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Abstract

Background: Modeling dynamic regulatory networks is a major challenge since much of the protein-DNA

interaction data available is static. The Dynamic Regulatory Events Miner (DREM) uses a Hidden Markov Model-based

approach to integrate this static interaction data with time series gene expression leading to models that can

determine when transcription factors (TFs) activate genes and what genes they regulate. DREM has been used

successfully in diverse areas of biological research. However, several issues were not addressed by the original version.

Results: DREM 2.0 is a comprehensive software for reconstructing dynamic regulatory networks that supports

interactive graphical or batch mode. With version 2.0 a set of new features that are unique in comparison with other

softwares are introduced. First, we provide static interaction data for additional species. Second, DREM 2.0 now accepts

continuous binding values and we added a new method to utilize TF expression levels when searching for dynamic

models. Third, we added support for discriminative motif discovery, which is particularly powerful for species with

limited experimental interaction data. Finally, we improved the visualization to support the new features. Combined,

these changes improve the ability of DREM 2.0 to accurately recover dynamic regulatory networks and make it much

easier to use it for analyzing such networks in several species with varying degrees of interaction information.

Conclusions: DREM 2.0 provides a unique framework for constructing and visualizing dynamic regulatory networks.

DREM 2.0 can be downloaded from: www.sb.cs.cmu.edu/drem.

Keywords: Systems biology, Gene regulatory networks, Times series expression data, Dynamic networks, ChIP-chip,

ChIP-Seq

Background
Modeling gene regulatory networks (GRNs) is a key

challenge when studying development and disease pro-

gression. These networks are dynamic with different

(overlapping) sets of transcription factors activating genes

at different points in time or developmental stages. Recon-

structing the dynamics of these networks is a non-trivial

task that requires the integration of datasets from different

types of genome-wide assays.
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Several methods were proposed for reconstructing

GRNs (see the following reviews for a general overview:

[1-3]). These methods often combine expression and

protein-DNA interaction data to recover the underlying

networks. However, most methods to date focused on

reconstructing static networks and the resulting models

did not provide any temporal information. In this paper

we focus on the reconstruction of dynamic GRNs using

time-series expression data. Such data is prevalent for

several species, mostly from microarray studies [4,5] and

more recently using RNA-Seq methods [6-8].

While several studies measure time series expression

data, the available protein-DNA interaction data is almost

always static (either from sequence motifs or from ChIP-

chip or ChIP-Seq experiments). This creates a major
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computational challenge when attempting to integrate

these dynamic and static datasets.

Several methods were suggested for clustering time

series expression data [9-11], or for constructing dynamic

networks with regression-based techniques that rely on

only the temporal expression data [12]. While these

approaches led to some success, as we show in Results,

methods that can utilize both the temporal expression

data and the static interaction data can improve upon the

expression-only methods.

A number of methods have been suggested for address-

ing these issues, though most of them were targeted at

specific input datasets and did not offer any software to

support their general use. For example, Luscombe et al.

[13] created a dynamic network by overlaying TFs reg-

ulating differentially expressed genes for different time

points. Lu et al. [14] created a 2D visualization for different

dynamic measurements, including time series expression,

histone modification, and Pol2-occupancy data using the

GATE software [15] although no combined model is pre-

sented. Bromberg et al. measure TF activation as a time

series and derive pathways that explain activated TFs by

integrating subnetworks from PPI networks [16]. Baugh

et al. relies on the expression data of transcription factors

to identify representatives regulating early development of

C. elegans embryos [17].

A different way of formulating the problem is to decom-

pose the gene expression data into TF activity and TF

affinity values for each expressed gene as suggested by

Network Component Analysis [18]. From the matrix of

TF affinity values one can construct a dynamic network

with connections for each time point [19]. There have

been many extensions to this idea with different underly-

ing mathematical models, including ordinary differential

equations [20] and Factor analysis [21]. Note however

that such regression-based methods do not really take

time into account. If one randomly reorders the temporal

columns (exchanging, for example the second time point

with the fourth etc.) these models will still result in the

same network.

One of the first approaches to construct networks that

change over time while still incorporating the ordering

of time series data was suggested by Friedman [22] using

dynamic Bayesian networks (DBNs). A DBN is a set of

directed networks, one for each time point. Although gen-

eral learning of DBNs is NP-hard there exist conditions

where these networks can be learned optimally [23,24].

However, these methods do not scale to hundreds of

regulators.

To provide a general method that can be widely applied

to reconstructing dynamic regulatory networks, [25] pre-

sented DREM, a method that integrates times series and

static data using an Input-Output Hidden Markov Model

(IOHMM). DREM learns a dynamic GRN by identifying

bifurcation points, places in the time series where a group

of co-expressed genes begins to diverge. These points are

annotated with the TFs controlling the split leading to a

combined dynamic model. Since its release 5 years ago the

DREM software has been used for modeling a wide range

of GRNs for example stress response in yeast [25] and E.

coli [26], development in fly by the modENCODE consor-

tium [8], stem cell differentiation in mice [27] and disease

progression in human [28].

While DREM has been successfully used for multiple

species, so far each group using it had to obtain its own

protein-DNA interaction data. Since such data is often

dispersed among several databases, websites and publica-

tions, this step was a major hurdle to using DREM. Other

features not supported in the original DREM version

included: the integration of motif discovery, the ability to

utilize dynamic ChIP binding data [29,30] and TF expres-

sion data, and visualization of these new data types. In this

paper we discuss a new version of DREM, termed DREM

2.0, that addresses all these limitations. As we show, by

addressing these issues DREM 2.0 improves upon both

methods that do not integrate static information in the

analysis of dynamic data and the previous version of

DREM which lacked the above features.

Implementation
DREM 2.0 is implemented entirely in Java and will work

with any operating system supporting Java 1.5 or later.

Portions of the interface of DREM 2.0 are implemented

using third party libraries, the Java Piccolo toolkit from the

University of Maryland [31] and the Batik toolkit for svg

export of network images [32]. DREM 2.0 also supports

batch mode for automated execution. DREM 2.0 makes

use of external Gene Ontology (GO) and gene annotation

files. DREM 2.0 downloads these files directly from the

GO website [33].

Time-specific binding of regulators

The underlying Input-Output Hidden Markov Model

learning can now accommodate dynamic input data for

each time point in the following way. The transition

probabilities for the IOHMM are derived from a logistic

regression classifier that uses the protein-DNA interac-

tion data as supervised input and utilizes them to classify

genes into diverging paths at a split node in the model.

In the new version the nodes in the input layer can be

dynamic and thus the function can depend on input from

the specific time point it is associated with. See Figure 1

for an illustration.

Results
Using DREM 2.0

Users input their time series expression data by using the

graphical user interface (GUI) (see Figure 2). DREM 2.0
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Figure 1 Possible IOHMM topologies in DREM 2.0. The basic topology for a DREM 2.0 IOHMM is shown. The hidden states represent the network

nodes (in blue) that we are interested in. The observations (black nodes) are the gene expression ratios which are given to the model, these are

dynamic and dependent on the time point. The protein-DNA interaction data (green nodes) are used as supervised input data to construct the

network. (a) In the original DREM formulation only one static input node is connected to all hidden nodes. In DREM 2.0 the nodes in the input layer

can be dynamic and dependent on the time point with a topology either fully dynamic (b) or a mix of static and dynamic input (c).

can transform the data and combine time point repeats.

Next, users select a protein-DNA interaction data set for

the species they are working with. DREM 2.0 includes

protein-DNA interaction data for several species (see

Table 1 for a full list). After selecting the species and

interactions the user can set various learning parameters

or use the default settings (see Additional file 1). Once

the data is entered the user selects the ‘execute’ button

which runs DREM 2.0 on the input data and results in

the dynamic network learned by DREM 2.0 (for example,

the one displayed in Figure 3). DREM 2.0 supports down-

stream analysis using external databases (for example GO

as shown in Figure 4) and software (for example, DECOD

and STAMP, as shown in Figure 5, see also below).

DREM 2.0 Analysis of asbestos induction

As a running example to illustrate the new features, we

used the human protein-DNA data now available with

DREM 2.0 to analyze an expression experiment studying

the effects of asbestos on human lung adenocarcinoma

cells (A549) [39] (Figure 3). Preprocessing and parameters

for the analysis are described below. DREM 2.0 success-

fully predicts enrichment of TFs known to be relevant in

asbestos exposure, e.g., TFs from the FOS family [39], that

are shown to be up-regulated at the 6 hour time point

(blue IDs Figure 3).

Parameters and datasets for the asbestos analysis

The time series data for asbestos treatment of human

lung cancer cells [39] was downloaded from GEO (record:

GSE6013). The dataset contains gene expression data

measured with Affymetrix human gene expression arrays

1, 6, 24, 48 hours, and 7 days after asbestos exposure

and a control time series without exposure. The array

data was normalized with quantile normalization using

RMAExpress (version 1.0.5) with default parameters [40].

Log2 ratios of exposed versus control were computed

as input to DREM 2.0. The human binding predictions

(top 100 threshold, see Additional file 2) were used as

the regulatory dataset for DREM 2.0. For the DREM 2.0

analysis the following options were not set to default

values: (i) genes in the time course were discarded if

“Minimum Absolute Expression Change” was smaller

than 0.5, (ii) “incorporate expression in regulator data”

was activated for transcription factors with “Expression

scaling weight” set to 1. For the annotation of split nodes

(Figure 3) the “Path significance conditional on Split”

enrichment p-value in the GUI was set to be ≤ 5·10−5.

For the motif analysis DECOD [41] version 1.01 was

downloaded and connected with DREM 2.0 using the GUI

interface. 8512 human promoter sequences (-499,+100 bp

relative to transcription start site) were downloaded from

the EPD promoter database (from the website: Last update

11Nov. 2009) [42]. DECODwas run to search formotifs of

length 7 with the exact mode and STAMP [43] motif sim-

ilarity search was conducted against TRANSFAC (version

11.3) using default parameters [44]. The reported motif

(below) is the 3rdmotif found by DECODwith a similarity

E-value of 3.93e-12 returned by STAMP.

Supporting additional species

DREM 2.0 utilizes time series expression data (from a

specific condition, for example the asbestos data used

in this paper) and static interaction data which is

often condition-independent (for example, DNA binding

motifs). The original version of DREM [25] only provided

such static data for S. cerevisiae, which meant that users

studying other species had to collect their own static data

as well as the condition-specific time series data. Over the

years we have included protein-DNA interaction data for

E. coli and human, but several other species were still not

supported, limiting DREM’s usage.We have now collected

static data for a number of additional species (M. muscu-

lus, D. melanogaster, A. thaliana) and have added addi-

tional high throughput protein-DNA interaction datasets

for human as well. With these additions DREM 2.0 now
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Figure 2 DREM 2.0 input dialog. Top: Input dialog for the DREM 2.0 software. Bottom: Selected tab for the Options window, shows the dialog for

the activation of TF expression level scaling, see text for details.

Table 1 Statistics for protein-DNA datasets supplied with DREM 2.0

Species #TFs #genes Protein-DNA interactions Type Reference

S. cerevisiae 205 6,230 22,167 ChIP-Chip, conservation [34,35]

E.coli 124 1,763 3,520 curated + computational [26]

D. melanogaster 77 12,504 158,558 ChIP-Chip,ChIP-Seq [8]

M.musculus 336 16,641 468,319 computational prediction,supplement [36]

H. sapiens 127 19,755 954,377 ChIP-Seq [37]

H. sapiens 349 17,848 514,925 computational prediction [36]

A. thaliana 68 8,132 11,354 diverse experimental evidence [38]

Number of protein-DNA interactions for TFs and target genes for the six supplied species H. sapiens, A. thaliana, andM.musculus, S. cerevisiae, and E.coli since DREM

2.0. Higher-confidence subsets of these interactions are also provided for some species. More details can be found in Additional file 2.



Schulz et al. BMC Systems Biology 2012, 6:104 Page 5 of 9

http://www.biomedcentral.com/1752-0509/6/104

Figure 3 Analysis of asbestos time series data set. DREM 2.0 analysis of expression data from human A549 lung cells treated with asbestos using

predicted protein-DNA interactions. (left) Input data supplied to DREM 2.0. (right) The model learned for the 5 time points. TFs (IDs in boxes) are

predicted to regulate genes diverging at green split nodes. TFs in blue and red are up- and down-regulated, respectively.

supports most of the well-studied organisms facilitating

much wider use of the method. Table 1 lists the current

species supported, the number of interactions we have for

each species and where these interactions were obtained.

More details regarding these datasets can be found in

Additional file 2.

Utilizing the expression levels of TFs

The original version of DREM did not use any informa-

tion regarding the expression levels of the TFs predicted

to regulate split nodes. The underlying reason for this was

the fact that many TFs are post-transcriptionally regu-

lated and relying on their expression to determine activity

Figure 4 GO enrichment analysis of DREM paths. DREM facilitates downstream analysis of the regulatory network. As an example, DREM

supports GO term enrichment analysis on paths of the model. (left) shows all genes that are assigned to the path with highest expression ratios at

the 1 hour time point. (right) After clicking a path in the model, a GO enrichment analysis can be performed by DREM for all genes on the path.
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Figure 5 DECODmotif search in DREM 2.0. (left) DECOD motif search was performed for one node (‘+’ sign). (middle) After clicking the node, the

DREM split table opens which shows the enrichment of TFs on gene sets divided by the split. As this split has three outgoing paths, DECOD can be

run in three different ways. Here, we compared genes in the highest path against the other two paths (Tab “High vs. Others”) by clicking the Run

DECOD button (circled). (right) one of the TF motifs found by DECOD using EPD promoter sequences. Its most similar match in TRANSFAC according

to STAMP highly resembles the TF binding motif of HEB/TCF12, see text for details.

may lead to missing important TFs. In the new version,

we still maintain the ability to identify TFs that are only

post-transcriptionally regulated. However, we have added

a new computational module that allows the method to

utilize expression information for those TFs that are tran-

scriptionally regulated. For each TF, its binding prior is

elevated based on the TF’s expression level using a logistic

function. Thus, active TFs have a stronger prior of being

selected as regulators by DREM 2.0 (see Additional file 2).

We have also changed the visualization in DREM 2.0 to

highlight such factors. In Figure 3, which is a screenshot

from DREM 2.0, active TFs are highlighted in blue and

repressed TFs in red.

Finding DNAmotifs at split nodes with DECOD

During learning DREM assigns genes to paths in the net-

work model and uses split nodes (light green nodes in

Figure 3) to represent sets of genes that change their

expression between consecutive time points. TFs are

assigned to split nodes allowing DREM to infer their time

of activation. When the protein-DNA interaction data is

unable to explain some of the split nodes (i.e. no TF is

assigned to that split), it could mean that the interac-

tion data is incomplete. To still allow the identification

of such TFs, we integrated with DREM 2.0 the discrim-

inative motif finder DECOD [41]. The user can search

for discriminative DNA motifs between DNA, e.g. pro-

moter, sequences of genes assigned to diverging paths

emerging out of any split node. The method uses two sets

(genes going up and down from the split) to discrimina-

tively search for motifs. The predicted DNA motifs can

be matched against known motif databases using STAMP

[43]. To highlight the utility of this new feature in DREM

2.0 we used it on the asbestos data described above. As can

be seen, not all split nodes had been assigned in Figure 3.

We have thus used the new DECOD feature to identify

TFs for one of these splits (‘+’ sign in Figure 5). A database

motif search with STAMP reveals a motif with signifi-

cant similarity to HEB/TCF12. TCF12 was indeed missing

among significant TFs in the split table (Figure 5, middle),

perhaps because of incomplete data. However, a DNA

inversion close to the TCF12 gene was recently found in

lung cancer patients [45] indicating that this protein may

be playing a role in regulating gene response in the lung.

In order to test the ability of DECOD to recover TF

binding motifs at DREM split nodes for the case where

no TF-gene interaction data is available, we have con-

ducted the following analysis. A DREM model using the

asbestos expression data was built without using the TF-

gene interaction data. Then, EPD promoter sequences for

genes at the 6 hour split node where used for motif search

with DECOD. We searched for motifs of length 6-8 and

selected all those with significant matches in TRANSFAC

(using the STAMP motif comparison tool). After group-

ing TFs from the same family, 10 of the 24 TFs identified

in the original run of DREM for this split were found in

the DECOD derived set (see Additional file 2 for details).

Supporting continuous and dynamic binding data

The original version of DREM only supported three bind-

ing states (activator/ repressor/ no regulation) interaction

data. DREM 2.0 now supports continuous binding values.

These can be derived from p-values of ChIP-Seq call-

ing procedures or from computational affinity predictions

[46]. Thus, in the new version the same regulator may

have a different binding value for each gene. The classifier

weighs a target with a large binding value higher than tar-

gets with a lower binding value. A plausible way to turn
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ChIP binding p-values into DREM 2.0 binding values is to

set b = − log p-value. These continuous binding values

can then be passed to DREM 2.0.

In addition, DREM 2.0 also supports temporal binding

data. While most interaction data is still static, dynamic

binding data is becoming available. Recent studies have

shown that TFs may alter their binding behavior depend-

ing on the time point [29,30] necessitating methods that

can utilize such information when available. In its origi-

nal implementation DREM could only use static protein-

DNA interaction data when learning logistic regression

classifiers for the transition probabilities in the IOHMM.

We have now revised this allowing the learning algorithm

to support dynamically changing protein-DNA interac-

tion data (see Implementation). For each time point an

independent data set can be passed to the logistic regres-

sion classifier. Since dynamic binding data is often only

available for a (small) subset of TFs, DREM 2.0 sup-

ports a joint static-dynamic input format for protein-DNA

interactions.

The ability to incorporate temporal binding data allows

DREM to reduce false positive assignments by only

assigning TFs that are active at that time point (based

on the time points binding data). This in turn can both

help identify co-regulators for which only computational

predictions exists and also lead to the identification of dif-

ferent waves of transcriptional regulation, where the same

TFs activate different sets of genes at different time points.

Comparison to previous methods

We used the asbestos data to compare some of the new

features in DREM 2.0 to other methods and to the pre-

vious version of DREM. First, to compare DREM 2.0 to

methods that only use one type of data (clustering the

expression data) we ran DREM2.0 without using the static

protein-DNA interaction information. This is similar to

several clustering methods that have been suggested for

time series data [9,10]. To compare to the original version

of DREM we also reran the asbestos data using TF-DNA

interaction data but without using the TF expression

information. As a performance metric we used the num-

ber of enrichedGO terms, a common comparison strategy

[11,47]. In Figure 6 the significant GO terms after multi-

ple testing correction are compared for the threemethods.

Leveraging the TF-expression leads to the highest number

of significant GO terms (Figure 6A) and the identification

mRNA exp mRNA exp  + TF

mRNA exp  + TF exp

7 

3 3 

37 11 

6 

76 

A 

B 

Figure 6 Comparison of different approaches. GO analysis of path enrichment in dynamic networks constructed by DREM 2.0 for the asbestos

data set. The enrichment of GO terms for all paths, after Bonferroni multiple testing correction, is depicted. Three different learning scenarios are

compared: construction without any TF input just using the mRNA expression data (mRNA exp), construction using protein-DNA predicted binding

events (mRNA exp+TF), and construction using protein-DNA predicted binding events and the new TF-expression scaling method (mRNA exp+TF

exp). A) Comparison of the enriched GO terms with corrected p-value below 0.05 for each method shown as a Venn diagram. B) Display of GO

terms that are uniquely identified by each method. Leveraging the TF-expression level improves the GRN construction in addition to using the

protein-DNA interaction data.
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of additional relevant functions that are not identified by

the other two variants, including the GO terms cellu-

lar response to stress and positive regulation of cell death

(Figure 6B).

Discussion and conclusions
While several methods can be used to reconstruct GRNs

using time series expression data, most such methods

either rely only on the expression data itself or result in

static networks that do not consider the ordering of the

time points. DREM provides not only an alternative to

these methods but also a rich GUI and as such, has been

used by several groups in multiple species.

Although here we used both treatment and control time

series, DREM can also be used with only the treatment

time series by taking the log fold change w.r.t. time point

0, see [25] for an example.

The new version eases the application to several species

by directly supplying protein-DNA interaction data and

incorporating de-novo discriminative motif discovery. In

addition we have made other improvements including the

ability to utilize and view the expression levels of the

TFs and to use dynamic protein-DNA interaction data.

Combined, we believe that these improvements will make

DREM 2.0 a more widely used software package for the

reconstruction of dynamic GRNs.

Availability and requirements
• Project name: DREM
• Project homepage: www.sb.cs.cmu.edu/drem
• Operating system(s): Platform independent
• Other requirements: Java 1.5 or higher
• License: Free to academics/non-profit
• Any restrictions to use by non-academics: License

needed

Additional files

Additional file 1: DREM 2.0 Manual. The Manual for using the DREM 2.0

software with details of all parameters and the different dialogs in the GUI.

Additional file 2: Supplementary Methods. Additional description for

DREM 2.0 for TF expression level scaling, data collection for the

protein-DNA binding data sets and the analysis with DECOD on an

unannotated split node.
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