exter-

nal, or resting format of data. Another important issue is how the data is represented

internally, which can significantly impact how easily algorithms are able to share data

and information. DREAM.3D utilizes a scalable organization to describe data at all

dimensionalities.

Ease of use

As mentioned previously, research grade codes are often developed with little emphasis

given to the usability of the codes by other researchers. Generally, this is because the code

is never intended for use beyond the author. Many codes typically run from a command

prompt or terminal environment and offer little information about the required number

and types of input parameters.Worse still is when the author stops actively developing the

code and the knowledge of how to use the algorithm and the sensitivity to its input param-

eters is lost. When this happens, the code becomes effectively unusable. DREAM.3D has

tried tomitigate these situations through the use of formal coding protocols. These proto-

cols dictate how the documentation for a filter is written, how the user interface is created

and how the filter will interact with the rest of the system. Collectively these formal design

patterns are used to ensure that the filter can be employed by researchers in the field sim-

ply by reading a documentation file and/or following a simple example. Some of the items

that go into integrating a filter into the DREAM.3D system include, but are not limited to,

the following items

• Filter is documented including required input parameters and data, output data

created and an explanation of the algorithm (including citations if needed).

• Input parameters are written to and read from a native DREAM.3D file.

• Required inputs are enumerated using native DREAM.3D data structures.

• Outputs are clearly defined and relayed to the DREAM.3D internal data structures.

Intellectual property

During the early stages of DREAM.3D a conscious decision was made to structure the

codes in such a way as to allow the use of external libraries that may contain proprietary
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algorithms. This allows academia, industry and government institutions to contribute

algorithms and still protect their intellectual property. These various institutions can elect

to release the source code to the open community or keep the source private and only

release a precompiled library that is compatible with the current release of DREAM.3D.

As other institutions begin to contribute to DREAM.3D they canmake their own decision

as to what is the best model to distribute their specific computational tools.

Long-termmaintainability

The maintainability of DREAM.3D has several facets of discussion. From a programmer’s

perspective the authors strive to use best practices when developing the various algo-

rithms, reusing algorithms and creating reusable software objects that can be applied or

adapted to new algorithms. A suite of unit tests are continually developed to ensure the

behavior of the public functions is not altered when bug fixes and algorithmic enhance-

ments are added. Currently, all the external libraries that DREAM.3D is built on top of

are all open-source, thus giving the development team complete access to the entire code

base that is used to build DREAM.3D. Another perspective to consider is the source

of funding for DREAM.3D development. The current development of DREAM.3D has

been essentially exclusively funded by U.S. Government sources. This funding enabled

building the integrated core infrastructure that enabled much of the critical aspects

already discussed. However, the core of DREAM.3D should become relatively static, with

only minor ‘usability’ additions in the near future. It will be at this point, which has

already begun to occur, that academia and industry will begin to drive the growth and

development of DREAM.3D. This growth will likely be focused almost entirely on filter

development and expansion. It is the belief of the authors that the materials commu-

nity, possibly with government support (either directly or through academic funding), will

view the core as an enabling tool that will be in the ‘best interest’ to update as needed

with a small overhead on filter development efforts. Finally, it should be noted that since

DREAM.3D is currently open-source, the current instance of the core will always be avail-

able. Any filter additions that can operate with the current design can always be used.

Also, any user can download the current core and extend it to address their research

needs.

Methods

Data representation and file format

Material microstructures come in many different sizes and shapes and the features

of interest have different dimensionalities. Data describing attributes of microstruc-

ture can be obtained from many sources (Scanning Electron Microscopy, Transmission

Electron Microscopy, Optical Microscopy, Electron Backscatter Diffraction, Energy Dis-

persive Spectroscopy, Wavelength Dispersive Spectroscopy, 3D Atom Probe, Atomic

Force Microscopy, etc.). Unfortunately, during the development of these experimental

methodologies, no common data structure was developed and as such, combining data

from multiple sources is difficult. Further, the tendency to link the data with a mate-

rial class (metal, ceramic, composite, polymer, etc.) has stunted the development of a

unified method for describing microstructure data. During development of DREAM.3D,

the vision of a unified representation of all digital microstructure data for all material

classes and length-scales presented a challenge. As discussed in [6], when writing code
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or designing data structures that operate on or represent a variety of features and dimen-

sions, it is critical to establish a proper abstraction layer to ensure transferability. In the

case of DREAM.3D and microstructure, the authors believe the proper abstraction layer

is to work with all features of structure as geometrical objects. By abstracting the mate-

rials interpretation of the features and focusing only on how the feature is described

digitally, DREAM.3D has been able to institute a general, unified structure for digital data

that assumes no prior knowledge of length-scale or material class. The following subsec-

tions will discuss this generic data structure and illustrate its direct use in a wide range of

materials applications.

Geometric mesh element construct for holding digital microstructure data

Spatially-resolved digital data, of whichmost material microstructure data is a subset, are

simply information or attributes that are associated with discrete geometrical elements.

These elements can be pixels in an image, points in a probe scan, line segments in a

digital model, etc. At this level, all digital microstructure data can be treated/organized

similarly within a computer. Meshes of appropriate dimension can be created and data

can sit on the mesh element(s) that they describe. For example, the mass-to-charge ratio

of an atom in an atom probe dataset is information associated with a point, while the

misorientation across a boundary in a electron backscatter diffraction (EBSD) dataset

is information associated with a surface. As such, any given dataset has an associated

mesh dimensionality equal to the highest dimension of feature its data describes. It

should be noted that the mesh dimensionality may be different from the dimensional-

ity of the dataset. For example, the atom probe dataset consists of 3D locations having

(x,y,z) coordinates, but represents microstructure features that are treated as a 0-D

point.

DREAM.3D organizes/stores mesh data (and subsequent feature and ensemble data

discussed in the next section) in a structure called a “data container”. DREAM.3D uses

four types of data containers for the different possible data dimensionalities (Vertex = 0D,

Edge = 1D, Surface = 2D, Volume = 3D). Figure 1 illustrates the different data contain-

ers and the data they can hold. As Figure 1 shows, lower dimensional geometrical objects

bound higher dimensional objects and a given data container can store data on mesh ele-

ments of a lower dimension. For example, in a 3D EBSD dataset, the collected orientation

data is generally treated as belonging to a cell, but the misorientation between neighbor-

ing cells could also be stored on the face shared by the cells and the edges and vertices

of the cells could store the coordination number of different features they belong to (i.e.

triple line or quadruple point). An example dataset of each type of data container can

be found in the supporting material. The examples include a Vienna Ab initio Simula-

tion Package (VASP) input structure (Vertex data container - Additional file 1), a ParaDis

output structure (Edge data container - Additional file 2), a grain boundary mesh of a

synthetic polycrystalline microstructure (Surface data container - Additional file 3) and a

synthetic polycrystalline microstructure (Volume data container - Additional file 4).

The mesh that represents the data locations is unique to the dataset itself. While the

mesh can be altered via smoothing, regridding or other processing steps, it is generally

defined by the data collection or generation protocol/settings. Furthermore, the mesh

itself is not influenced by the material class and can exist at any length-scale. The mesh is

solely the physical location of all data elements and their associated attributes.
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Figure 1 Schematic showing the four types of data container implemented in DREAM.3D and the

types of data that can be stored on each mesh. Note that Faces in the Surface data container need not be

triangles and Cells in the Volume data container need not be voxels, but have been depicted this way for

visual simplicity.

Hierarchical grouping for feature and ensemble representation

A given material’s microstructure can be thought of as being constructed using building

blocks called “features” such as grains, fibers, pores, magnetic domains, corrosion pits,

dislocations, individual atoms and many other possibilities. Though these features are

very different in the “real world”material’s sense, digitally they are all simply groups of dis-

crete mesh elements. It is the user’s prerogative to group the mesh elements in whichever

waymakesmost sense for their uses, which imparts a certain uniqueness to the data set. It

is the human interpretation of what the features represent that links the data to a specific

material class and/or length-scale. DREAM.3D utilizes a software engineering technique

where all of the domain specific groupings can be represented by a generalized data struc-

ture. This is commonly referred to as an “Abstraction Layer” in the software engineering

field and allows the DREAM.3D system to grow and adapt to new domains.

From the perspective of the computer, the act of assigning elements to a given feature

is still material class and length-scale independent. Mesh elements are simply noted to

belong to a given feature for a given segmentation/grouping protocol. For each group-

ing/segmentation protocol, all elements are set to belong to one and only one feature.

It is possible that a user would want to group mesh elements by multiple protocols. For

example, mesh elements could be grouped by common orientation and then by common

chemistry if a data set had both orientation and chemical information. If multiple group-

ing protocols are used, then each mesh element would have a vector of feature IDs listing

which feature it belongs to in each grouping.

After features are defined, attributes such as size, shape, etc. can be calculated and

stored associated with each feature. The structure of how these attributes are stored

will be discussed in the next section. Also, it may be desirable to the user to group fea-

tures together to establish “ensembles”. Ensembles are groups of features that the user
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has linked for some reason. Similar to each mesh element having one (or more) feature

IDs to list what feature it belongs to, each feature has one (or more) “ensemble IDs”. For

example, a group of features could be linked because they are all the same phase, because

they are the largest 10% of features, etc. Similar to features and individual elements,

attributes describing ensembles such as size distribution, average feature curvature, ori-

entation distribution function (ODF), etc. can be calculated and stored associated with

each ensemble.

Scalable layout for information storage

At all levels, from the individual mesh elements to features and ensembles, the method

of how information is stored must be dynamic. In order to be a flexible software environ-

ment that can work with data from multiple sources and treat microstructures from all

material classes, it is not reasonable for DREAM.3D to predefine what attributes can be

associated with a mesh element, feature or ensemble. As such, a matrix-style container is

needed for holding information of this type. For example, in an EBSD scan, each pixel has

an Euler angle set, a phase ID, a coordinate in space and a list of values associated with the

indexing approach of the commercial software that collected the scan. These attributes, as

a set, are called a ‘property vector’ in DREAM.3D and define the pixel with which they are

associated. These property vectors are shown as columns in Figure 2. The rows in Figure 2

are the lists of single attributes for all pixels and are called “attribute array”. Given this

container structure, it becomes clear that as filters are applied to the data, more attribute

arrays are generated and each property vector grows.

At each level (mesh element, feature, ensemble), attribute matrices can exist. Only one

matrix exists at the element level because there is no user grouping at that level and as

such there is only one definition or instance of the mesh. However, at the feature and

ensemble levels, many attribute matrices can coexist. In an attribute matrix, every prop-

erty vector is the same size and every attribute array is the same size. This is because

filters calculate attributes and filters must loop over all members in the attribute matrix

for which the attribute is being calculated.

HDF5 File structure

The Hierarchical Data Format Version 5 (HDF5) is an open-source library developed and

maintained by “The HDFGroup” [7] that implements a file format designed to be flexi-

ble, scalable, highly performant and portable. HDF5 allows each application to organize

Figure 2 Schematic layout of the container structure to store attribute arrays. Blue represents an

“attribute array”, where as green represents a “property vector”.
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its data in a hierarchy that makes sense for the application. Virtually any type of data,

from scalar values to complex data structures, can be stored in an HDF5 file. Scalabil-

ity has been a design consideration from the outset and HDF5 can handle data objects

of almost any size or dimensionality. The library has also been designed to be effi-

cient at querying, reading and writing data objects, and including utilizing parallel I/O

when needed. One of the most important aspects of HDF5 is its portability across all

the major computing operating systems. HDF5 has support for C, C++, Fortran and

Java as its native implementations; many higher-level programming languages also have

direct support for HDF5, including IDL (Interactive Data Language), MATLAB and

python.

HDF5 files can be thought of as ‘a file systemwithin a file’. Data can be stored as datasets

(analogous to files) and arranged inside groups (analogous to folders) all within the HDF5

file. This structure is well-suited for storing the organized data from DREAM.3D. The

organization of a typical DREAM.3D file is shown in Figure 3. At the ‘root directory’ or

highest level in the file, two groups exist for holding 1) the processing pipeline and 2) all

data containers of the dataset. Inside the pipeline group, there are subgroups for each fil-

ter and within each subgroup there are datasets for each of the input parameters of the

filter. The subgroups are titled as their numerical order in the processing pipeline, but

have attributes stored on the group listing the name of the filter and its version num-

ber. The datasets inside the subgroups are titled as the name of the input parameter they

hold and the contents are the value(s) of the input parameter. Inside the data container

group are subgroups for each data container that exists in the dataset. The subgroups

are titled as the name the user gave to the data container. Within each subgroup there

are multiple groups (the number depending on the dimensionality of the data container).

MyExperiment.dream3d

DataContainers

Surface DataContainer

Volume DataContainer

CELL_DATA

Orientation

Phases

Feature Id

Data Quality

Position

CELL_ENSEMBLE_DATA

CELL_FEATURE_DATA Average Orientation

Average Neighbor Distance

Shape

Size

Number of Neighbors

Centroid

EDGE_DATA

EDGE_ENSEMBLE_DATA

EDGE_FEATURE_DATA

FACE_DATA

FACE_ENSEMBLE_DATA

FACE_FEATURE_DATA

VERTEX_DATA

VERTEX_ENSEMBLE_DATA

VERTEX_FEATURE_DATA

Dimensions (3x1 Integer)

Origin (3x1 Float)

Spacing (3x1 Float)

Pipeline

[0] Read DREAM3D

ReadVertexData

ReadEdgeData

ReadSurfaceData

ReadVolumeData[1]

[2] Segment Grains Misorientation Tolerance

[3]

[4]

Figure 3 Schematic layout of a native DEAM3D file on disk. Blue nodes represent HDF5 groups and red

nodes represent HDF5 data sets.
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Each group at this level is associated with an attribute matrix described in the previous

section. For example, if the data container was a vertex data container, then there would

be a group for the vertex mesh element attribute matrix and there could be multiple

groups of feature and ensemble attribute matrices depending on the number of group-

ing schemes employed by the user. In the example in Figure 3, the dataset contains a

single volume data container. Within an attribute matrix group, each dataset represents

an attribute array (or row from Figure 2). The name of the dataset is the name of the

attribute array and the contents are the entire attribute array in order from object 1

to N.

The structured layout of HDF5 and the DREAM.3D file also offer potential for databas-

ing of datasets. The ability of HDF5 to query the existence of datasets and groups without

reading the entire file is well-suited for determining if data meets a specified criterion,

whether it be a specific processing path, attribute array, etc.

Pipeline concept

DREAM.3D’s pipeline workflow is designed around the concept of signal processing.

In this analogy, the signal is the ‘raw’ data and the individual algorithms/programs in

DREAM.3D are filters that process the signal. It is for this reason that DREAM.3D refers

to each individual program as a filter. It should be noted that unlike typical signal or image

processing, many of the filters in DREAM.3D do not change data/attributes existing on

each element, feature or ensemble, but rather create new data/attributes to be stored. The

intent of modular pipeline workflows is to separate the two critical aspects of data pro-

cessing: algorithms and order of operations. When designing a pipeline, the user is solely

focused on the latter while using an existing set of algorithms. Each algorithm can be

treated as a module that can be modified or replaced if it is not generating the desired

results. The following subsections will discuss the user interface of the workflow and how

it is linked to the data.

Visual programming workflow

In a typical high level programming environment, such as MATLAB or IDL, the user

must manually type in the proper commands to build the desired pipeline/workflow

and ensure that all data is available during the execution. Many times missing data can

cause the systems to crash at worst or give a cryptic error message in the best case.

With DREAM.3D a visual approach to designing the workflow was engineered. Each fil-

ter can still be thought of as a pre-packaged subroutine like the functions in MATLAB

or IDL, but in DREAM.3D a visual linking of the filters/subroutines is more analogous

to programming environments like LabView. Each filter has the knowledge of every piece

of data that is required before it will execute. As each filter is placed into the pipeline

area the workflow is executed in a “preflight” step where each filter dynamically checks

to make sure it will have the required input data to operate (also similar to LabView).

If any inputs are not correct or there is missing data an error message is displayed for

the user to correct. Once all the errors are corrected the pipeline will be allowed to be

executed. In this respect DREAM.3D presents a very high level and simple program-

ming model that is easy and straight forward to learn. An example of the DREAM.3D

GUI with a pipeline containing errors is shown in Figure 4 to illustrate the layout of the

software.
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Figure 4 DREAM.3D GUI with example pipeline. The region highlighted in blue contains the Filter Library,

Prebuilt Pipelines and Favorite Pipelines, where filters are grouped and common pipelines are stored. The

region highlighted in green contains the Search Window, where filters can be searched or viewed by group.

The region highlighted in purple contains the Pipeline Area, where filters are inserted and ordered to build a

pipeline. The region highlighted in red contains the Errors and Warnings Window, where messages regarding

the feasibility of the pipeline are displayed to the user.

Working file format and complete data provenance

Continuing the analogy of signal processing, one can think of the digital data, raw or

otherwise processed, as existing in a discrete processing-step domain. Between all filter

steps in the processing pipeline, the data exists as a ‘snapshot’. DREAM.3D terms these

points as a ‘digital instance’ of the microstructure. Any digital instance should be repro-

ducible by beginning with the raw data and following the same processing pipeline to

the point the instance was captured. It is this realization that led to the differentiation

between a working file and an archival file in DREAM.3D. An archival file, which is dis-

cussed in more detail in (Jackson, Groeber, Rowenhorst, Uchic and DeGraef: “h5ebsd:

An archival data format for electron back-scatter diffraction data sets.”, submitted), con-

tains the unaltered data from the collection instrument along with meta data that may

help infer the inherent artifacts of digitizing the true ‘analog’ microstructure. DREAM.3D

terms the unaltered data as step = 0 in the processing-step domain. A working file

implies the contained microstructure is beyond step = 0 in the processing-step domain

and some filtering has been applied to the data. During the execution of a processing

pipeline in DREAM.3D, the user can export/save an instance of the microstructure at

any point by writing all of the in-memory data arrays to a data file using the HDF5 for-

mat. These files are organized by each data container that is being used within the active

pipeline. In addition to saving the complete set of in-memory data arrays to a file, the
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complete processing history of that data is also saved in the form of the user’s pipeline

up to the point of saving the instance. If the user selects to start a pipeline by read-

ing a DREAM.3D file, the previous pipeline stored in the starting file is transferred to

any newly written DREAM.3D file, thus keeping the entire provenance of the data safely

stored in the same file. The pipeline information is written such that the specific ver-

sion of DREAM.3D that was used during the processing is attached to each filter’s inputs

values. This type of meta-data attachment can help researchers independently recre-

ate results of past experiments and is fast becoming an important aspect of scientific

publishing.

Growth and scalability of DREAM.3D

For DREAM.3D to realize the vision of a material class and length-scale independent

analysis environment, careful thought had to be given to the creation of a method for

implementing new filters with a low barrier to entry. No one researcher, group or labo-

ratory has the knowledge diversity or time to implement all useful processing or analysis

filters for even one material class, let alone all. For this reason, an environment where col-

laboration and competition of ideas/algorithms/implementations can occur on a common

basis is critical to the development of standards for microstructure analysis.

Plugin Architecture

In order to allow DREAM.3D to grow organically through the addition and integra-

tion of new algorithms, a plugin architecture has been designed and implemented. This

allows researchers with some programming experience to expand and enhance the capa-

bilities of DREAM.3D. The plugin architecture allows entities such as government labs

and commercial businesses to create DREAM.3D compatible binary plugins and retain

full rights to their specific sources. Plugin developers can distribute their tools in a

number of different ways. First, the developer(s) can contribute their filters directly to

DREAM.3D and have them compiled with the core. The core of DREAM.3D is simply the

previously discussed internal data management classes, macros to facilitate filter-to-filter

communication, the GUI and a set of libraries for common operation like math and I/O.

This path is only possible if the developer(s) release their plugin as open-source, as the

core of DREAM.3D is open-source. A second option is for the developer(s) to compile

their plugin themselves and then distribute their plugin as a library. Under this second

option, the developer(s) retain multiple avenues for dissemination. The plugin can be

offered as freeware, can be licensed or can be provided with the source (albeit disjointed

from the DREAM.3D core). Offering these options is intended to help drive adoption of

DREAM.3D across a diverse set of materials science domains and industries. This type of

programming model leverages contributions of different organizations to allow the entire

DREAM.3D system to grow larger, thus spreading the development cost among all of

those different organizations.

Documented interface protocol and common libraries

DREAM.3D has been developed with a concerted focus on lowering the barrier for future

developers to contribute codes. Common libraries for math, I/O and internal data man-

agement are supplied with the core of DREAM.3D. DREAM.3D also supplies libraries for
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dynamically creating the visual presence of a filter, provided a relatively simple interface

required by the filter. This limits the amount of ‘low-level’ computer science knowledge

the developer must have. Furthermore, DREAM.3D can be compiled to build an accom-

panying program that will generate all necessary files for a user that is making a new

plugin. The shell files created contain all the required functions of new filters along with

examples of how to add input parameter calls to the user and how to request and add

data to the scalable attribute matrices. This allows the developer to focus on their algo-

rithm, while operating in a ‘put-your-algorithm-here, list-your-input-requirements-here,

list-your-output-details-here’ type of environment.

Interface with external software

Future growth of DREAM.3D is also likely to be tied to the ability to integrate DREAM.3D

with other software packages. For example, the authors made a conscious decision early

in the development of DREAM.3D to not invest time and effort into generating a visual-

ization package within DREAM.3D. Instead, a link was built to interface with ParaView

[8], an open-source visualization environment developed by Kitware with Department

of Energy (DoE) funding. ParaView is a powerful visualization package with many, many

man-years of development already invested. Using the HDF5 file structure already dis-

cussed, coupled with an XML description (Xdmf format), DREAM.3D files can be opened

and viewed within ParaView. As such, new developments to ParaView are indirectly

developments to DREAM.3D.

Results and Discussion

Case studies

This section will demonstrate the workflow and data structure of DREAM.3D in a set

of case studies. Due to the historical focus of the software tools that evolved to become

DREAM.3D, many of the filters currently in DREAM.3D are related to processing and

analysis of polycrystalline metal datasets with 3D EBSD data. The case studies presented

here show a subset of current DREAM.3D functionalities, but should not be viewed as

an exhaustive list of current or future capabilities. Furthermore, the final results of the

various pipelines may not be different than previous codes or similar analysis software

packages. The major differentiating factor with DREAM.3D is the time and manual effort

to get results. The use of a visual representation of the workflow reduced the learning

curve greatly, which makes DREAM.3D an approachable software suite for all levels of

user.

Reconstruction and Meshing (3D EBSD)

A dataset consisting of 117 serial sections through a polycrystalline Ni-based superalloy

with EBSD data on each section was collected in [9]. DREAM.3Dwas used to reconstruct,

segment, clean-up and mesh the features of the dataset. The pipeline used to accomplish

these tasks, which is listed in Table 1, will be discussed briefly. In the interest of brevity,

the details of each individual filter will not be discussed here, but can be found in the

documentation of DREAM.3D. Many of the steps in the pipeline are also discussed in [9]

and [10]. It should be noted that the results presented in [9] and [10] were generated prior

to the existence of DREAM.3D. The total processing/analysis time in the previous work
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Table 1 3D EBSD reconstruction pipeline

Filter # Filter name Reason for use

0 Read H5EBSD File Loads raw EBSD data

1 Multi Threshold (Cell Data) Allows user to define which voxels are ‘good’

2 Find Cell Quaternions Converts voxel Euler angles to Quaternions

3 Align Sections (Misorientation) Rough alignment of sections by minimizing misorientation
between sections

4 Identify Sample Adjusts the ‘good’ voxels assuming one contiguous block of
‘good’ data

5 Align Sections (Feature Centroid) Secondary alignment of sections assuming sample is
parallelepiped

6 Neighbor Orientation Comparison Checks orientation of ‘bad’ voxels against neighboring
‘good’ voxels

7 Neighbor Orientation Correlation Second check of ‘bad’ voxels against neighboring
‘good’ voxels

8 Segment Features (Misorientation) Identifies features of similar orientation

9 Find Feature Phases Determines the phase of each feature

10 Find Feature Average Orientations Calculates average orientation of each feature

11 Find Feature Neighbors Determines list of neighbors for each feature

12 Merge Twins Merges features misoriented by ‘special’ sigma3 relationship

13 Minimum Size Filter Removes small features and fills gaps with neighboring
features

14 Find Feature Neighbors Determines neighbors after removing features

15 Minimum Number of Neighbors Filter Removes features with few neighbors

16 Fill Bad Data Fills in ‘bad’ data with neighboring ‘good’ data if ‘bad’
data regions are small

17 Erode/Dilate Bad Data Shrinks any remaining ‘bad’ data regions

18 Erode/Dilate Bad Data Grows back any remaining ‘bad’ data regions

19 Write DREAM.3D File Writes attribute matrices and pipeline to file

Table listing the filters in the reconstruction pipeline.

took approximately 24 hours and involvedmoderatemanual interaction betweenmultiple

software codes. The current processing/analysis time was reduced to approximately 5

minutes and required effectively no user interaction (beyond setting up the pipeline). In

both cases, the times quoted reflect use of a standard desktop PC. The resulting digital

instance is shown in Figure 5 and is attached as supporting material in the form of a

DREAM.3D file (Additional file 5).

Statistical analysis

The previous section discussed the reconstruction and segmentation of a polycrystalline

Ni-based superalloy dataset with 3D EBSD data. Upon reconstructing and segmenting

the data to obtain features, those features and ensembles of those features can be mea-

sured and statistically described. Table 2 lists the pipeline used to calculate a number

of morphological and crystallographic attributes of the features and ensembles within

the dataset. The list of features and all attributes calculated to describe them can be

found in a comma separated value (.csv) file in the supporting material (Additional file 6).

Some of these results were also presented in [10] (using tools prior to DREAM.3D). After

determining the attributes of the individual features, distributions of those attributes

can be calculated for ensembles of the features. For this dataset, the material was

treated as single-phase and all grains were said to belong to a single ensemble. The

distribution of sizes, shapes, numbers of neighbors, orientations and misorientations
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Figure 5 Visualization from ParaView with Inverse Pole Figure (IPF) coloring of the polycrystalline

Ni-based superalloy reconstructed and segmented by the DREAM.3D pipeline described in Table 1.

Table 2 Statistics pipeline

Filter # Filter name Reason for use

0 Read DREAM.3D File Loads reconstructed and segmented dataset

1 Find Feature Centroids Determines the centroid locations of each feature

2 Find Feature Sizes Determines the volume of each feature

3 Find Feature Shapes Determines aspect ratios and omega3 of each feature

4 Find Feature Neighbors Determines the number and list of contiguous neighbors
for each feature

5 Find Feature Neighborhoods Determines the number and list of features within one
diameter of each feature

6 Find Euclidean Distance Map Determines the distance each voxel is from the nearest
grain boundary, triple line and quadruple point

7 Find Feature Average Orientations Second check of ‘bad’ voxels against neighboring
‘good’ voxels

8 Find Feature Average Orientations Calculates average orientation of each feature

9 Find Feature Neighbor Misorientations Determines the misorientation for each contiguous
neighbor of each feature

10 Find Schmid Factors Determines the Schmid factors of each feature

11 Find Feature Reference Misorientations Determines the misorientation between each voxel and a
reference orientation for the feature it belongs to

12 Find Kernel Average Misorientations Determines the average misorientation between each
voxel and its neighbor voxels

13 Write Feature Data As CSV Outputs attributes of features to CSV file

14 Write DREAM.3D File Writes out all attribute matrices and pipeline to file

Table listing the filters in the statistical analysis pipeline.
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Table 3 Synthetic structure generation pipeline

Filter # Filter name Reason for use

0 Initialize Synthetic Volume Loads goal statistics and creates empty volume

1 Pack Primary Phases Generates set of grains and places them inside of volume

2 Find Feature Neighbors Determines the number and list of contiguous neighbors for each feature

3 Find Number of Features Determines the number of features in the volume

4 Match crystallography Assigns orientations to match the ODF and MDF

5 Write DREAM.3D File Writes out all attribute matrices and pipeline to file

Table listing the filters in the synthetic structure pipeline.

were all calculated. The following section will discuss one use case for applying this

information.

Sythetic structure generation

DREAM.3D has filters to generate synthetic digital microstructures with a goal set of

statistics as input. The synthetic generation process is discussed in detail in [11]. Using

the statistics calculated by the pipeline in the previous section, a ‘statistically-equivalent’

microstructure was generated using DREAM.3D. The pipeline used to generate this

microstructure is listed in Table 3 and the DREAM.3D file corresponding to the synthetic

volume is attached as supporting material (Additional file 4). A visualization of the resul-

tant synthetic microstructure is shown in Figure 6. It should be noted that the synthetic

microstructure generated was created using statistics calculated without the twin features

Figure 6 Visualization from ParaView with Inverse Pole Figure (IPF) coloring of the synthetic

microstructrue generated by the DREAM.3D pipeline described in Table 3.
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in the microstructure and as a result may look slightly different that the experimental

microstructure in Figure 5.

Conclusion

DREAM.3D is an open-source software package focused on creating a high-level pro-

gramming environment to process, segment, quantify, represent and manipulate digital

microstructure data. DREAM.3D’s central goal is to enable the move of microstructure

quantification to a digital basis with easy-to-use software tools. The core of DREAM.3D

implements a standardized approach to working with and storing digital microstructure

data. Additionally, protocols are included to allow independently-developed filters and

plugins to interface with one another. The DREAM.3D environment is constructed in a

way that small research groups, government laboratories, start-up companies and major

industrial corporations can collaborate and leverage each other’s work. It is the belief of

the authors that DREAM.3D will reduce the time and cost to conduct microstructural

characterization, due to the ability to leverage community-wide developments and bring

disjointed research areas into a common environment for development.

Additional files

Additional file 1: Example vertex data container. This file is an example of a vertex data container containing a

Vienna Ab initio Simulation Package (VASP) input structure.

Additional file 2: Example edge data container. This file is an example of an edge data container containing a

ParaDis output structure.

Additional file 3: Example surface data container. This file is an example of a surface data container containing a

grain boundary mesh of a synthetic polycrystalline microstructure.

Additional file 4: Example volume data container. This file is an example of a volume data container containing a

synthetic polycrystalline microstructure.

Additional file 5: Polycrystalline ni-based superalloy 3D EBSD reconstruction. This file contains a reconstructed

and segmented experimentally measured polycrystalline Ni-based superalloy microstructure.

Additional file 6: Grain statistics. This file contains the attributes calculated in the Statistics pipeline for all features

identified in the 3D EBSD reconstruction pipeline.
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