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Abstract

Rhythms of the brain are generated by neural oscillations across multiple frequencies. These oscillations can be decomposed

into distinct frequency intervals associated with specific physiological processes. In practice, the number and ranges

of decodable frequency intervals are determined by sampling parameters, often ignored by researchers. To improve the

situation, we report on an open toolbox with a graphical user interface for decoding rhythms of the brain system (DREAM).

We provide worked examples of DREAM to investigate frequency-specific performance of both neural (spontaneous brain

activity) and neurobehavioral (in-scanner head motion) oscillations. DREAM decoded the head motion oscillations and

uncovered that younger children moved their heads more than older children across all five frequency intervals whereas

boys moved more than girls in the age of 7 to 9 years. It is interesting that the higher frequency bands contain more

head movements, and showed stronger age-motion associations but weaker sex-motion interactions. Using data from the

Human Connectome Project, DREAM mapped the amplitude of these neural oscillations into multiple frequency bands and

evaluated their test-retest reliability. The resting-state brain ranks its spontaneous oscillation’s amplitudes spatially from high

in ventral-temporal areas to low in ventral-occipital areas when the frequency band increased from low to high, while those

in part of parietal and ventral frontal regions are reversed. The higher frequency bands exhibited more reliable amplitude

measurements, implying more inter-individual variability of the amplitudes for the higher frequency bands. In summary,

DREAM adds a reliable and valid tool to mapping human brain function from a multiple-frequency window into brain waves.

Keywords Brain oscillations · Reliability · Head motion · Development

Introduction

Rhythms of the brain are generated by neural oscilla-

tions occurring across multiple frequencies (Buzsaki 2006).

The natural logarithm linear law (N3L) offers a theoreti-

cal framework for parcellating these brain oscillations into

multiple frequency intervals linking to distinct physiologi-

cal roles (Penttonen and Buzsáki 2003). Remarkably, when

graphed on the natural logarithm scale, the centers of each

frequency interval fall on adjacent integer points. Thus, dis-

tances between adjacent center points are isometric on the
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natural logarithm scale, resulting in a full parcellation of the

whole frequency domain where each parcel of the frequen-

cies is fixed in theory, namely frequency intervals. These

frequency intervals have been repeatedly observed experi-

mentally (Buzsaki and Draguhn 2004). This characteristic

suggests that distinct physiological mechanisms may con-

tribute to distinct intervals. These brain oscillations can be

measured by different technologies such as EEG and MEG.

Much like EEG/MEG recording signals, functional mag-

netic resonance imaging (fMRI) represents a non-invasive

and safe technique with an acceptable trade-off between

spatial and temporal resolution by recording the blood oxy-

gen level dependent (BOLD) as the fMRI time series. FMRI

has the potential to contribute to the study of certain neural

oscillations in the human brain in vivo.

In early fMRI studies of the human brain, researchers

tended to treat oscillations across different frequencies

without differentiation. Low-frequency oscillations mea-

sured by resting-state fMRI (rfMRI) have been assessed
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primarily in the frequency range of 0.01 to 0.1 Hz, a range

in which spontaneous brain activity has high signal ampli-

tude (Biswal et al. 1995; Lowe et al. 1998). While such

efforts have been somewhat informative, treating this broad

frequency range in a unitary manner may conceal informa-

tion carried by different frequency intervals. To address this

issue, an early study decomposed the rfMRI signals into

multiple frequency intervals using the N3L theory (Slow-5:

0.01 - 0.027 Hz, Slow-4: 0.027 - 0.073 Hz, Slow-3: 0.073 -

0.198 Hz, Slow-2: 0.198 - 0.25 Hz)(Zuo et al. 2010). This

demonstrated the feasibility of mapping distributional char-

acteristics of oscillations’ amplitude in both space and time

across multiple frequency intervals in the brain.

Since then, an increasing number of rfMRI studies

have employed such methods by directly applying these

frequency intervals, and have detected frequency-dependent

differences in brain oscillations in patients. Specifically,

these differences were mostly evident between Slow-4 and

Slow-5 amplitudes (Han et al. 2011; Jing et al. 2012;

Zhao et al. 2015; Mascali et al. 2015; Li et al. 2017; Ren

et al. 2016). Such frequency-dependent phenomena have

also been explored using other rfMRI metrics including

regional homogeneity detected in the Slow-3 and Slow-

5 frequency ranges (Wang et al. 2016). While the lower

and upper bounds of the frequency intervals are fixed

in theory, their highest and lowest detectable frequencies

and frequency resolution are determined by the sampling

parameters (e.g., rate and duration) in computational

practice. However, the above-mentioned studies applied the

frequency intervals from earlier studies (Di Martino et al.

2008; Zuo et al. 2010) rather than to use those matching

their actual sampling settings. To address this situation, we

developed an easy to use toolbox to decode the frequency

intervals by applying the N3L theory. This toolbox, named

DREAM, is based on MATLAB with a graphical user

interface (GUI). Here, we introduce the N3L algorithm and

its DREAM implementation. Neural oscillations reflected

by the human brain spontaneous activity measured with

resting-state functional MRI and head motion data during

mock MRI scans were employed as two worked examples

to demonstrate the use of DREAM to perform frequency

analyses.

Methods and Algorithms

Neuronal brain signals are temporally continuous but they

are almost always measured as discrete data for practical

reasons. The characteristics of the sampled data should meet

the criterion of the sampling theorem proposed by American

electrical engineers Harry Nyquist and Claude Shannon.

The core algorithm to determine the frequency boundaries

of measured neuronal signals in DREAM is based on the

Nyquist-Shannon sampling theorem. Specifically, per the

theorem, sampling frequency and sampling time determine

the highest and lowest frequencies that can be detected

and reconstructed. Sampling data retains most of the

information contained in the original signals if the sampling

frequency is at least twice the maximum frequency of the

continuous signals. As for neuronal signals, the highest

frequency that could be detected and reconstructed is

determined by the sampling frequency, or by the sampling

interval which is equal to the reciprocal of the sampling

frequency:

fmax =
1

2TR

(1)

where fmax represents the highest frequency that could

be detected in the neuronal signal and TR represents the

sampling interval.

The lowest frequency in neuronal signals that could

be detected depends on the sampling time. As shown in

formula (2), in order to distinguish the lowest frequency in

neuronal signals, the sampling time should be equal to or

larger than the reciprocal of two times the lowest frequency:

T ≥
1

2fmin

(2)

where T represents the sampling time, and fmin represents

the lowest frequency in neuronal signals that could be

distinguished.

Since the sampling time is equal to the number of

samples multiplied by the sampling interval, the lowest

frequency can be calculated by:

fmin =
1

2NTR

(3)

where N represents the number of samples.

According to the N3L theory, neural oscillations in

mammalian brain formed a linear hierarchical organization

of multiple frequency bands when represented on a natural

logarithmic scale. The center of each band would fall on

each integer of the natural logarithmic scale (Fig. 1-1).

Thus, adjacent bands have constant intervals that equals

to one, which correspond to the approximately constant

ratios of adjacent bands on the linear scale (Fig. 1-2).

With the highest and lowest frequencies reconstructed,

N3L can derive the number of decoded frequencies and

the boundaries of each frequency interval (Fig. 1-3).

Accordingly, when graphed on the natural log scale,

the center of each decoded frequency is an integer.

Thus, adjacent center points on the natural log scale are

equidistant, which corresponds to the same proportion of

adjacent center points’ values on the linear scale. Based

upon this theorem, after performing a linear regression

analysis for the highest and lowest frequencies acquired
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Fig. 1 The flowchart on the DREAM algorithm. (1) N3L theory

defines an oscillator with a length-one frequency band centered at n,

i.e., OSC(n), in the natural log space. (2) In original frequency space,

it expands the frequency band (en−0.5, en+0.5) Hz. (3) This frequency

band can be discretized with a sampling procedure with N points

and TR rate in terms of the classical signal theory. (4) This computa-

tional frequency band is for a band-pass filtering process to extract the

OSC(n) from the raw time series

previously, we can determine the central frequencies, as

well as the number frequency intervals that can be decoded.

Finally, the decoding process integrated in DREAM

performs band-pass filtering with the frequency intervals

provided by DREAM in the previous steps (Fig. 1-4). This is

implemented by the MATLAB built-in function fft and ifft

to perform direct and inverse time-frequency transformation

on the signals for individual decoded frequency intervals,

respectively. All the above steps are illustrated as the

flowchart in Fig. 1, and relevant algorithms are presented as

Pseudo-codes in Supplementary Appendix.

Computational Performance

The ability to handle big data is an important aspect

of software performance, which has been optimised by

DREAM. The frequency decoding procedure described

above (Fig. 1-1 to 1-3) needs two input parameters,

namely sampling frequency and the number of samples.

The operation speed is thus very fast and is almost not

affected by the data size. The operation speed of the second

procedure, band-pass filtering, is dependent on the data size

and operational environment. In order to achieve the optimal

speed of its computation, we embedded three algorithms

into DREAM: 1) the input data was treated as a whole

matrix, 2) the input data was divided into ten chunks with

approximately the same number of time series and then

processed sequentially, and 3) the input data was divided

into ten chunks and then processed in parallel. The first

algorithm is suitable for most cases, especially for regular-

size data, such as most 1.5T and 3T fMRI data. The second

algorithm performs better with large-scale data using a

computer with limited memory. It is a strategy that balances

time (speed) and space (memory). When the computer

has enough memory, the third algorithm works best for

processing large-scale data. The toolbox will automatically

select the best algorithm based on the data size (e.g.,

number of time series, number of sampling points) and

the user’s hardware operating environment (e.g., memory

size, number of CPU cores). We tested the performance of

these three algorithms in the MATLAB version of DREAM

respectively, using the same data from an individual brain

of the 3R-BRAIN database from the Chinese Color Nest

Project (Liu et al. 2020) (image size: 104 × 90 × 60,

number of samples: 840, repetition time: 0.72s) and the

same hardware environment (memory: 16 GB, CPU: four

cores four threads). The speed of the first, second and

third algorithms are 706.897 seconds, 744.475 seconds and

641.419 seconds respectively. The third algorithm on a high-

performance computer can achieve the maximum speed in

dealing with big data (e.g., 7T fMRI data).

Interface and Usage

DREAM has been shared and released with the Con-

nectome Computation System (CCS)(Xu et al. 2015).

After downloading the package at GitHub, users need to

add the directory where the package is stored into the

MATLAB path. The package can be launched by enter-

ing ”DREAM” in the MATLAB command line. DREAM

integrates its GUI (two buttons) into its flash screen

(Fig. 2).
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Fig. 2 DREAM’s flash screen

Program Interface

DREAM supports CCS data structures by default. Users

should enter or organize their data into the predefined

directory structure (Fig. 3) before start processing the data.

Working

Directory

Subject

Folder 1

Data Folder 1

(dispensable)

Data

Subject

Folder 2

Data Folder 2

(dispensable)

Data

Subject

Folder 3

Data Folder 3

(dispensable)

Data

Subject List

Fig. 3 DREAM’s directory structure

The work directory is where the subject directories are

stored (full path). Individual data should be stored in each

subject directory or a sub-folder inside (data directory).

DREAM has a main interface (Fig. 4) for setting up the

structure (the left side) and previewing the plots of time

series from the data selected (the right side). DREAM is also

compatible with the Brain Imaging Data Structure (BIDS)

(Gorgolewski et al. 2016).

GUI Usage

We introduce how to use the graphical interface step by

step in below. The circled numbers in Fig. 4 correspond to

the analyzing steps in this section. The following steps are

applicable to users using the CCS data format. For BIDS

users, just specify the data directory, and the toolbox will

automatically identify the directory structure and read in

data.

After all the above parameters are set up, data meeting

the requirement will appear in the list-box (Figs. 4, 5, 6),

from where the user can remove unwanted data by selecting

the file name and clicking the Remove button. Finally, by

clicking the Divide button, a user can start the decoding

program. The outputs contain a set of decoded files and

a csv file that records the boundary frequencies of each

decoded band. The outcomes can be directly used for

subsequent analyses.
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Fig. 4 The main interface of DREAM

DREAM-1: Frequency-dependent
Oscillations of In-scanner HeadMotion in
3-16 Years-old Children

Kids usually move more than adults, representing a natu-

ral characteristic improved across development. Frequency

insights of this behavioral trait would benefit the under-

standing of its neurodevelopmental underpinnings. We thus

performed a purely behavioral research of the head motion

to unveil the frequency characteristics of head motion as

well as their relationships with age and sex. Specifically,

we took head motion oscillations as the behavioral trait

Fig. 5 A preview of the original FD time series from a participant

Neuroinform (2021) 19:529–545 533



Fig. 6 DREAM decodes FD time series into the five bands

of interest to study their physiological characteristics. We

believe that characterizing head motion properties in mul-

tiple frequencies can provide new insights of head motion

during fMRI scanning. In-scanner head motion has long

been treated as a confounding factor in most fMRI studies,

especially in studies of children and patients. Many stud-

ies have shown the effects of motion on fMRI results such

as increases of short-distance correlations and decreases

of long-distance correlations in rfMRI-derived connectiv-

ity metrics(Power et al. 2012; Power et al. 2015; Yan et al.

2013). Researchers also proposed various methods to cor-

rect the motion effects in fMRI studies. In contrast, studying

head motion as a neurobehavioral trait has been overlooked

(see an exception in (Zeng et al. 2014)), especially in

children. Here, we employed DREAM to quantify head

motion data acquired from preschool and school children

in a mock scanner using a novel multi-frequency perspec-

tive. We hypothesized that: 1) head motion is a behavioral

trait associated with age; 2) there are sex differences in

head motion in children; and 3) the head motion effects are

frequency-dependent.

Participants and Data Acquisition

We recruited 94 participants (47 females) between 3 to 16

years of age as part of the Chinese Color Nest Project(Yang

et al. 2017; Zuo et al. 2017; Liu et al. 2020), a long-

term (2013-2022) large-scale effort on normative research

for lifespan development of mind and brain(Dong et al.

2020). All participants were from groups visiting during

the Public Science Open Day of the Chinese Academy of

Sciences, with the approval of at least one legal guardian.

The experiment was performed in a mock MRI scanner

at the site of the MRI Research Center of the Institute

of Psychology, Chinese Academy of Sciences. The mock

scanner was built by PST (Psychology Software Tools,

Inc.) using a 1:1 model of the GE MR750 3T MRI

scanner in use at the institute. It is used for training young

children to lie still in a scanner before participating the

actual MRI scanning session. It is decorated with cartoon

stickers to provide a children-friendly atmosphere. Head

motion data were acquired with the MoTrack Head Motion

Tracking System (PST-100722). The system consists of

three components: a MoTrack console, a transmitter and a

sensor. The sensor is worn on the participant’s head and

provides the position of the head relative to the transmitter.

For each participant, head motion is displayed on the

computer screen in real-time. The original sampling rate of

the system is 103 Hz. The averaging buffering size is 11

samples, which results in a recording sampling rate of 9.285

Hz. The participants were instructed to rest quietly on the

bed of the mock scanner for around three and half minutes

without moving their heads or bodies. They were watching

a cartoon film inside the scanner during the ”scanning”

to simulate movie-watching scanning. The data acquisition

period was designed to resemble the real MRI scanning

Neuroinform (2021) 19:529–545534

https://github.com/zuoxinian/CCNP


environment, with a recording of scanning noises of the real

MRI machine played as the background noise. This design

can setup much faster sampling rates than that of the slow

fMRI sampling rate and thus lead to more accurate and

higher frequency bands. Such a behavioral analysis of the

head motion would benefit the traditional fMRI analysis

if the fast-sampling head motion data is collected and

analyzed in tandem with the fMRI data by the brain-motion

association studies.

Data Analysis

Head motion data are recorded in text files consisting

of six parameters for each time point, three translation

(millimeters) and three rotation (degrees) measures. The

first three parameters are displacements in the superior,

left and posterior directions, respectively. The last three

parameters are rotation degrees in the three cardinal

rotational directions. We converted the original data into

frame-wise displacement (FD), a single parameter scalar

quantity representing head motion proposed by Power

and colleagues (Power et al. 2012). To correct for spikes

caused by sudden movements, which may bias mean

FD values, we applied the AFNI 3dDespike command

(version 17.3.06) to the FD time series. Of note, these

time seires are not fMRI data and stored as text files. Data

without this preprocessing was also analyzed and supported

reproducible patterns. Then time-windows were determined

and applied before feeding the data into DREAM. We

retained 1672 sampling points from the zeroed time point

(time point when the original six parameters were set to

zero), which equaled a duration of three minutes. After

preprocessing, we used DREAM to decode the data. Of

note, the original FD values were all positive. After

decoding, the time series of decoded bands were demeaned,

which means the average values of all decoded time series

were very near to zero. Thus, we took the absolute value of

decoded frequency intervals to calculate mean FD values,

which were used in subsequent statistical analyses. Inspired

by many human growth curves modeled by exponential

function and the scatter plots on the head motion data,

we first converted the head motion data using the natural

logarithm transformation and then assess the relationship

between FD and age by using linear regression models to

fit the FD data in each frequency interval with age. We

conducted this regression for boys and girls, respectively,

and tested whether the slopes and intercepts are significantly

different between boys and girls. Of note, this method is

equivalent to an Analysis of Covariance (ANCOVA)(Rosner

2015). These analyses were also applied to the standard

deviation of FD time series to test the stability of head

motion.

Results

Six participants were excluded from further data analysis

due to sampling periods less than three minutes. Another

four participants were excluded because their mean FD

values were three standard deviations higher than the mean

value of the whole group (i.e., outliers). Total 42 boys (age:

3 - 14 years, 8.7 ± 3.0) and 42 girls (age: 4 - 16 years,

8.4±3.1) were included in our final analyses. No significant

differences in age were found between males and females.

All the findings derived with the head motion data without

despike preprocessing are highly similar to those of using

despike, which are reported as following. Meanwhile, all

the results derived from the linear regression models are

replicated by the ANCOVA model.

Frequency Decomposition

Since all the head motion data have the same sampling

frequency and sampling period, DREAM decoded all the

FD time series into the same six frequency intervals named

according to Buzsaki and Draguhn (2004) (Slow-4: 0.033 to

0.083 Hz, Slow-3: 0.083 to 0.22 Hz, Slow-2: 0.222 to 0.605

Hz, Slow-1: 0.605 to 1.650 Hz, Delta: 1.650 to 4.482 Hz,

Theta: 4.482 to 4.643 Hz). This theta band is too narrow

comparing with its full range (up to 10 Hz) to be reliable for

the analyses, and thus not included in our analyses. The full

band and the five frequency bands from an individual child

are depicted in Figs. 5 and 6.

Age-related HeadMotion Changes Across Frequencies

Results from the linear regression analysis yielded signifi-

cant negative correlations between age and mean FD values

across all the five bands for both boys and girls (df = 40,

FDR corrected p < 0.05):

• Slow-4: boys, p = 0.018, R2 = 0.218; girls, p =

0.034, R2 = 0.195

• Slow-3: boys, p = 0.008, R2 = 0.249; girls, p =

0.027, R2 = 0.203

• Slow-22: boys, p = 0.001, R2 = 0.314; girls, p =

0.017, R2 = 0.221

• Slow-1: boys, p < 0.001, R2 = 0.358; girls, p =

0.013, R2 = 0.230

• Delta: boys, p < 0.001, R2 = 0.380; girls, p =

0.008, R2 = 0.250

The relationship between age and mean FD values are

plotted in Fig. 7, indicating that younger children tend

to move more than older ones, and this trait correlation

held in both boys and girls. We also performed a similar

linear regression analysis between the standard deviations of
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Fig. 7 Nonlinear age-motion relationship across the five frequency

bands. The plots are based upon the log transformed motion data,

indicating the exponential growth model ymotion = e(axage+b). The

upper-left panel shows the Mock scanning facility in the Magnetic

Resonance Imaging Research Center at the Institute of Psychology,

Chinese Academy of Sciences

decoded FD values and age, and observed similar outcomes

that the standard deviations were significantly negatively

correlated with age across frequency bands and sexes. This

showed older children are more stable with their head

motion than younger children.

We further tested if the two lines are different between

boys and girls. Statistical results revealed no such sex-

related effect (df = 80, FDR corrected p > 0.05):

• Slow-4: slope, p > 0.5, F = 0.383; intercept, p =

0.494, F = 3.979

• Slow-3: slope, p > 0.5, F = 0.531; intercept, p =

0.385, F = 4.428

• Slow-2: slope, p > 0.5, F = 1.177; intercept, p =

0.486, F = 4.010

• Slow-1: slope, p > 0.5, F = 1.326; intercept, p =

0.849, F = 3.042

• Delta: slope, p > 0.5, F = 1.222; intercept, p =

0.968, F = 2.822

Inspired by the trend that sex-related differences in mean

FD are smaller in higher frequency bands, especially evident

for early stages, we thus divided all the participants into

three age groups (3 to 6 years: 14 boys, 18 girls; 7 to 9

years: 14 boys, 15 girls; 10 to 16 years: 14 boys, 9 girls)

and compared mean FD values between males and females

Neuroinform (2021) 19:529–545536



in each age group using two-way (sex and frequency band)

ANOVA with repeated measures. Figure 8 summarized

the results of an increasing pattern of head motion from

slow to fast bands for all the age groups (3-6yrs: F(4) =

10.90, p = 1.65 × 10−7; 7-9yrs: F(4) = 20.62, p =

1.20 × 10−12; 10-16yrs: F(4) = 23.95, p = 3.06 ×

10−13). Meanwhile, we observed a significant interaction

between sex and frequency band in 7 to 9 years old children

(F(4, 1) = 3.22, p = 0.0154) but not for the other groups

(3-6yrs: F(4, 1) = 0.195, p = 0.940; 10-16yrs: F(4, 1) =

1.065, p = 0.380).

DREAM-2: Frequency-Dependent Spatial
Ranking and Reliability of Low-Frequency
Oscillations

The amplitude of low frequency fluctuation (ALFF) is

a common metric used in fMRI studies that reflects

regional amplitude of the signal intensity’s fluctuations in

a frequency range (Zang et al. 2007). Previous studies

revealed variations of ALFF in both spatial and frequency

domains in the resting-state brain. From the perspective of

spatial distribution, in the typical resting-state frequency

range (e.g., 0.01-0.1 Hz), the neural oscillations showed

higher ALFF in grey matter than white matter (Biswal

et al. 1995; Turner et al. 1993). It is noted that ALFF

reaches its peaks in visual areas (Kiviniemi et al. 2003),

posterior structures along brain midline (Biswal et al. 1995;

Zou et al. 2009) and in cingulate and medial prefrontal

cortices (Ghosh et al. 2008). In frequency domain, BOLD

oscillations distributed to grey matter were mainly in

Slow-4 and Slow-5, while its white matter oscillations

were dominated by Slow-3 and Slow-2 (Zuo et al. 2010).

Specifically, higher ALFF in Slow-4 was detected in the

bilateral thalamus and basal ganglia whereas the slow-

5 oscillators exhibited higher ALFF in the ventromedial

prefrontal cortex, precuneus and cuneus (replicated in Xue

et al. 2014). These findings revealed the frequency-specific

characteristics of resting-state ALFF. The previous studies

are limited by their sampling precision (TR ≤ 2000ms), and

studies on the ALFF distribution across more accurate bands

and their reliabilities are still lacking. For examples, the

Slow-2 frequency band derived in Zuo et al. (2010) has quite

small overlap with its theoretical range and thus may limit

both reliability and validity of its findings. Here, we use

DREAM to decompose the fast (TR = 720ms) rfMRI data

from the Human Connectome Project (HCP) (Van Essen

et al. 2013) test-retest dataset, to 1) map the ranks of ALFF

values through Slow-1, Slow-2, Slow-3, Slow-4, Slow-5 and

Fig. 8 Sex-frequency interactions on head motion across ages. All

the participants (3 to 16 years old) are divided into three age

groups: 3 to 6 years, 7 to 9 years, 10 to 16 years). A two-way

(sex and frequency band) ANOVA with repeated measures com-

pares mean FD values between males and females in each age

group
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Slow-6 bands and 2) evaluate the test-retest reliability of the

ALFF metrics in these different frequency bands.

Participants and Data Acquisition

The test-retest dataset from HCP consisting of 45 subjects

were used for this analysis. All subjects were scanned with

an HCP-customized Siemens 3T scanner at Washington

University, using a standard 32-channel receive head coil.

Three participants were excluded from the substantial

analyses because their resting-state scan durations were

shorter than others. Forty-two subjects (aged 30.3 ± 3.4

years, 29 males) were included in the present study. In the

dataset, each subject paid two visits. The average interval

between the two visits is 4.7 months. In each visit, each

subject was scanned two times in two consecutive days and

each scan contained structural images (T1w and T2w), two

rfMRI, seven runs of task fMRI and high angular resolution

diffusion imaging (see details of the imaging protocols from

HCP website). The two visits constitute a long-term test

versus retest contrast, while the two scans within a visit

constitute a short-term test versus retest contrast. Since one

subject lacked a scan session in the first visit, we only

included 41 subjects in the short-term analyses for visit 1

and the long-term analyses. In the present work, we only

used the rfMRI data, which consisted of 1200 volumes (TR

= 720 ms; TE = 33.1 ms; flip angle = 52◦, 72 slices, matrix

= 104 × 90; FOV = 208 × 180 mm; acquisition voxel size

= 2 × 2 × 2 mm). The data were preprocessed according

to the HCP MR preprocessing pipeline (Glasser et al.

2013), resulting in the preprocessed surface time series data

fed to the following DREAM analysis. The preprocessing

pipeline includes: 1) Gradient distortion correction; 2)

Motion correction; 3) EPI image distortion correction; 4)

Registration to T1w image; 5) One step spline resampling;

6) Intensity normalization and brain masking; 7) Transfer

volume-based timeseries into surface-based timeseries.

Amplitude Analysis

For each rfMRI scan, we first extracted the representative

time series for each of the 400 parcels (Schaefer et al.

2018) by averaging all the preprocessed time series within

a single parcel. DREAM decomposed the time series into

its components across the potential frequency bands. We

performed ALFF analysis for all the bands of each run and

each subject according to Zuo et al. (2010) implemented by

CCS (Xu et al. 2015). Subject-level parcel-wise ALFF maps

for each frequency band were standardized into subject-

level Z-score maps (i.e., by subtracting the mean parcel-

wise ALFF of the entire cortical surface, and dividing by the

standard deviation). In a single visit, the two standardized

ALFF maps in the same session were then averaged,

resulting in two (short-term test versus retest) standardized

ALFF maps per frequency band for each subject. For the

long-term test-retest contrast, the two standardized ALFF

maps in the same visit were averaged, and resulting in

two long-term ALFF maps per frequency band per subject.

To investigate both short-term and long-term test-retest

reliability of ALFF across the five frequency bands, we

calculated the parcel-wise intraclass correlation (ICC) based

upon short-term and long-term ALFF maps respectively

(Zuo et al. 2013; Xing and Zuo 2018). We averaged the

two standardized ALFF maps of all the subjects in each

visit separately to obtain the group-level standardized ALFF

maps per visit. And we also averaged the group-level maps

of the two visits to obtain the group-level standardized

ALFF maps for the whole dataset. In order to evaluate the

spatial distribution of the ALFF values for each parcel, we

assigned its rank of ALFF values to the parcel (from 1 to

400). All the above analyses were done for each of the five

frequency bands, leading to three ALFF ranking maps for

each frequency band (visit 1, visit 2 and whole dataset).

Results

We did the same amplitude analysis and ICC calculation

for the two short-term contrasts (visit 1 and visit 2) and the

long-term contrast. Results from the two visits are similar.

Therefore, in the following sections, we will only display

results for one short-term (visit 2), along with the long-

term results. DREAM decomposed the rfMRI timeseries

into six frequency bands (Slow-6: 0.007 - 0.012 Hz; Slow-5:

0.012-0.030 Hz; Slow-4: 0.030-0.082 Hz; Slow-3: 0.082-

0.223 Hz; Slow-2: 0.223-0.607 Hz; Slow-1: 0.607-0.694

Hz). Spatial rankings on ALFF for one visit and the whole

dataset are mapped in Figs. 9 and 10 respectively. The

ranking trend is similar in the two maps. It is noticed that

ALFF spatially ranked from high in ventral-temporal areas

to low in ventral-occipital areas when the frequency band

increased from low to high, while those in part of parietal

and ventral frontal regions were reversed.

Test-retest reliability maps of ALFF are also generated

(Figs. 11 and 12) by mapping ICC using the linear mixed

models. It is clear that, for both short-term and long-

term, the higher frequency bands, the more reliable ALFF

measurements. However, the long-term ICC values are

lower than short-term across frequencies, which suggests

that intra-subject variation grows with the scan interval.

In the short-term maps, the slow-2 (0.223-0.607 Hz)

demonstrated the highest test-retest reliability of ALFF

across the six frequency bands.
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Fig. 9 Spatially ranking ALFF across six frequency bands for data

in one visit. LH: left hemisphere; RH: right hemisphere; Vis: visual

network; SomMot: somatomotor network; DorsAttn: dorsal attention

network; SalVentAttn: salience ventral attention network; Cont: frontal

parietal control network; Default: default network; Limic: limbic

network; see details of parcel naming at GitHub for the parcellation

Discussion

DREAM is a free and publicly available software that

can decode oscillation data into multiple frequency bands.

The simple interface was designed to allow all users to

easily perform multi-band frequency analyses. The com-

putational methods employed in DREAM to calculate the

numbers and ranges of decoded frequency bands apply the

Fig. 10 Spatially ranking ALFF across six frequency bands for whole dataset
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Fig. 11 Short-term test-retest reliability of ALFF across six frequency bands

Nyquist-Shannon sampling theorem and the brain oscil-

lation theory (Buzsaki and Draguhn 2004). Such a the-

ory has been proven of great potentials to understand the

brain dynamics as well as their behavioral correspondences.

From a theoretical perspective, the oscillation theory can be

independent of any modalities (e.g., EEG, MEG, ECoG,

TMS, fMRI, fNIRS, eye tracking, etc.) for measuring these

oscillations as windows into brain waves (Balduzzi et al.

2008). DREAM is thus applicable for multiple forms of

discrete sampling data, as long as the data are entered in

Fig. 12 Long-term test-retest reliability of ALFF across six frequency bands
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the supported format. Currently, DREAM can process both

NIFTI formatted neuroimaging data and text file formatted

behavioral data while more other formats will be supported

in its forthcoming releases.

As a demonstration of its utility, the results derived

with DREAM for pure behavioral recordings suggest

that head motion may be a behavioral feature reflecting

both state and trait of individuals. We showed that head

movements in the high frequency bands are more evident

than those in the low frequency bands. This could be

a behavioral reflection of the hierarchical organization

of brain oscillations for their synchronization at multiple

scales in space. Neural oscillations of the higher frequency-

bands are related to more local information processing

while the lower frequency-bands are for more distant

communications in the brain. Our findings are consistent

with the previous observation that the head motion had

more impacts on the short-distance brain connectivity.

While the head motion during fMRI scanning has been

treated an important confounding factor in the neural signal

(Power et al. 2015), some recent work also argued its

neurobiological components related to individual traits of

the motor behaviors (e.g., Zeng et al. 2014, Zhou et al.

2016). The current researh offers data for an alternative

explanation on such neurobehavioral trait likely driven by

brain systems operating within a multi-band frequency

landscape. In the context of development, as we expected,

younger children moved more than older children across

all the slow frequency bands. The stability of head motion

during the experiment also varied with age, with head

motion becoming less variable or more stable in older

children. This is more evident in higher frequency bands,

an implication that more sudden and sharp movements in

younger children. Moreover, in a specific age range (7 - 9

years), boys moved more than girls across Slow-6 to Slow-1

bands but such differences vanished in the delta frequencies.

This age range is a critical period for developing the

ability to apply effective cognitive control (i.e., cognitive

flexibility during executive function) (Anderson 2002),

and our findings might reflect the sex differences in the

cognitive development. In summary, our results demonstrate

the necessity to study the frequency-specific characteristics

of head motion, especially a perspective on understanding

the neurobiological mechanism behind these behavior-

related oscillations. This is of great potential to enrich our

knowledge on the lifespan development such as children,

the elderly and patients with neurologic or psychiatric

conditions where both distance-related brain and the head

motion measurements have been observed to correlate with

each other (Andrewshanna et al. 2007; Satterthwaite et al.

2012; Fair et al. 2007, 2013).

Differences in head motion across ages or between

cohorts may reflect differences of certain traits, which

may co-vary with detected brain signals and behavioral

outcomes. The different properties of head motion in

different frequency bands show that there may be different

mechanisms associated with different frequencies. Head

motion at higher frequencies varies more with age, and this

may reflect that cognitive control associated with higher

frequencies develops better with age. Of note, interpolation

analyses indicated that this observation is not related to an

issue of better signal-to-noise ratio at higher frequencies

because there are more events per unit time. Within the

narrow age range of 7 to 9 years old, boys moved more

than girls in most frequency bands, although sex differences

were larger at lower frequencies. This may indicate that the

development of controlling system associated with lower

frequencies may have larger sex-related differences for

this age range. The above results lead us to speculate

that there may be two control systems that are associated

with different frequency bands of head motion which

develop differently with age and between boys and girls.

More detailed experimental studies deserved to test this

postulation in future. The strategies of dealing with head

motion issues in human brain mapping may also need

updates regarding its measurement reliability and validity in

terms of the possible neurobiological correlates (Xing and

Zuo 2018; Zuo et al. 2019a, b). One promising direction

is to separate various sources of the head movements by

using additional recordings or developing novel motion

metrics (e.g., the recent progress in Power et al. 2018,

2019, 2020). These efforts identified seven kinds of in-

scanner motion in resting-state fMRI scans, and five of them

related to respiration. Some pseudomotion occurred only

in the phase encode direction and was a function of soft

tissue mass, not lung volume. Using the Mock scanning

experimental design as in the present work, together with

the aforementioned approaches, could be of high value in

further understanding neurobiobehavioral underpins of the

human head movements.

Using fast fMRI from HCP, at the first time, we revealed

the spatially configuring pattern of ALFF ranking gradually

from low to high frequency bands. This indicates a trend

along the two orthogonal axes. Along the dorsal-ventral

axis, higher ALFF ranks were moving from the ventral

occipital and the ventral temporal lobe up to regions in

the parietal lobe as the frequency increasing. Along the

anterior-posterior axis, from lower to higher bands, higher

ALFF ranks were walking from the posterior to the anterior

regions in the ventral part. This frequency-dependent ALFF

pattern is similar to the findings of previous studies

on the association between brain structure and gene
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expression, which also reported orthogonal gradations of

brain organization and the associated genetic gradients

(Chen et al. 2013; Kremen et al. 2013). The underlying

physiological mechanism and functional significance of

the frequency-dependent ALFF patterns deserve further

investigations. It is interesting that the frequency-dependent

pattern of ICC is quite uniform across the brain and as

the frequency increased, its reliability increased alongside.

This observation illustrated that compared with the low

frequency bands, higher frequency bands might be more

suitable for detecting individual differences in ALFF. Most

of the previous studies have adopted ALFF of the lower

frequency bands (i.e., Slow-5 and Slow-4 or around 0.01

to 0.1 Hz) where their ICCs rarely met the reliability

requirement (ICC ≥ 0.8) of clinical applications. In

contrast, our findings suggest that both Slow-2 and Slow-

1 ALFF could be the usable and reliable marker of the

brain oscillations for these applications. It is noticed that the

reliability of Slow-1 ALFF is slightly lower than those of

Slow-2 ALFF in the short-term results, and this may be an

indication on the limited Slow-1 band here compared to its

theoretical range (around 0.6065 − 1.6487 Hz). Our results

further show that long-term test-retest reliability is worse

than short-term across all frequency bands. This indicates

that the intra-subject variation increase with scan duration.

In order to maintain the stability of data, it is necessary to

select an appropriate scan interval. While studies of the very

fast sampled fMRI signals such as HCP are sparse, it is quite

promising for future studies with multiple neuroimaging

modalities (e.g., Balduzzi et al. 2008, He et al. 2008) to

DREAM as an integrative tool across frequencies. An open

toolbox such as DREAM is essential for large-scale projects

inspired by the increasing practice of open sciences coming

with more and more fMRI and EEG datasets openly shared

as well as their applications (e.g., Zuo 2020).

Limitations and FutureWorks

Despite the advantages of DREAM presented in the paper,

some limitations should be noted. First, DREAM is based

on MATLAB, which is a commercial computing software.

In order to generalize the application of DREAM, a

standalone version will be developed. For now, a light

online version of DREAM based on Python has been

opened to public. The bandpass filter is highly amenable

to optimization: the individual columns of the matrix can

be parallelized for linear speedup, and the fft itself can be

offloaded onto a GPU if the data will fit into the GPU’s

memory. It may also be possible to reduce the complexity of

the bandpass to O(N ×T ) using the approach of (Pankovski

2016) in the future. Second, in the current version, limited

data formats are supported. More data formats will be added

in subsequent software updates.

Information Sharing Statement

The DREAM toolbox is fully open to the public by sharing

both the off-line version and a light online version using

Python. To ensure the reproducibility of our findings, all

the codes and head motion data for generating the figures

and other results in the present work are also shared via

DREAM and CCS website. Please credit both DREAM and

CCS work with their citations if you use our DREAM.

– Connectome Computation System: github.com/zuoxin

ian/CCS

– DREAM: github.com/zuoxinian/CCS/tree/master/H3/

DREAM

– Visualization Data in DREAM1 (GraphPad):

github.com/zuoxinian/CCS/blob/master/H3/DREAM/

DREAM1 demo.pzfx

– ANOVA Codes in DREAM1 (MATLAB):

github.com/zuoxinian/CCS/blob/master/H3/DREAM/

DREAM1 repANOVA.m
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