DREAMZ?2S: Deformable Regions Driven by an
Eulerian Accurate Minimization Method for
Image and Video Segmentation

Application to Face Detection in Color Video Sequences

Stéphanie Jehan-Besson!, Michel Barlaud!, and Gilles Aubert?

! Laboratoire 13S, CNRS-UNSA
2000, route des Lucioles 06903 Sophia Antipolis, France
{jehan,barlaud}@i3s.unice.fr
2 Laboratoire J.A. Dieudonné, CNRS-UNSA
Parc Valrose 06108 Nice Cedex 2, France
gaubert@math.unice.fr

Abstract. In this paper, we propose a general Eulerian framework for
region-based active contours named DREAM?S. We introduce a general
criterion including both region-based and boundary-based terms where
the information on a region is named “descriptor”. The originality of this
work is twofold. Firstly we propose to use shape optimization principles
to compute the evolution equation of the active contour that will make it
evolve as fast as possible towards a minimum of the criterion. Secondly,
we take into account the variation of the descriptors during the propa-
gation of the curve. Indeed, a descriptor is generally globally attached
to the region and thus “region-dependent”. This case arises for example
if the mean or the variance of a region are chosen as descriptors. We
show that the dependence of the descriptors with the region induces ad-
ditional terms in the evolution equation of the active contour that have
never been previously computed. DREAM?S gives an easy way to take
such a dependence into account and to compute the resulting additional
terms. Experimental results point out the importance of the additional
terms to reach a true minimum of the criterion and so to obtain accurate
results. The covariance matrix determinant appears to be a very relevant
tool for homogeneous color regions segmentation. As an example, it has
been successfully applied to face detection in real video sequences.

1 Introduction

Active contours are powerful tools for image and video segmentation. Since the
original work on snakes [I], an extensive research has been performed that leads
today to the use of “region-based active contours”. Originally, active contours
were boundary-based methods. Snakes [1], balloons [2] or geodesic active con-
tours [3] are driven towards the edges of an image. The evolution equation is
then computed from a criterion that only includes a local information on the
boundary of the object to segment.
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The key idea of region-based active contours, firstly proposed by [4IBI6l7],
and further developed by [RI9JI011I12]13], is to introduce a global information
on the different regions to segment, in addition to the boundary-based informa-
tion, to make the active contour evolve. However, it is not trivial to compute
the evolution equation of the active contour that will make it evolve towards a
minimum of a criterion including both region-based and boundary-based terms.

Recently, many papers have addressed this problem. Some of these works
do not compute the theoretical expression of the velocity vector of the active
contour but they choose the displacement that will make the criterion decrease
[719]. Other works propose the computation of the velocity vector by reducing
the whole problem to boundary integrals [6l8] or by using the level set method
[TO/TT]. They then use the Euler-Lagrange equations to compute the evolution
equation.

However, the information on the different regions, that we call here “descrip-
tor” of the corresponding region, is generally globally attached to the region.
Indeed this case arises for statistical descriptors such as the mean, the variance
or the histogram of the region. The main drawback of previous works on region-
based active contours is that they do not take into account this possible variation
of the descriptors to compute the evolution equation of the active contour.

We propose here a general Eulerian framework for region-based active con-
tours named DREAM?2S (Deformable Regions driven by an Eulerian Accurate
Minimization Method for Segmentation). The main contribution of our work is
to propose a theoretical framework based on shape optimization principles. With
such an approach, we can readily take into account the variation of the descrip-
tors that are globally attached to the evolving regions (named region-dependent
descriptors). We show that the variation of these region-dependent descriptors
during the evolution of the active contour induces additional terms in the evo-
lution equation of the active contour. These additional terms have never been
previously reported in the literature.

Some examples of unsupervised spatial segmentation using the variance of
the regions show the importance of the additional terms for the accuracy of
segmentation results.

For color images segmentation, we propose to use the covariance matrix deter-
minant which appears to be a very relevant tool for homogeneous color regions
segmentation. This tool is successfully applied to face detection on real video
sequences.

The Eulerian framework DREAM?2S is described in Sec.[2 This framework
is then applied to the unsupervised segmentation of homogeneous regions using
the covariance matrix determinant in Sec. Bl

2 Setting a General Framework for Region-Based Active
Contours

Here, we describe the equations addressing the issue of the segmentation of an
image I in two regions. An image I(x,y) is a function defined for (z,y) € 2 C
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IR?, where (2 is the image domain. The image domain is considered to be made
up of two parts: {2;, the region containing the objects to segment and 2,,; the
background region. Their common boundary is noted I" (see Fig.1).

Background Part

out

~ @

Fig. 1. The two regions of an image

We search for the partition of the image which minimizes the following criterion:

J(an; Qouty F) = // k(out) (Iv Y, Qout)dxdy
0

L

where k(") is named the “descriptor” of the background region, k(™) the “de-
scriptor” of the object region and k() the “descriptor” of the contour. A descrip-
tor is a function that measures the homogeneity of a region. Most of relevant
statistical descriptors depend themselves on the region (in that case they are
called "region-dependent descriptors”). This arises when statistical features of a
region are selected as region descriptors (for example the mean or the variance).

The purpose is then to make an active contour evolve towards a partition of
the image, (Q2out, 2in, '), that minimizes the criterion (IJ). We propose here a
new Eulerian proof for the computation of the evolution equation of the contour.
We compute the Eulerian derivative of the criterion by using shape optimization
principles. This method provides the advantage that the variation of region-
dependent descriptors with the evolution of the active contour can be readily
taken into account.

The computation of the evolution equation of the active contour is performed
in three main steps:

KO (2, y, Qi) dady + / KO, y)ds (1)
I

in

1. Introduction of a dynamical scheme,
2. Derivation of the criterion using shape optimization principles,
3. From the derivative, computation of the evolution equation.

This general framework can be applied straightforward to any descriptors.
This general framework has been notably applied to moving objects detection
in video sequences acquired either with a static [I4] or a mobile camera [15].
Descriptors may also be sequentially used to improve the final result as it has
been proposed in [16].
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2.1 Introduction of a Dynamical Scheme

We search for the two domains (2,,; and §2;, which minimize the criterion J
given by (). Since the set of all domains has not a structure of vectorial space,
we can not compute the derivative of the previous criterion according to domains.
Therefore, to compute an optimal solution, a dynamical scheme is introduced
where each domain becomes continuously dependent on an evolution parameter
7. Such a method has also been used in [I2/I3] using the distribution theory
but region-dependent descriptors have not be taken into account. To formalize
this idea, we may suppose that the evolution process is totally determined by
the existence of a family of applications T that transforms the initial domains
2;,(0) and £2,,,:(0) into the current domains $2;,(7) and 24,4 (7):

£2i(0) —> £2:(7) where ¢ = in or out .

o) — ()

Thus the regions evolve towards an optimal solution. The triplet

{0260t (7), 24 (1), I'(T)} must act as a minimizing sequence for J(2ut, 2in, ")
as 7 evolves. The functional J(§244:(7), £2:n(7), (7)) has to converge towards
the minimum value of J as 7 — oco. The criterion then becomes:

// out) T, Y, T dxder// (m) (z,y,7)dxdy + / k(b)(%y)ds (2)

Rout(T) Qin (1) ()

The functional J(£25u:(7), $2in(7), I'(7)) is noted J(7), and the descriptors
kG (2,5, $2;,(1)) and k("“t)( x,y, 20ut (1)) are respectively noted kU™ (x,y,7)
and k) (z,y, 7).

In contrast with other active contours approaches, the dynamical scheme is
here directly introduced in the criterion. With such a scheme, the introduction
of an active contour evolving with 7 is straightforward. Hence we consider that
I'(7) is modelled as an active contour that converges towards the final expected
segmentation. Let I'(0) be the initial curve defined by the user. We recall that
we search for I'(7) as a curve evolving according to the following PDE:

oI'(s, 1)

S =v  with [(0)=1Ip, (3)

where v is the velocity vector of the active contour and s may be the arc length
of the curve. The main problem lies in finding the velocity v from the criterion
(@ in order to get the fastest curve evolution towards the final segmentation.

2.2 Computation of the Derivative of the Criterion
In order to obtain the evolution equation, the criterion J(7) must be differen-

tiated with respect to 7. The integral bounds depend on 7 and the descriptors
k) () and k™) () may also depend on 7.
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Let us define the functional k(x,y,7) such that:

- k(OUt) (.’II, 77') if (.’II, ) S Qout(T)
k(z,y,7) = {k(m) (%yg’/ﬂ if (:c,ggj/) € Qin(r) W

The functional k(") () and k(") () are defined on the whole image domain f2.
Then, the criterion J(7) writes as:

T) = x T)ax (b)l' S = J1\T 2(7) .
(r) //Qu,y, )ddy+/m)k (r.y)ds = Ji(r) + To(r) . (5)

In order to compute the derivative of the region integral Ji(7), we first recall a
general theorem concerning the derivative of a time-dependent criterion.
Let us define {2;(7) as a region included into £2.

Theorem 1 Let k; be a smooth function on 2 x (0,T),
and let J(T ffg Iy (x,y,7)dxdy , then:

7_{]/ // / ]{ii(V-Nani)dS
2:(1) 37 802;(T)

where V' is the velocity of 082;(T) and Nag, is the unit inward normal to 082;(T).

The derivative of J with respect to 7 is the Eulerian derivative of J(£2;) in the
direction of V' whose computation is given in appendix A. The variation of J is
due to the variation of the functional k;(z,y, 7) and to the motion of the integral
domain (2;(7). As a corollary of Theorem 1, we get:

Corollary 1. Let us suppose that the domain (1) is made up of two parts,
Q2in(1) and 2,u:(T), separated by a moving interface I'(T) whose velocity is v.
The function k(xz,y,T) is supposed to be separately continuous in (2;,(T) and
Qout(T) but may be discontinuous across I'(t). We note kU and k) the
value of k in respectively $2,,(T) and 204t (7). Thus the derivative of J(T) writes

(r) = // o vy - | o K Noads + / [l Vs

where [[k]] represents the jump of k across I'(T): [[k]] = k() —k(™) N the unit
normal of I'() directed from 25u:(7) to 2:n(7), Nag the unit inward normal
to £2(1) and w the velocity vector of £2().

Proof: We can apply Theorem 1 to the domain §2;,(7) and to the domain
2out(7). Adding the two equations, we obtain the corollary.

It is now straightforward to get the derivative of the criterion Ji(7): we take
(1) = 2 the image domain (Fig.2). Then, by explicitly taking the discontinu-
ities into account thanks to the corollary, the derivative of J; (7') is given by:

8k(out)
J{(T):/[[k; des—/k:wNans+ //

r(r) Qin(T) Rout(T)
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Q,,® -
Noo
()
0Q

Fig. 2. The domains and the vectors involved in the derivation

Obviously, the second term of the derivative (@) is zero since the external bound-
ary 0f2 of the image is fixed. The derivative of Jo(7) is classical [3] and thus,
replacing [[k]] by its expression, we find the derivative of the whole criterion:

ak(in) 8k(0ut)
’ _
J'(1) = //QM(T) 57 drdy + //Qom(r) g dzdy (7)

+ / (kv — k) k0 4 VE®) . N) (v - N)ds
r(r)

where k(z,y,7) is the curvature of I'(x,y, 7).

In order to compute the velocity vector v, we have to make it appear in
the first two domain integrals of (7)) by expressing them as functions of the
velocity v. Here we take the general case where the descriptors may depend on
features globally attached to the region and so may depend on 7. We model each
descriptor as a combination of features globally attached to the evolving regions
Qin(T) or Qoyt(7):

K (. 7) = g (2,9, G (1), G5 (7)., G (1)

KO (g, m) = g, y, G (1), G50 (1), GIEOT) - (®)

. o) _ ) : — (i
where: G *//wj (x,y,7)dedy with (-) = (in) or (out)
02.(r)

Let first compute the derivative of k(") according to 7. We find:

km) Ly §glin) (in) , oGt
_ n (in) J
or = 6G§-m) (z,y, Gy (7), 05 Gp (7)) or (7). 9)

We have now to compute the derivative of G;m) according to 7. We apply the
Theorem [1] and we find:

J _ J _ (@) (o, .
5 = // 57 dxdy /wj (v-N)ds . (10)
I(r)

.Qi” (T)
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Replacing the derivatives of Gyn) by their expressions and computing the deriva-

tives of G\ in the same manner, we obtain the general expression for the
derivative of J(7):

J'(1) = / (k) — g _ kO g 4 VE® . N (v - N)ds

I(r)

N ZA(ZTL) / 'l,/)(ln) ’U N d8+ZA(01Lf) / ,l/}(ouf) ) s

I(r) I(r)
(in) (out)

+§A§i") // % dxdy+ZA<"““ // ¢ L dzdy  (11)

Rin(T) Rout(T)

where:

(m) = [f g™ 7y’G(m)( ),. ..,GI(,i")(T))dxdy

Ly et
ou Pl (out) ou ou
Al = [f ag(ww Ly, G (1), ., G (7)) dawdy

Rout 7’)

2.3 From the Derivative Towards the Evolution Equation of the
Active Contour

In order to deduce the velocity vector v of the active contour from the derivative
of the criterion, we have to make the velocity vector appear in the last two
domain integrals by expressing them as boundary integrals. This can easily be
done, in the same manner as it has been done for the functionals k(™ and
k(eut) since domain integrals can always be expressed as boundary integrals.
However, for simplicity, let us consider the cases where these last two integrals
are equal to zero, which happens for most region-dependent descriptors. In that
case, according to the inequality of Cauchy-Schwartz, the fastest decrease of J(7)
is obtained from (IIJ) by choosing v = F'IN. The following evolution equation is
obtained:

or(r)

o = [ KO — glewt) L0 g™ . N
-

p m
(in) , (in) (out) , (out)
+ AT = 3 AT TN (12)

j=1 j=1

We can notice that the dependence of the descriptors on 7, and so on the curve
evolution, induces additional terms in the evolution equation of the active con-
tour. The additional terms found in (IZ) have not been previously computed.
Thanks to these additional terms, we ensure the fastest evolution of the curve to-
wards a minimum of the criterion. These additional terms may also be computed
by reducing the whole problem to boundary-based terms and then computing the
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Gateaux derivative but the computation is much more difficult and less natural
since the region formulation is not kept.

In this general framework, we can model the active contour by using an
explicit parameterization (Lagrangian formulation) or an implicit one (Eulerian
formulation) to implement the evolution equation of the active contour. See
[17] and [I8] for an interesting comparison between the two methods. Another
interesting review on the different active contour methods is provided in [19].
Here, we use the level set method approach proposed by Osher and Sethian [20]
and further developed by Caselles et al [21].

2.4 Importance of the Additional Terms

Region-dependent descriptors based on the minimization of the variances of the
two considered regions are implemented for the segmentation of homogeneous
regions. We show that the additional terms found in ([Z) have to be considered
in order to make the active contour evolve towards a minimum of the criterion
and so to achieve the expected segmentation.

The intensity for greyscale images is represented by a function I : 2 ¢ IR? —
IR. We propose to minimize the variances of the two considered homogeneous
regions in order to segment them. The following descriptors are suggested:

KO = p(og,), kK =p(0f,) and &P =) (13)
where ¢(r) is a positive function of class C1(IR), A a positive constant and:

p(t) =+ [[ Idedy with V.= [[ dady
2.(1) 2.(7)

= v JJ (I —p.(7))dxdy
02.(7)

with - =1in or out .

This velocity vector is computed by replacing the terms of (Il) by their expres-
sions, with (-) = (in) or (out):

. : : < G\’
Mnx%>=¢nx%d%ﬂﬂ9v»=w®»

GV(r) = [f o @y, r)dady with ¢ (2,y,7) = (I(2,y) — u.())?
2.(7)

G() ff 1/)2 x,y,7)dxdy with 1/) (z,y,T)zl
02.(7)

Since the domain integrals of are equal to zero, we can directly
compute the velocity vector of the active contour from ([I2)) and we find:

PO PO
gl and 2%z
T T

P [o(03) — (0300) + A+ (02T — 1) — 02)

— @' (02,)((I = pout)* — 02,4) IN . (14)
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a. Initial contour b. Final contour c. Final contour
PDE (15) PDE (14)

Fig. 3. Figure a: The initial curve,
Figure b: The final contour obtained using the PDE (15) without the additional terms,
Figure c: The final contour obtained using the PDE (14) including the additional terms.

The single parameter we need to adjust is the smoothing parameter .

In order to evaluate the importance of the additional terms for the segmentation,
the active contour evolves through the PDE (4)), including the additional terms.
On the other hand, we also make it evolve with the following wrong evolution
equation that does not include the additional terms:

O _ p(o2,) ~ plo) + s IN . (15)

For the experiments, we take (1) = log(1+7) which gives ¢’(r) = 1/(1+47) and
we choose A = 10. We use a synthetic image made up of an homogeneous square
of intensity 120 on a background of intensity 160. A gaussian noise of variance 20
is added to this synthetic image. The initial contour is given in FigBla. The final
contour obtained using the PDE (4] is given in Fig. Blc, while the one obtained
using ([8) is given in Fig. Blb. We can remark that when the PDE includes the
additional terms, the square is well segmented, whereas when the PDE does not
include these additional terms we obtain a circle instead of the expected square.
The previous results show that it is of prime necessity to take the additional
terms into account in order to reach a true minimum of the criterion.

3 Segmentation of Homogeneous Regions Based on the
Covariance Matrix for Color Images: Application to
Face Detection in Video Sequences

This part deals with the segmentation of homogeneous regions in multispectral
images [22)23]24]. As an example, we show that the covariance matrix can be
a very powerful tool for segmentation of homogeneous color regions. In fact,
the determinant of the covariance matrix proves to be a relevant color region
homogeneity measurement [25]. Minimizing this quantity means that we want
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to decrease the complexity of a region [26]27]. This tool may be used for face
detection in image sequences.

The intensity of color images is represented by a function I : 2 ¢ R* — R?
where I = [I', 1% I°]T. By analogy with the study for greyscale images, we
propose to minimize the determinant of the covariance matrix of the considered
regions. Let us note X;,, and X,,; the covariance matrices of respectively §2;,,(7)
and 24,1 (7):

Y = o0%o%20% (16)

o =& [[ (I = p)(I7 — i dady

) 1!2.(7') )
pt =5 [[ I'(z,y)dzdy
02.(7)

=l

where: with - =1in or out .

We obviously have o’ = ¢7".
As a color region homogeneity measurement, a function of the covariance ma-
trix determinant is used as region descriptors. We choose the following set of

descriptors:
k) = d(det(Xoy)), kU™ = d(det(Z;,)) and kP = A (17)

where @(r) is a positive function of class C1(IR) and X a positive constant. Let
us now compute the evolution equation of the active contour by computing the
different terms of (1) [28]. We obtain the following evolution equation:

P — [0 det(5)) ~ P(det(Boue)) + A (18)
3
+ @ (det(Zin)) | Y (1F = pfy, )T = pif,) det(ME) (=1)
k=1
3
= (det(Zour)) | D (1" = s (' = pge) det (ML) (— 1)
ki=1

— 3det(X;,) P (det(Xin)) + 3det(Xpu) P’ (det(Xour)) | N .

The matrix M** is deduced from the covariance matrix X. by suppressing the
kt" row and the [*" column. The last four lines of the equation are the additional
terms coming from the variation of the descriptors with 7. As it has been pre-
viously proved for greyscale images, these terms have to be considered in order
to make the active contour converge towards a minimum of the criterion.

For the experiments, we take @(r) = log(1 + 7?) which gives @'(r) =
2r/(1 + r2). We choose A = 10. The color space selected is (Y, Cy, C,.), where
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1
£

a. Initial contour b. Iteration 500 c. Final contour

[H.- i

Final velocity

d. Initial velocity e. Iteration 500

Fig. 4. Visualization of the evolution of the contour {a,b,c} and the velocity {d,e,f}
(without the boundary-based term) for face segmentation using the covariance matrix.

(I' = Y) represents the luminance and (I? = C}) and (I® = C,.) represent the
two chrominances. We propose to use the descriptors based on the covariance
matrix to detect human faces in video sequences. This detection may be used
for video coding to encode selectively the human face. For a given compres-
sion ratio, the face can be transmitted with a higher rate to the detriment of the
background. this interesting property is valuable for videoconferences, where the
most important and most variable information is located on the face [29].

In order to segment an homogeneous region, we start with an initial curve
inside the region of interest. The curve is then supposed to expand until it reaches
the boundary of the homogeneous region.

The algorithm using the covariance matrix is performed on an image of the
video sequence ”akiyo” in order to detect speaker’s face. The evolution of the
curve is given in Fig[ a,b,c. The contour evolves and finally converges on the
boundaries of the face (Figllc). The face is then accurately segmented. The
amplitude of the velocity is also given in Fig[d] d,e,f and we can observe that the
face region is well separated from other regions. The amplitude of the velocity
is normalized between 0 and 255.

In order to track the face on the whole sequence, we first initialize the first
frame by a circle inside the face to track. Then, we make the active contour
evolve using ([I8). The final contour of the previous image is then chosen as an
initial curve for the next image. The results for the sequence “akiyo” are given
in Fighl (A = 10) and, for the sequence “erik” are given in Figldl (A = 20). The
face is well detected and tracked on the whole sequence.
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Fig. 5. Detection of the face on the video sequence “akiyo” (final contour and extracted
face).

Fig. 6. Detection of the face on the video sequence “erik” (final contour and extracted
face).

4 Conclusion

In this paper, we propose a new Eulerian minimization method to compute the
velocity vector of an active contour that ensures its fastest evolution towards
a minimum of a criterion including both region-based and boundary-based
terms. With our approach, we can readily take into account the case of region-
dependent descriptors that are globally attached to the evolving regions and
so that vary during the propagation of the curve. We show that the variation
of these descriptors induces additional terms in the evolution equation of the
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active contour. As far as homogeneous color regions segmentation is concerned,
we take the covariance matrix determinant as a descriptor. This statistical
region-dependent descriptor appears to be a very relevant tool and so it has
been successfully applied for face detection in video sequences.

Appendix A.
The issue is to differentiate the following domain functional:

// (z,y, £2;)dzdy

Since the set of all domains has not a structure of vectorial space, let us make
the regions evolve through a family of transformations (T'(7,-)),>o smooth and
bijective. For a point p = [z, ], we note:

p(t) =T(7,p) with T(0,p) = p, and £2;(7) = T(r, £2;) with T(0, ;) =

Let us then define the velocity vectors field V' such that V (7, p(7)) = aT —(7,p).
As we are interested in small deformations for the computation of the derlvatlve
we expand the transformation according to first order Taylor formula:

oT oT
T(ﬂp)=T(0,p)+75(07p)=p+TV(p) where V(p)ZE(pr)

We then introduce three main definitions:
1. The Eulerian derivative of J({2;) (in the direction of V'):
J($2:(1)) — J({2:)

4J(%, V) = limy - (19)
2. The material derivative of k;(p, £2;):
i £2; — k:(p. 02:
k (p7 Qz, V) — lim k? (p + TV(p)a i + TV(p)) kl(p, ,L) (20)
T—0 T
3. The shape derivative of k;(p, £2;):
K\(p, 2, V) = lim ki(p, £2i + 7V (p)) — ki(p, £2:) (1)

T—0 T

Obviously, by expanding 20) according to first order Taylor formula, we have:
ki(p, 2, V) = K}(p, 2;, V) + Vki(p, ;) - V (p) (22)

We then compute more precisely the Eulerian derivative of J(£2;). We have:

Jmm))T— 1[//9( dp/ il 2)dp

(23)
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In the first integral, we make the variable change p(7) = p + 7V (p) where
V(p) = [Vi(z,9). Va(z, )], which gives:

/], s 2= [[ Vo) 0 rVo)ldet s oy

where J;(p) is the following Jacobian matrix:

1+ 752 8V1 7_88V1
JT(p) = < 6V2 yBVQ
oy

TS 1+7

and so, we have: det J,(p) = 1 + 7div(V (p)) + 72 det(VV (p)).

Then we obtain lim,_, % = div(V(p)). The equation (23) then be-
comes:

J((r) (%) _ 1 // i(p+ TV (p), Qi + TV (p))|det - (p)|dp

T T

-/ (2] (24)

We can suppose that det(J-(p)) # 0 V7 Vp. We may then take det(.J,(p)) > 0,
and we develop the expression (24)) as following by adding a term in the second
integral while suppressing the same term in the first integral:

J(£2:(1)) — J(£2)

T

=0 +1, (25)

where:

n=|[  (2) det(Sr(p) =1 ) (27)

T

Let us make 7 tend towards 0. Using (22) and Definitions (Z0J2T), we get:
lim 1, = // (0, 20, V)dp = // (0. 20, V) dp+/ Vhi(p, ) - V(p)dp
T—

lim I, = // 5 )div(V)dp
T7—0

And so for the Eulerian derivative, we find:

J($2,V) = // i(p, $2:,V) dp+/ (Vki(p, $2;) - V(p) + ki(p, £2:)div(V (p)))dp

_ //!Z K. (p, 2i, V)dp + //Q div(k; V')dp (28)
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When applying the Green-Riemann theorem in (28]), we finally obtain:

dJ(QZ-,V):// k;(p,Qi,V)dp—/ ki(V - Nog,)ds (29)
2; 082;

where Npg, is the unit inward normal to 02;. The Eulerian derivative is noted
J'(7) in the paper and the shape derivative k. is noted %.

Remark: For simplicity, we choose the following variation in the proof: p(r) =
p+ 7V (p). The proof may also be developed with more general variations such
as: p(1) = f(p,7) with f a smooth function and f(-,7) bijective.
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