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We define and study the Burnside quotient Green ring of a Mackey functor, intro-

duced in our 1990 MSRI preprint. Some refinements of Dress induction theory

are presented, together with applications to computation results for K -theory

and L-theory of finite and infinite groups.

1. Introduction

Induction theory began with Artin and Brauer’s work in representation theory, was

continued by Swan [1970] and Lam [1968] for K -theory, and was put in its most

abstract and elegant setting by Green [1971] and Dress [1973; 1975]. The theory

sets up a convenient framework for computing the value of a Mackey functor on

some finite group G, given suitable generation results for a Green ring which acts

on the Mackey functor. (See [tom Dieck 1987; Lindner 1976; Thévenaz 1990;

Thévenaz and Webb 1995] for some subsequent developments.)

The main examples in this theory are (i) the Swan Green ring SW (G,Z) [Swan

1970], which leads to the Brauer–Berman–Witt induction theorem for represen-

tations of finite groups, and computation results for Quillen K -theory Kn(RG),
and (ii) the Dress Green ring GU (G,Z) [Dress 1975], which leads to computation

results for the oriented surgery obstruction groups Ln(ZG) of Wall [1976].

In Section 2 we define the Burnside quotient Green ring AM for a Mackey func-

tor M : D(G)→ Ab, where D(G) denotes the category of finite G-sets, and Ab
the category of abelian groups. This Green ring AM is the smallest quotient of

the Burnside ring which is a Green ring, and still acts on the Mackey functor. As

defined, it has many convenient naturality properties, and generation results for

AM will lead as usual to computation results for M. We define the concept of a

Dress generating set X for a Green ring in Definition 3.5. The main result (see

Theorem 3.6) is:
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Theorem A. A finite G-set X is a Dress generating set for a Green ring G if and
only if it is a Dress generating set for the Burnside quotient Green ring AG.

The naturality of the Burnside quotient Green rings can now be used to obtain

computability results for sub- or quotient Mackey functors (see Theorem 3.8). We

also point out a useful refinement of Dress induction in Theorem 3.10. We use

the Burnside quotient Green ring in Section 5 to study additive functors out of

the categories RG-Morita defined in our paper of 1990, henceforth abbreviated

[HTW 1990]; here R is a commutative ring with unit. The main examples of

such functors include K -theory, Hochschild homology and cyclic homology [HTW

1990, 1.A.12]. We define a bifunctor d :D(G)→ RG-Morita in 5.4 and prove the

following computability result (see Theorem 5.5):

Theorem B. Any additive functor F : RG-Morita→ Ab gives a Mackey functor
on D(G) by composition with d : D(G)→ RG-Morita. Any such Mackey functor
is hyperelementary computable.

This is a refinement of [Oliver 1988, 11.2], and Theorem A provides the key new

ingredient in the proof. The extra generality is useful for studying functors such as

the Dade group and the units in the Burnside ring [Bouc 2007; Bouc 2008].

The Burnside quotient Green ring has been applied to study the permutation

representations of finite groups in [Hambleton and Taylor 1999], free actions of

finite groups on products of spheres in [Hambleton 2006], and to the computation

of Bass nilgroups in [Hambleton and Lück 2007]. This theory was surveyed and

used in [Hambleton and Taylor 2000]. Our results also apply to the computation of

K and L-theory for infinite groups, based on an idea of Farrell and Hsiang [1981].

We introduce Mackey prefunctors and pseudo-Mackey functors in Section 6.

A Mackey prefunctor is a just prebifunctor D(G)→ Ab, and a pseudo-Mackey

functor is a Mackey prefunctor which admits a finite filtration by Mackey functors.

Such structures have been observed in a number of different contexts: the main

examples include the higher Whitehead groups Whn(ZG), and the structure set of

a compact manifold in surgery theory [Wall 1999, Chapter 9].

It turns out that the general scheme of Dress induction theory can be extended

to pseudo-Mackey functors as well. In Section 7, we combine this idea with

the Burnside quotient Green ring to study additive functors out of the category

(RG, ω)-Morita [HTW 1990, 1C]. We have the corresponding computability result

(see Theorem 7.2):

Theorem C. Let F : (RG, ω)-Morita → Ab be an additive functor. Then the
composite M= F ◦ d : D(G)→Ab is a Mackey prefunctor. Moreover:

(i) The 2-adic completion of M is 2-hyperelementary computable.

(ii) If M is a Mackey functor, then M is hyperelementary computable.
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As an application, we conclude from part (i) that the surgery obstruction groups

Ln(ZG, ω), with arbitrary orientation character ω : G → {±1}, are 2-hyperele-

mentary computable after 2-adic completion (see Example 7.3 for the meaning of

computability in this setting). This computability result was certainly expected

to be true, but the argument presented here seems to be the first actual proof in

the nonoriented case. In the oriented case, where ω is trivial, part (ii) applies to

L-theory and the computability is just [Dress 1975, Theorem 1]. For nontrivial

ω, the surgery obstruction group Ln(ZG, ω) is a Mackey functor if and only if it

has exponent two (see [Taylor 1973], and see [Wall 1976, 5.2.5] for an example

where the L-groups do not have exponent two). In Lemma 7.1 we give a general

necessary and sufficient condition on F for part (ii) to apply to M.

2. Dress induction

We will first recall some definitions Dress used in his formulation of induction

theory [Dress 1975, page 301].

2A. Mackey functors. Let G be a finite group, and let D(G) denote the category

whose objects are finite, left G-sets and whose morphisms are G-maps. A Mackey
functor is a bifunctor M= (M∗,M

∗) :D(G)→Ab, where Ab denotes the category

of abelian groups and groups homomorphisms, such that M∗(S)=M
∗(S) for each

object S ∈ D(G), and the following two properties hold:

(M1) For any pullback diagram of finite G-sets

S
9 //

8

��

S1

ϕ

��
S2

ψ // T

the induced maps give an commutative diagram

M(S)
9M // M(S1)

M(S2)
ψM //

8M

OO

M(T )

ϕM

OO

Here we denote the covariant maps by ψM and the contravariant maps by

ϕM.

(M2) The embeddings of S1 and S2 into the disjoint union S1 ⊔ S2 define an iso-

morphism M
∗(S1 ⊔ S2)→M

∗(S1)⊕M
∗(S2). Let M(∅)= 0.

The property (M1) is the usual double coset formula, and (M2) gives additivity.
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We remark that for any bifunctor satisfying (M1), the composition

M∗(S1)⊕M∗(S2) → M∗(S1 ⊔ S2)=M
∗(S1 ⊔ S2)

→ M
∗(S1)⊕M

∗(M2)=M∗(S1)⊕M∗(S2)

is just the identity matrix. It follows that any subbifunctor of a Mackey functor is

Mackey.

Definition 2.1. If M and N are Mackey functors, then a homomorphism M→ N

of Mackey functors is a natural transformation of bifunctors 2 :M→N such that

for each object S ∈ D(G) the function 2S :M(S)→ N(S) is a homomorphism of

abelian groups. It is easy to check that the kernel, ker2, the image, Im2, and the

cokernel of 2 are all sub- or quotient Mackey functors of M or N.

2B. Pairings and Green functors. If M, N, and L are Mackey functors, then a

pairing is a family of bilinear maps

M(S)×N(S)→ L(S)

indexed by the objects of D(G), such that for any G-map ϕ : S→ T the following

formulas hold:

ϕL(x · y)= ϕM(x) · ϕN(y) for x ∈M(T ), y ∈ N(T ),

x · ϕN(y)= ϕL(ϕ
M(x) · y) for x ∈M(T ), y ∈ N(S),

ϕM(x) · y = ϕL(x · ϕ
N (y)) for x ∈M(S), y ∈ N(T ).

A Green ring is a Mackey functor G together with a pairing G×G→ G, and a

collection of elements {1S ∈G(S)} such that the pairing defines an associative ring

structure on each G(S) with unit 1S , and ϕG(1T )= 1S for every G-map ϕ : S→ T .

A homomorphism of Green rings 2 : G→ K is a homomorphism of Mackey

functors such that for each object S ∈ D(G) the function 2S : G(S)→ K(S) is a

unital ring homomorphism. If 2S is injective for each object S ∈ D(G), we say

that G is a sub-Green ring of K. If 2S is surjective for each object S ∈D(G), then

we say that K is a quotient Green ring of G. Similarly, we define subquotient Green

rings.

If M is a Mackey functor, then M is a Green module over a Green ring G if there

exists a pairing G×M→M such that M(S) becomes a left G(S)-module from the

pairing, and 1S · x = x for all x ∈M(S).

Example 2.2. If G→ K is a homomorphism of Green rings, then K is a Green

module over G under the pairing G×K→ K induced by the homomorphism.
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2C. The Burnside ring. For any left G-set S, we let DS(G) denote the category

with objects (X, f ), where X is a left G-set and f : X → S is a G-map. The

morphisms F : (X1, f1)→ (X2, f2) are G-maps F : X1→ X2 such that f2 ◦ F= f1.

We define a bifunctor

A : D(G)→Ab

by setting A(S)= K0(DS(G)). If ϕ : S→ T is a G-map, then ϕA :A(S)→A(T ) is

the map induced on K0 by the composition (X, f ) 7→ (X, ϕ◦ f ). The contravariant

map ϕA :A(T )→A(S) is induced by the pullback construction applied to

S
ϕ
−→ T

f
←− Y,

where (Y, f ) is an object in DT (G). Conditions (M1) and (M2) are easy to check,

and A is a Mackey functor. There is also a pairing A×A→A defined by pullback:

let (X1, f1) and (X2, f2) represent elements of A(S), and form the pullback

X1
f1
−→ S

f2
←− X2

considered as a G-set over S. This object in DS(G) represents the product, and

each A(S) becomes an associative ring with unit element represented by id : S→ S.

The resulting Green ring is called the Burnside ring. Dress also remarks that the

Burnside ring is the “universal” Green ring, since it acts on any Mackey functor

M. The required pairing A×M→ M is defined by pairing an element of A(S)
represented by a G-set (X, f ) over S, and an element x ∈M(S), to get fM( f M(x))∈
M(S). It is not hard to check that M(S) is a unital A(S)-module under this bilinear

pairing, so M is a Green module over A.

We remark that a homomorphism M→ N of Mackey functors is compatible

with the A-module action, so gives a map of A-Green modules.

If G is a Green ring, the same checks show that G is an A-algebra, implying in

particular that a · (x · y)= (a · x) · y for all a ∈A(S) and all x, y ∈ G(S). It follows

that the map ι : A→ G defined by a 7→ a · 1S , for all a ∈ A(S), is a (unital) ring

homomorphism. Indeed

(a · 1S) · (b · 1S)= a · (1S · (b · 1S))= a · (b · 1S)= (a · b) · 1S

for all a, b ∈ A(S), since G(S) is a A(S)-algebra. It is easy to check from the

pairing formulas that ι :A→ G is also a homomorphism of Green rings.

2D. Ideals and quotient Green rings. There is a natural notion of a (left) Green
ideal in a Green ring G, namely a subbifunctor I ⊂ G such that I (S) ⊂ G(S) is

a left ideal in the ring G(S). Similarly, we have right ideals and two-sided ideals.

If I ⊂ G is a two-sided Green ideal, then the quotient functor G/I , defined by

S 7→ G(S)/I (S), is a Green ring under the quotient pairing inherited from G.
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If G×M→ M is a Green module structure on a Mackey functor M, then we

define the Green ideal IM ⊂ G as the subbifunctor of G with

IM(S)=
{
a ∈ G(S)

∣∣ ϕG(a) · y = 0, ψG(a) · z = 0
}

for all ϕ : S→ T , ψ : U → S, and all y ∈ M(T ), z ∈ M(U ). Note that elements

of IM(S) satisfy additional conditions (both “up” and “down”) beyond just acting

trivially on M(S).
The pairing formulas show directly that IM(S) is a two-sided ideal in the ring

G(S), for every finite G-set S. We will check that IM is a subbifunctor of G by

looking at the operations induced by G-maps µ : V → S and λ : S → W on an

arbitrary element a ∈ IM(S).
First we consider λG(a) ∈ G(W ). Let ϕ : W → T and ψ : U → W be any

G-maps. We have

ϕG(λG(a)) · y = (ϕ ◦ λ)G(a) · y = 0

by definition of IM(S). Let

X
λ̃ //

ψ̃
��

U

ψ

��
S

λ // W

be the pullback square, and from (M1) we get

ψG(λG(a)) · z = λ̃G(ψ̃
G(a)) · z = λ̃G(ψ̃

G(a) · λ̃M(z))= 0

so λG(a) ∈ IM(W ).

Similarly, we must check that µG(a) ∈ IM(V ). Let ϕ : V → T and ψ :U → V
be G-maps, and note that

ϕG(µ
G(a)) · y = ϕM(µ

G(a) · ϕM(y))= 0

and ψG(µG(a)) · z = (µ ◦ψ)G(a) · z = 0.

We have now checked that IM ⊂ G is a subbifunctor, and therefore IM is a

Mackey functor and a two-sided Green ideal in G. We define the quotient Green
ring GM=G/IM to be the bifunctor whose value on objects is given by the quotient

rings GM(S)= G(S)/IM(S). It is straightforward to check that GM is a Green ring,

since the formulas above show that the pairing G × G→ G restricts to pairings

IM×G→ IM and G× IM→ IM of Mackey functors. By construction, M is also a

Green module over GM.

Definition 2.3. Let M be a Mackey functor. The Burnside quotient Green ring of

M is the Green ring AM := A/IM. Let ιM : A→ AM denote the epimorphism of

Green rings given by the natural quotient map.
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Remark 2.4. For G a Green ring, the map ι :A→ G defined above by a 7→ a · 1S

factors through ιG : A→ AG, and we obtain a canonical induced homomorphism

of Green rings AG→G. The next result shows that in fact AG= Im ι, which gives a

quick alternate definition of AG. (For this observation, compare [Dress 1973, page

207; Oliver 1988, page 253; Hambleton and Taylor 2000, page 711; Bak 1995,

page 236].)

Lemma 2.5. Let G be a Green ring. Then the canonical homomorphism of Green
rings, AG→ G is injective.

Proof. For each G-set S, the natural transformation of bifunctors in the statement

maps AG(S) → G(S) by the ring homomorphism a 7→ a · 1S , where a ∈ A(S)
and 1S ∈ G(S) is the unit. If a · 1S = 0, and ϕ : S → T , ψ : U → S are G-

maps, then it follows as above that ϕA(a) · 1T = 0 and ψA(a) · 1U = 0, Therefore

{a ∈ A(S) | a · 1S = 0} ⊂ IG(S), and the ring homomorphism AG(S)→ G(S) is

injective. �

We will explore Definition 2.3 by considering the Burnside quotient Green rings

for filtrations of Mackey functors.

Definition 2.6. If M and N are Mackey functors, we say that M is a subfunctor of

N (respectively N is a quotient functor of M) if there is a natural transformation

2 : M→ N such that for each object S ∈ D(G) the function 2S : M(S)→ N(S)
is an injective (respectively, surjective) homomorphism of abelian groups. We

say that M is a subquotient of N if there is a finite sequence of Mackey functors

M = L0,L1, . . . ,Lr = N such that each Li is either a subfunctor or a quotient

functor of Li+1, for i = 0, . . . , r −1. Note that the relation “M is a subquotient of

N” is a transitive relation.

Example 2.7. If2 :G→K is a homomorphism of Green rings, then we can regard

K as a Green module over G. Furthermore, ker2= IK⊂G, and there is an induced

homomorphism GK→ K of Green rings. If K is a quotient Green ring of G, then

K= GK = G/IK.

Lemma 2.8. Let G be a Green ring and M a Green module over G. Then the Burn-
side quotient Green ring AM is a quotient of AG, and isomorphic to a subquotient
of G.

Proof. Since AG is a sub-Green ring of G, we just need to check that AM is a

quotient Green ring of AG under the natural projection from A. This is equivalent

to the statement that IG ⊂ IM. Let a ∈ IG(S), and consider G-maps ϕ : S→ T and

ψ :U → S. For any y ∈M(T ),

ϕA(a) · y = ϕA(a) · (1T · y)= (ϕA(a) · 1T ) · y = 0,
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since 1T ∈ G(T ). Similarly, for any z ∈M(U ),

ψA(a) · z = ψA(a) · 1U · z = 0,

and we see that a ∈ IM(S). �

Lemma 2.9. Let M and N be Mackey functors, with M a subquotient of N. Then
there is a surjective homomorphism of Green rings f :AN→AM such that f ◦ ιN=

ιM.

Proof. We will establish this result for subfunctors and quotient functors, and note

that the general subquotient case follows by an inductive argument on the length

of the chain joining M to N.

Suppose first that2 :M→N is a natural transformation, with2S :M(S)→N(S)
injective for all finite G-sets S. Let a ∈ IN(S) and let ϕ : S→ T , ψ : U → S be

G-maps. Then for any y ∈ M(T ), 2T (ϕA(a) · y) = ϕA(a) · (2T (y)) = 0 since

2 is a A-Green module map. Similarly, for any z ∈ M(U ), 2U (ψ
A(a) · z) =

ψA(a) · (2U (z)) = 0. Since 2T and 2U are injective, it follows that a ∈ IM(S),
and IN ⊂ IM so that AN maps onto AM.

Next suppose that2 :N→M is a natural transformation, with2S :N(S)→M(S)
surjective for all finite G-sets S. If a ∈ IN(S), we check that ϕA(a) · y = 0 and

ψA(a) · z = 0, for all y ∈M(T ) and all z ∈M(U ), by using the surjectivity of 2T

and 2U , and the compatibility of 2 with the A-module structures on M and N.

Therefore IN ⊂ IM. �

In general, if M is a sub-Mackey functor of N it is not true that IM⊂ IN, so there

is no natural map in the other direction from AM onto AN, but here is one more

situation that works.

We say that M is a full lattice in N if there is a natural transformation 2 :M→

N such that the induced maps 2∗S : Hom(N(S),N(S))→ Hom(M(S),N(S)) are

injective for all finite G-sets S. Note that M need not be a sub-Mackey functor of

N for this condition to hold.

Lemma 2.10. Let M and N be Mackey functors, with M be a full lattice in N. Then
there exists a surjective homomorphism of Green rings g : AM → AN such that
g ◦ ιM = ιN . If M is also a subfunctor of N, then g is an isomorphism and the
inverse to the f :AN→AM described previously.

Proof. Let ϕ : S→ T be a G-map. For each a ∈A(S) we can consider the action

map y 7→ϕA(a)·y as an element of Hom(N(T ),N(T )). However if a ∈ IM(a), this

homomorphism is zero on the image of 2T , and therefore it vanishes identically.

Similarly, we check that ψA(a) ·z= 0 for all z ∈N(U ) and any G-map ψ :U→ S.

Therefore IM ⊂ IN. �
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2E. Amitsur complexes. Dress proves computation results for Mackey functors

via the contractibility of certain chain complexes. Let X , Y be finite G-sets,

and define a semisimplicial set Am(X, Y ) inductively. Let Am0(X, Y ) = Y and

Amr (X, Y )= X × Amr−1(X, Y ) for r ≥ 1. There are G-maps

dr
i : Amr (X, Y )→ Amr−1(X, Y )

for 0≤ i < r , defined by setting dr
0 as the projection

X × Amr−1(X, Y )→ Amr−1(X, Y ),

and for i > 0 by dr
i = 1X × dr−1

i−1 .

Definition 2.11. Let M be a Mackey functor. For given finite G-sets X , Y , the

Amitsur complex M
(

Am(X, Y )
)

is the chain bicomplex whose chain group in di-

mension r is M
(

Amr (X, Y )
)
, with boundary operators ∂r =

∑
(−1)i [dr

i ]M and

δr =
∑
(−1)i [dr

i ]
M for r ≥ 0. and zero otherwise.

This construction has certain naturality properties.

Lemma 2.12. Let M be a Mackey functor. The Amitsur complex gives a bifunctor

M(Am(_ , _)) : D(G)×D(G)→ Chain(Ab)

where Chain(Ab) denotes the category of chain complexes of abelian groups.

For any Mackey functor M, and any finite G-set S, let MS denote the Mackey

functor defined by MS(T ) = M(S× T ), for any finite G-set T . There are natural

transformations and2M

S :M→MS and2S
M
:MS→M of Mackey functors induced

by the projection maps S× T → T . Dress says that M is S-injective (respectively

S-projective) if 2M

S is split-injective (respectively 2S
M

is split surjective).

Lemma 2.13 [Dress 1975, Proposition 1.1′]. A Mackey functor M is S-injective if
and only if it is S-projective.

Proof. Suppose that M is S-projective, so that2S
M

is split-injective. Let8 :M→MS

be a natural transformation such that 2S
M
◦8= I dM (the identity natural transfor-

mation on M). If 1 : S→ S× S denotes the diagonal map and p : S× T → T the

second factor projection, we notice that

S× T
1×1
−−→ S× S× T

1×p
−−→ S× T

is just the identity map on S× T . It follows that

2S
M(T ) ◦ (1× 1)M ◦8S×T ◦2

M(T )
S = I dM(T )

for any finite G-set T . One can check that the formula

8̃(T ) :=2S
M(T ) ◦ (1× 1)M ◦8S×T
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defines a natural transformation of bifunctors splitting 2M

S and hence M is S-

injective. The converse is similar. �

Dress now proves that, for any finite G-set Y and whenever M is S-injective or

S-projective, both Amitsur complexes (M∗(Am(S, Y ), ∂) and (M∗(Am(S, Y ), δ)
are contractible (we say M is S-computable). In particular, for Y = • there are

exact sequences

. . .
∂3 // M(S× S)

∂2 // M(S)
∂1 // M( •) // 0

0 // M( •)
δ1 // M(S)

δ2 // M(S× S)
δ3 // . . .

which exhibit M( •) as a limit of induction or restriction maps respectively.

Here is the main theorem of Dress induction theory:

Proposition 2.14 [Dress 1975, Proposition 1.2]. Let G be a Green ring and S be a
finite G-set. Then the following conditions are equivalent:

(1) The map ϕG :G(S)→G( •) associated to the projection ϕ : S→ • is surjective.

(2) G is S-injective.

(3) All G-modules are S-injective.

This result focuses attention on the task of finding a suitable Green ring which acts

on M, and then checking property (i). We remark that the Burnside ring A acts on

any Mackey functor, but A is S-injective only if • ⊂ S. Hence the Burnside ring

itself has no useful induction properties.

3. Dress generating sets

In the classical Mackey setting of G-functors given by Green [1971], computation

is expressed in terms of families. A family of subgroups F of G is a collection of

subgroups closed under conjugation and taking subgroups. For any finite G-set X
let F(X) denote the family generated by the isotropy subgroups of X . For example,

the family F( •)= {All}. Conversely, given a family F of subgroups, we can form

the disjoint union X (F) of G-sets G/H , one for each conjugacy class of maximal

elements in F, under the partial ordering from subgroup inclusion. For example,

X ({All})= • . We say that a family of subgroups F contracts a Mackey functor M

if and only if M is X (F)-projective or X (F)-injective.

We have seen that a good strategy for computing a Mackey functor M is to study

the Green rings acting on M. We will apply this strategy to the Burnside quotient

Green ring AM of M.

Definition 3.1. Let G be a Green ring. A finite G-set X is a generating set for G if

the natural map G(X)→G( •) is surjective (equivalently, if 1 • ∈ Im{G(X)→G( •)}).
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By [Dress 1975, Proposition 1.2], X is a generating set for G if and only if G is X -

injective or X -projective. It is not true in general that a generating set for a Green

ring G is also a generating set for the sub-Green ring AG. To obtain generation for

AG it is usually necessary to enlarge the generating set.

For H a finite group and p a prime, let

O p(H)=
⋂
{H0 ⊳ H | H/H0 is a p-group}

Notice that O p(H) is a characteristic subgroup of p-power index in H , and

O p((O p(H)
)
= O p(H).

Definition 3.2. Let F be a family of subgroups of G and p a prime. Then hyperp-F

is the family consisting of all subgroups H in G such that O p(H) ∈ F. If S is a

G-set, then hyperp-S is the corresponding G-set to hyperp-F(S). This construction

is due to Dress [1975, page 307].

It is easy to check that hyperp-F is closed under taking subgroups and conjugation,

so we obtain a family of subgroups. By construction, there is a G-map X →
hyperp-X for any X and hyperp-hyperp-X =hyperp-X . One of Dress’s main results

is the following:

Theorem 3.3 [Dress 1973, page 207]. Let M be a Mackey functor. For any prime
p and for any finite G-set Y , let K(Y ) = ker

(
M( •)⊗ Z(p) → M(Y )⊗ Z(p)

)
and

I(Y )= Im
(
M(hyperp-Y )⊗Z(p)→M( •)⊗Z(p)

)
. Then M( •)⊗Z(p)=K(Y )+I(Y ).

If Y is a finite G-set, we will use the notation 〈Y 〉 for the equivalence class of Y in

the category D(G). One useful consequence is:

Lemma 3.4. Let G0 be a sub-Green ring of G1. For any prime p, and any finite
G-set Y with 〈Y 〉 = 〈hyperp-Y 〉, the natural map G0(Y )⊗Z(p)→ G0( •)⊗Z(p) is
surjective if and only if G1(Y )⊗Z(p)→ G1( •)⊗Z(p) is surjective.

Proof. For any Green ring G and any finite G-set Y , the image of G(Y )⊗Z(p) in

G( •)⊗ Z(p) is an ideal. Hence either map is onto if and only if 1Gi ( • ) is in the

image. Since 1G0( • ) goes to 1G1( • ), this proves the first implication.

For the converse, the surjectivity of G1(Y )⊗Z(p)→G1( •)⊗Z(p) implies that the

Amitsur complex is contractible for the restriction maps induced by the transfor-

mation Y → • . In particular, G1( •)⊗Z(p)→ G1(Y )⊗Z(p) is injective. Therefore

G0( •)⊗Z(p)→G0(Y )⊗Z(p) is injective, and from Theorem 3.3 we conclude that

G0(hyperp-Y )⊗Z(p)→ G0( •)⊗Z(p) is surjective. �

Suppose that G is a Green ring which acts on a Mackey functor M. For many

applications of induction theory, the “best” Green ring for M is the Burnside quo-
tient Green ring AG. This is a Green ring which acts on M, and by construction

AG is a sub-Green ring of G. In particular, the natural map AG→G is an injection.
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Definition 3.5. A finite G-set X is a Dress generating set for a Green ring G,

provided that G(hyperp-X)⊗Z(p)→ G( •)⊗Z(p) is surjective for each prime p.

By Theorem 3.3, any finite G-set X such that the natural map G( •)→ G(X) is

injective is a Dress generating set for G. Notice that a Dress generating set for G is

also a Dress generating set for any quotient Green ring of G. The following result

(Theorem A) is the main step in handling sub-Green rings.

Theorem 3.6. A finite G-set X is a Dress generating set for a Green ring G if and
only if it is a Dress generating set for the Burnside quotient Green ring AG.

Proof. We apply the result above to Y = hyperp-X , for each prime p, and note that

AG is a sub-Green ring of G. �

The Burnside quotient Green ring can be used to compute Mackey functors ob-

tained by subquotients.

Definition 3.7. A finite G-set X is a Dress generating set for a Mackey functor M,

provided that X is a Dress generating set for the Burnside quotient Green ring AM

of M.

This is consistent with our previous Definition 3.5 for a Green ring.

Theorem 3.8. Let G be a Green ring and M, N Mackey functors.

(i) If M is a G-module and X is a Dress generating set for G, then X is a Dress
generating set for M.

(ii) If N is a subquotient of M and X is a Dress generating set for M, then X is a
Dress generating set for N.

(iii) If M is a full lattice in N and X is a Dress generating set for M, then X is a
Dress generating set for N.

Proof. Under the first assumption, AM is a subquotient of G. In the other parts, AN

is a quotient of AM. �

We can translate this into a computability statement as follows:

Corollary 3.9. Let p be a prime and G be a Green ring. Suppose that F is a
hyperp-closed family of subgroups of G. Then G⊗ Z(p) is F-computable if and
only if AG⊗Z(p) is F-computable.

The advantage of AG over G is that AG acts on Mackey functors which are sub-

functors or quotient functors of M but G does not in general. For example, G never

acts on AG unless they are equal. We next point out another good feature of the

Burnside quotient Green ring.
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Theorem 3.10 [Hambleton 2006, Theorem 1.8]. Suppose that G is a Green ring
which acts on a Mackey functor M, and F is a hyperp-closed family of subgroups
of G. If G⊗Z(p) is F-computable, then every x ∈M(G)⊗Z(p) can be written as

x =
∑

H∈F

aH IndG
H

(
ResH

G (x)
)

for some coefficients aH ∈ Z(p), where the aH are the same for all x.

Proof. Since G ⊗ Z(p) is F-computable, we know that AG ⊗ Z(p) is also F-

computable. Therefore, we can write 1 =
∑

K∈F
bK IndG

K (yK ) for some yK ∈

AG(K )⊗Z(p) and bK ∈ Z(p). For any x ∈M(G)⊗Z(p) we now have the formula

x = 1 · x =
∑

K∈F

bK IndG
K

(
yK ·ResK

G (x)
)
.

But each yK ∈ AG(K )⊗ Z(p) can be represented by a sum
∑

cK H [K/H ], with

cK H ∈ Z(p), under the surjection A(K )→AG(K ). Therefore

x =
∑

K∈F
bK

∑
H⊆K cK H IndG

K

(
[K/H ] ·ResK

G (x)
)

=
∑

K∈F
bK

∑
H⊆K cK H IndG

K

(
IndK

H

(
ResH

K

(
ResK

G (x)
)))

=
∑

K∈F
bK

∑
H⊆K cK H IndG

H

(
ResH

G (x)
)

We now define aH =
∑

K∈F
bK cK H , and the formula becomes

x =
∑

H∈F

aH IndG
H

(
ResH

G (x)
)
. �

Example 3.11 (Representation theory). Recall that a p-(hyper)elementary group is

a (semi)direct product C⋊P , where P is a p-group and C is cyclic of order prime to

p. A Dress generating set for a Green ring G need not be a generating set for G. For

example, let E denote the finite G-set, E=
∐

G/H , where we have one H for each

p-elementary subgroup of G. It is known that E is a generating set for the complex

representation ring RC(G), but not in general for the rational representation ring

RQ(G). On the other hand, complex representations are detected by characters, so

any G-set with isotropy containing the cyclic family is a Dress generating set for

RC(G), or for the sub-Green ring RQ(G) by Theorem 3.8 (ii). It follows that the

hyperelementary family H gives a generating set XH for RQ(G). This implies the

Brauer–Berman–Witt induction theorem for rational representations.

Example 3.12 (The Swan ring). The Swan ring is one of the main examples of

Green rings in the classical setting of induction theory [Swan 1970]. For any finite

group, let SW (G,Z) denote the Grothendieck group of isomorphism classes of
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finitely-generated left ZG-modules, with [L] = [L ′] + [L ′′] whenever there is a

short exact sequence

0→ L ′→ L→ L ′′→ 0

of such ZG-modules. The operation L⊗Z L ′ gives a ring structure on this Grothen-

dieck group, so we obtain a commutative ring. The usual induction and restriction

operations for such modules give the Swan ring the structure of a Mackey functor.

We let

SWG : D(G)→Ab

denote the Green ring (in the sense of Dress) defined by SWG(G/H) := SW (H,Z),

and extended to D(G) by additivity. Since SW (G,Z) is hyperelementary com-

putable by Swan’s induction theorem [Dress 1973, page 211], we see that any

Mackey functor on which this Green ring acts is hyperelementary computable.

It follows that the Burnside quotient Green ring of the Swan ring, denoted ASW ,

also has the hyperelementary set XH as a Dress generating set (or more precisely,

any G-set whose isotropy contains the cyclic family is a Dress generating set).

In this case, ASW (G/H) ⊂ SWG(G/H) is the subring P(H,Z) ⊂ SW (H,Z)

generated by the permutation modules Z[H/K ], for all subgroups K ⊆ H .

4. Computation techniques

Dress generating sets can also be used to compute exact sequences of Mackey

functors or filtrations of Mackey functors by subfunctors. We say that

M0
a
−→M1

b
−→M2

is an exact sequence of Mackey functors if a and b are homomorphisms of Mackey

functors, such that the sequence M0(S)→M1(S)→M2(S) is exact for each finite

G-set S. We define long exact sequences in a similar way.

Proposition 4.1. Suppose that M0 → M1 → M2 is an exact sequence of Mackey
functors. Then X is a Dress generating set for M1 whenever X is a Dress generat-
ing set for M0 and M2.

Proof. We may assume that M0→M1 is injective, and that M1→M2 is surjective,

and the projections from A induce a natural transformation θ :AM1
→AM0

⊕AM2
of

Green rings. By exactness, Iθ (S) := ker θS is a nilpotent ideal (of nilpotence index

2). Let ĀM1
= AM1

/Iθ denote the quotient Mackey functor. Since this Mackey

functor is mapped injectively by θ into AM0
⊕AM2

, X is a Dress generating set for

ĀM1
. It follows that ĀM1

(hyperp-X)⊗Z(p)→ĀM1
( •)⊗Z(p) is surjective for every

prime p. But an element in AM1
( •)⊗Z(p) hitting 1 • ∈ Ā( •)⊗Z(p) has the form

1+u, where u ∈ Iθ ( •)⊗Z(p). Since u2=0, 1+u is invertible and (1+u)−1=1−u.

If pX : X → • denotes the projection map, and (pX )∗(a) = 1+ u, then we have
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(pX )∗
(
(pX )

∗(1 • − u) · a
)
= (1 • − u) · (pX )∗(a) = 1 • and hence X is a Dress

generating set for AM1
. �

Remark 4.2. In the proof of Proposition 4.1, we have shown for each prime p,

there exists an element a ∈ A(hyperp-X)⊗Z(p) such that a 7→ 1 • in each of the

Burnside quotient Green rings AMi ( •) ⊗ Z(p), for i = 0, 1, 2. The same argu-

ment extends by induction to finite filtrations of a Mackey functor by sub-Mackey

functors.

Corollary 4.3. Let 0 = N0 ⊂ · · · ⊂ Nr =M be a filtration of a Mackey functor by
sub-Mackey functors. Then X is a Dress generating set for M if and only if X is a
Dress generating set for each quotient Ni/Ni−1, for 1≤ i ≤ r .

A finite length chain complex of Mackey functors is a sequence (Ni , ∂i ) of Mackey

functors Ni , 0≤ i ≤ r , and natural transformations ∂i :Ni→Ni−1, 1≤ i ≤ r , such

that (N(S), ∂∗) is a chain complexes of abelian groups for each finite G-set S. A

chain complex N of Mackey functors has homology groups Hi (N), 0 ≤ i ≤ r ,

which are subquotient Mackey functors of Ni .

Corollary 4.4. Suppose that N is a finite length chain complex of Mackey functors.
If X is a Dress generating set for each Ni , 0≤ i ≤ r , then X is a Dress generating
set for each of the homology Mackey functors Hi (N), 0≤ i ≤ r .

Another useful construction is completion.

Theorem 4.5. Let M be a Mackey functor, and let F denote a (possibly infinite)

filtration

M= F0 ⊇ F1 ⊇ · · · ⊇ Fr ⊇ · · ·

of M by sub-Mackey functors. A finite G-set X is a Dress generating set for
M̂F= lim

←−
M/Fr if and only if X is a Dress generating set for each quotient Mackey

functor Fr−1/Fr , r ≥ 1.

Proof. Since each Fr−1/Fr is a subquotient of M̂F, the necessity follows from

the results above. For sufficiency, we first note by Corollary 4.3 that X is Dress

generating set for each quotient M/Fr . It is enough to prove that X generates

the inverse limit lim
←−

AM/Fr of the Burnside quotient Green rings for the sequence

{M/Fr }. Suppose that X is a Dress generating set for each AM/Fr , r ≥ 1, and set

Y = hyperp-X . If {ar } is a sequence of elements in AM/Fr (Y ) hitting 1r
• , we can

use the contractibility of the Y -Amitsur complex for AM/Fr+1
inductively, to adjust

each ar+1 by an element of AM/Fr+1
(Y × Y ), so that ar+1 7→ ar . This gives us

an element in the inverse limit lim
←−

AM/Fr (Y ) hitting 1 • ∈ lim
←−

AM/Fr ( •) := G( •),

and hence the Green ring G acts on M̂F with X as a Dress generating set. Since

AG ։ A
M̂F

is surjective, it follows that M̂F has X as a Dress generating set. �
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Example 4.6. Here is an important special case. Let G be a Green ring acting on a

Mackey functor M. If I⊂G is a Green ideal, we may filter M by the subbifunctors

Fr = I
r
M and then M̂F is the I-adic completion of M.

In particular, for a given Mackey functor M we could take I=〈IM, 2〉, and then

M̂I is just the 2-adic completion of the Mackey functor M. Note that if M(X) is

finitely generated, then M̂I(X)∼=M(X)⊗ Ẑ2.

5. Mackey functors and RG-Morita

To prove Theorem B we need to define the bifunctor d : D(G) → RG-Morita

used in its statement. This involves some definitions and elementary properties

of categories with bisets as morphisms, which are well-known to the experts. We

include this material for the reader’s convenience.

In [HTW 1990, 1.A.4] we introduced the category RG-Morita whose basic ob-

jects are finite groups H isomorphic to some subquotient of G, and whose mor-

phisms were defined by a Grothendieck group construction on the isomorphism

classes of finite H2-H1 bisets X , for which the order of the left stabilizer

H2
I (x)= {h ∈ H2 | hx = x}

is a unit in R, for all x ∈ X . Here R is a commutative ring with unit. We set

X ∼ X ′ if R X is isomorphic to R X ′ as RH2-RH1 bimodules. The balanced product

X×H2
Y of an H3-H2 biset X and an H2-H1 biset Y is a H3-H1 biset. This defines

the composition for morphisms. The Add-construction [MacLane 1971, page 194]

is then applied to complete the definition. Many functors arising in algebraic K -

theory and topology are actually functors out of RG-Morita, so it is of interest to

recognize when these are Mackey functors.

To relate Mackey functors and RG-Morita, we will need the G-Burnside cate-

gory, A(G), whose objects are subgroups H ⊂ G, and where HomA(G)(H1, H2) is

the Grothendieck construction applied to the isomorphism classes of finite bifree

H2-H1 bisets (meaning both left and right actions are free). Because of the Groth-

endieck group construction, A(G) is an Ab–category, the morphism sets are abelian

groups and the compositions are bilinear [MacLane 1971, I.8, page 28]. Let

u : A(G)→ A • (G)

denote the associated universal free additive category, and the universal inclusion

[MacLane 1971, VII.2, problem 6, page 194].

The morphisms in A(G) are defined by the Grothendieck group construction

with addition operation the disjoint union of bisets. By convention, the empty biset

∅ represents the zero element. Composition comes from the balanced product:

H3
X H2
◦ H2

X H1
= (H3

X H2
)×H2

(H2
X H1

).
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The reader should check that this is well–defined on isomorphism classes of bisets

and “bilinear” in that

(
H3

XH2
⊔ H3

YH2

)
◦ H2

XH1
∼=

(
H3

XH2
◦ H2

XH1

)
⊔

(
H3

YH2
◦ H2

XH1

)
,

with a similar formula for disjoint union on the right. The morphisms in A • (G)
are matrices of morphisms in A(G).

Definition 5.1. We define a contravariant involution τ : A(G) → A(G), by the

identity on objects, and on morphisms it is the map induced on the Grothendieck

construction by the function which takes the finite bifree H2 -H1 biset H2
X H1

to

the finite bifree H1 -H2 biset H1
X H2

which is X as a set and h1 · x ·h2 is defined to

be h−1
2 xh−1

1 .

The reader needs to check that isomorphic bisets are isomorphic after reversing

the order, and should also check that the transpose conjugate of a disjoint union

is isomorphic to the disjoint union of the conjugate transposes of the pieces. This

means that τ is a functor which induces a homomorphism of Hom–sets. It is clearly

an involution, not just up to natural equivalence. Since τ is a homomorphism on

Hom-sets, it induces an additive contravariant involution τ • : A • (G)→ A • (G),
called conjugate transpose, which commutes with the functor u. By definition, τ •

acts on a matrix of morphisms by applying τ to each entry, and then transposing

the matrix. There is a functor

a : A • (G)→ RG-Morita

given by the inclusion on objects and morphisms (but the equivalence relation on

morphisms is different in RG-Morita).

There is a functor A • (G)→ R-Morita, called the R-group ring functor, where

R-Morita has objects R-algebras and morphisms defined by stable isomorphism

classes of bimodules [HTW 1990, 1.A.1]. This functor factors through RG-Morita:

it sends H 7→ RH on objects, and X 7→ R X on morphisms.

We will define the following diagram of categories and functors:

(5.2)

A • (G)

a

��

R-group ring

''
D(G)

d //

j

88

RG-Morita // R-Morita

To complete the definition of the functors in this diagram, we need to introduce

another category. Let D∗(G) denote the category whose objects are pairs (X,b),

consisting of a finite G-space X and an ordered collection b= (b1, . . . , bn) of base-

points, one for each G-orbit of X . The morphisms are the G-maps (not necessarily
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base-point preserving). There is a functor

µ : D∗(G)→ D(G)

defined by forgetting the base-points. Since every object of D(G) is isomorphic to

the image µ(X,b) of an object of D∗(G), and µ induces a bijection on morphism

sets, it follows that µ gives an equivalence between the categories D∗(G) and

D(G), with inverse functor µ′ [MacLane 1971, IV.4, Theorem 1, page 91].

We can now define two functors

( j• , j • ) : D∗(G)→ A • (G).

The covariant functor j• is the additive extension of the functor which sends an ob-

ject (G/H, eH) to the isotropy subgroup H , and sends the G map f :G/H→G/K
to the biset K Kg−1 Hg, where f (eH) = gK . If we change the coset representative

and write f (eH)= g1K , then the map

(5.3) ψ : K Kg−1 Hg→ K Kg−1
1 Hg1

defined by ψ(k)= k(g−1g1) gives an bijection of K -K bisets.

Note that 1G/H : G/H → G/H goes to H HH , which is the identity. Check that if

f1 : G/H1→ G/H2 and f2 : G/H2→ G/H3 are G-maps and if f1(eH1)= g1 H2

and f2(eH2)= g2 H3 then f2 ◦ f1(eH1)= (g1g2)H3 and

H3
(H3)g−1

2 H2g2
×H2 H2

(H2)g−1
1 H1g1

is isomorphic to H3
(H3)(g1g2)−1 H1(g1g2) by the map (h3, h2) 7→ h3g−1

2 h2g2.

The contravariant functor j • agrees with j• on objects, but sends the G map

f : G/H → G/K to the biset g−1 Hg KK , where f (eH)= gK . Rather than check-

ing the identity and composition directly, just note that g−1 Hg KK is isomorphic to

τ(K Kg−1 Hg) by the function which sends k to k−1, so j • = τ ◦ j• and hence j • is

a contravariant functor.

Definition 5.4. We define the bifunctor

j : D(G)→ A • (G)

as the composition j = ( j • , j• ) ◦µ′. Let

d = a ◦ j : D(G)→ RG-Morita

denote the composition in diagram (5.2). �

For any additive functor F :A • (G)→Ab, the composition F ◦ j :D(G)→Ab
is a Mackey functor [HTW 2008]. Our main application is the following:
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Theorem 5.5. Any additive functor F : RG-Morita→Ab gives a Mackey functor
on D(G) by composition with d : D(G)→ RG-Morita. Any such Mackey functor
is hyperelementary computable.

Proof. The functor d : D(G)→ RG-Morita factors through A • (G), so we obtain

Mackey functors by composition. We will show that any such Mackey functor, M,

is a Green module over the Burnside quotient Green ring ASW of the Swan ring,

and then apply Example 3.12. Let L =Z[H/K ] denote a permutation module, for

some subgroups K ⊂ H of G, and let X denote an H -H -biset, which is free as a

left H -set. Then H/K × X is again an H -H -biset by the formula h1(hK , x)h2 =

(h1hK , h1xh2), for all h, h1, h2 ∈ H and all x ∈ X . Note that R[H/K × X ] =
L⊗Z R X as RH -RH bimodules, so this construction applied to X= H HH , sending

Z[H/K ] 7→ H/K × H , gives a well-defined homomorphism

P(H,Z)→ HomRG-Morita(H, H)

from the Grothendieck group of permutation modules, for each subgroup H ⊂ G.

The adjoints of these homomorphisms give a pairing ASW×M→M, and the Green

module properties follow easily from bimodule identities (compare [Oliver 1988,

11.2]). Since ASW is hyperelementary computable, we conclude that any Mackey

functor out of R-Morita is hyperelementary computable. �

Remark 5.6. As mentioned in the Introduction, this is a refinement of an earlier

result of Oliver [1988, 11.2]. Oliver establishes hyperelementary computability for

functors of the form X (R[G]), where X is an additive functor from the category

of R-orders in semisimple K -algebras with bimodule morphisms to the category

of abelian groups. Here R is a Dedekind domain with quotient field K of charac-

teristic zero.

There are two points of comparison: it should first be noted that Oliver [1988,

page 246] is dealing with Mackey functors defined on the category of finite groups

and monomorphisms, so the statement that any such functor X (R[G]) is a Mackey

functor is straight-forward. In our case, relating RG-Morita to Mackey functors

defined on finite G-sets in the sense of Dress [1975, page 301] involves some

work (for example, in constructing the bifunctor d). The translation between the

two versions of Mackey functors is also well-known to the experts [Dress 1975,

Section 1], but in this paper we preferred to work only with the Dress G-set theory.

The second point of comparison is that Oliver’s proof uses an action of the

Swan ring on the Mackey functors X (R[G]), but the Swan ring does not act on

our functors in any obvious way. The key new ingredient in our proof is the Burn-

side quotient Green ring of the Swan ring. Apart from this additional input, the

argument is essentially the same. However, the extra generality can be useful since
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there are functors out of RG-Morita which do not appear to extend to the setting

of Oliver [1988, 11.2]. �

Example 5.7 (Controlled topology). The bounded categories CM,G(R) of [Ham-

bleton and Pedersen 1991, §4], and the continuously controlled categories BG(X×
[0, 1); R) of [Hambleton and Pedersen 2004, §6] are functors out of A • (G), for

any finite group G, and hence any additive functor from these categories to abelian

groups gives a Mackey functor on D(G).

Example 5.8 (Farrell–Hsiang induction). There is a useful extension of induction

theory to (possibly) infinite groups, due to Farrell and Hsiang [1977]. Given any

representation pr : Ŵ → G, with G finite, we get a new R-group ring functor

A(G) → R-Morita by sending G/H 7→ R[ŴH ], where ŴH = pr−1(H) is the

preimage of H inŴ. We have a generating set for the morphisms HomA(G)(H1, H2)

consisting of the bisets H2×K H1, where K ⊂ H2×H1 is a subgroup [HTW 1990,

1.A.9]. We send the biset H2 ×K H1 to the bimodule R[ŴH2
] ⊗R[ŴK ] R[ŴH1

].

By composition with any additive functor F : R-Morita→ Ab, we again obtain

Mackey functors. Since the Swan ring acts on R-Morita (by tensor product as

above), any such Mackey functor is a Green module over the Swan ring, and we

obtain hyperelementary computation as before. The main examples are listed in

[HTW 1990, 1.A.12], including Quillen K -theory Kn(R[Ŵ]).

Remark 5.9. An alternate (and slightly sharper) formulation of this example could

be given by defining RŴ-Morita for any discrete group Ŵ: the objects are finite

groups H isomorphic to some subquotient H ∼= Ŵ1/Ŵ0 of Ŵ, where Ŵ0 ⊳ Ŵ1 and

Ŵ1 is finite index in Ŵ. The morphisms are H2-H1 bisets as before. Then from

any representation pr : Ŵ→ G, where G is finite, we get a functor d : D(G)→
RŴ-Morita and Theorem 5.5 holds in this new setting.

Example 5.10 (Cohomotopy). Example 2.1 and Remark 2.4 (pages 108–109) of

[Lam 1968] show that (ordinary or Tate) cohomology with twisted coefficients

H i (?;M) is a Mackey functor on D(G) where M is a fixed G-module. Since

the cohomotopy Green ring H 7→ π0(B H) acts on this Mackey functor, it is Sy-

low computable. If pr : Ŵ→ G is a homomorphism and M is a Ŵ-module, then

H i (pr−1(?);M) is also a Mackey functor on D(G) with the cohomotopy Green

ring acting. An interesting example of this situation is Galois cohomology.

6. Pseudo-Mackey functors and pseudo-complexes

We wish to apply the computation strategy described above to a more general

situation, namely to study functors which have induction and restriction but are

not known to be Mackey. The main examples of interest are the higher Whitehead

groups Whn(ZG) and the nonoriented surgery obstruction groups Ln(ZG, ω).
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Definition 6.1. A covariant prefunctor f : D→ E between two categories is just

a function S 7→ ob( f )(S) on objects, and a function

hom( f ) : HomD(S1, S2)→ HomE(ob( f )(S1), ob( f )(S2))

on Hom-sets. A functor is a prefunctor which preserves identities and compo-

sitions. Similarly, we define a contravariant prefunctor, and a prebifunctor then

consists of a pair ( f∗, f ∗) of prefunctors, where f∗ is covariant, f ∗ is contravariant,

and ob( f∗)= ob( f ∗). We call these Mackey prefunctors if D=D(G) and E=Ab.

A prenatural transformation T : f1→ f2 is a function

S 7→ T (S) ∈ HomE(ob( f1)(S), ob( f2)(S)) .

A natural transformation of (covariant) prefunctors is a prenatural transformation

T : f1→ f2 such that the diagram

ob( f1)(S1)
hom( f1)(φ)//

T (S1)

��

ob( f1)(S2)

T (S2)

��
ob( f2)(S1)

hom( f2)(φ)// ob( f2)(S2)

commutes for all pairs of objects S1, S2 ∈ D and all φ ∈ HomD(S1, S2). There is

a similar definition for (pre)natural transformations of contravariant prefunctors,

and a natural transformation of prebifunctors is a single function which is natu-

ral transformation for both the covariant and contravariant parts of the bifunctor.

A prepairing between three Mackey prefunctors M, N and L is a collection of

functions µ(S) : M(S)× N(S)→ L(S). Finally, if M→ N is an injective nat-

ural transformation of Mackey prefunctors, then we say that M is a sub-Mackey

prefunctor of N.

Note that if M :D(G)→Ab is a Mackey prefunctor, we can apply M to any of the

Amitsur complexes Am(X, Y ), and obtain ∂r and δr maps as usual, but we can not

be sure that ∂r ◦ ∂r+1 = 0 or δr+1 ◦ δr = 0. We call M(Am(X, Y )) a pre-Amitsur
complex. This construction gives a prefunctor D(G)×D(G)→ Chain(Ab).

Definition 6.2. A Mackey prefunctor M is called a pseudo-Mackey functor pro-

vided that there exists a finite collection of Mackey prefunctors 0 = N0 ⊂ N1 ⊂

· · · ⊂ Nr = M such that the quotient prebifunctors Ni/Ni−1 are actually Mackey

functors, for 1 ≤ i ≤ r . The collection {Ni/Ni−1 | 1 ≤ i ≤ r} will be called the

associated graded Mackey functor to M.

A natural transformation M→ N of pseudo-Mackey functors is a natural trans-

formation of Mackey prefunctors which preserves the filtrations. Notice that the

Burnside ring A acts on a Mackey prefunctor via the usual formula (which gives a
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prepairing). The action of A on a pseudo-Mackey functor M preserves the filtration,

and the induced action on the subquotients Ni/Ni−1 is the usual action.

We say that a finite G-set X is a Dress generating set for a pseudo-Mackey

functor M provided X is a Dress generating set for each of the Mackey functors

Ni/Ni−1 in its associated filtration. This agrees with our previous definitions if M

is a Mackey functor filtered by Mackey subfunctors. Notice that the image of the

natural map of Green rings A→
⊕r

i=1 ANi/Ni−1
is a Green ring with X as a Dress

generating set. It follows that there exists an element a ∈ A(hyperp-X)⊗ Z(p),

for each prime p, whose image in A( •) ⊗ Z(p) acts as 1 • on each subquotient

Ni/Ni−1( •)⊗Z(p), 1≤ i ≤ r .

Lemma 6.3. Suppose that M0→M1 and M1→M2 are natural transformations of
Mackey prefunctors, such that M0(Y )→M1(Y )→M2(Y ) is exact for every finite
G-set Y . If M0 and M2 are pseudo-Mackey functors, then M1 is a pseudo-Mackey
functor. Moreover, if X is a Dress generating set for M0 and M2, then X is a Dress
generating set for M1.

Proof. The preimage of the associated filtration for M2 gives a filtration N0 ⊂

N1 ⊂ · · · ⊂ Nr = M1, with M0 ⊂ Ni for 0 ≤ i ≤ r . Since a subbifunctor of

a Mackey functor is Mackey, we see that the quotient prefunctors Ni/Ni−1 are

actually Mackey functors (and they all have Dress generating set X by Theorem

3.8). Now we extend this filtration by adjoining the associated filtration for M0.

Since each of the subquotients in this extended filtration have Dress generating set

X , the result follows. �

We also get a computational result for pseudo-Mackey functors. The Amit-

sur precomplex (M∗(Am(X, Y ), ∂∗) is now a pseudo-complex, meaning that the

boundary maps ∂∗ are filtration-preserving (and the associated graded is an actual

complex). It will be called pseudo-contractible if it is equipped with degree +1

filtration-preserving natural transformations

sr :M(Amr (X, Y ))→M(Amr+1(X, Y ))

of prefunctors, for r ≥ 0, which contract the Amitsur complexes for the associ-

ated graded Mackey functors to M. The collection s∗ = {sr } is called a pseudo-
contraction. We make a similar definition for the cochain Amitsur complex and

the degree -1 cochain pseudo-contractions σ r .

We can construct pseudo-contractions by using any element a ∈A(X) such that

a acts as 1 • ∈ on each subquotient Ni/Ni−1( •)⊗Z(p), 1 ≤ i ≤ r , to build chain

homotopies sr (a) and cochain homotopies σ r (a). These are pseudo-contractions

in the above sense.
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Proposition 6.4. Let M be a pseudo-Mackey functor, and X , Y finite G-sets. If
(M∗(Am(X, Y ), ∂∗) is pseudo-contractible with pseudo-contraction s∗, then there
are canonical filtration-preserving natural transformations (∂ ′∗, s ′∗) for which s ′∗ is
a chain contraction and (M∗(Am(X, Y ), ∂ ′∗) is a chain complex. If the pseudo-
complex was already a complex, ∂ ′∗ = ∂∗, and if in addition s∗ was already a
contraction, then s ′∗ = s∗.

Proof. Let (Ci , ∂i , si ) be our data, where ∂i and si are natural transformations. We

assume that for i<r , ∂i◦∂i+1=0, ∂i+1=∂i+1◦si◦∂i+1, and si−1◦∂i+∂i+1◦si =1Ci .

For r ≤ 0 these identities clearly hold. We proceed to show how these conditions

may be achieved for i = r by modifying ∂r+1 and sr (if necessary). Throughout

the inductive construction, we do not change the maps induced by (∂∗, s∗) on the

Amitsur complex for the associated graded Mackey functor to M. We also note

that the process does not change the given ∂1 : C1→ C0, but may change s0 in the

first step.

First, let ∂ ′r+1 = ∂r+1− sr−1 ◦ ∂r ◦ ∂r+1. Then ∂r ◦ ∂
′
r+1 = 0 and if ∂r ◦ ∂r+1 = 0

we have ∂ ′r+1 = ∂r+1. Note that both ∂ ′r+1 and ∂r+1 preserve the induced filtration

from M, and induce the same map on the Amitsur complexes for the associated

graded Mackey functor to M.

Next, we modify sr . Let ψr = sr−1◦∂r+∂
′
r+1◦sr . By construction, ψr preserves

the filtration and induces the identity on the associated graded. Hence,ψr =1Cr+u,

where u is nilpotent, andψr is invertible. Since ∂r◦ψr =∂r , we can set s ′r = sr◦ψ
−1
r

and obtain sr−1 ◦ ∂r + ∂
′
r+1 ◦ s ′r = 1Cr by precomposing with ψr . Notice that if sr

was already part of a chain contraction, then we do not alter it. It follows that

∂ ′r+1 = ∂
′
r+1 ◦ s ′r ◦∂

′
r+1 and the induction step is complete. The naturality of ∂ ′r and

ψr follow inductively from the explicit formulas. The naturality of ψr implies the

naturality of s ′r for use at the next step of the induction. Since no choices were

involved in the construction of (∂ ′∗, s ′∗), the new maps are canonically determined

by the original data (∂∗, s∗). �

Remark 6.5. After this process, the new contractible complex gives an expression

for M(Y ) as a direct summand of M(X×Y ), with respect to the original induction

map ∂1 :M(X×Y )→M(Y ), and the new restriction map s ′0 :M(Y )→:M(X × Y ),
since ∂1 ◦ s ′0 = id. In this situation, we say that M(Y ) is computed from the family

F(X). If M was actually a Mackey functor, computability is this sense would agree

with the notion previously defined. Similar remarks apply to the contravariant

version M
∗(Am(X, Y ), δ∗).

We will also need a slight extension of this result. A filtered precomplex (C, ∂)
is a precomplex of abelian groups equipped with a filtration

C = F0C ⊃ F1C ⊃ F2C ⊃ · · ·
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where each Fi C is a presubcomplex of (C, ∂), meaning that ∂r (Fi Cr )⊆ Fi Cr−1, for

all i, r . We say that (C, ∂) is a pseudo-complex if the additional relation ∂r◦∂r+1=0

holds, for all r , on each subquotient Fi C/Fi+1C . We say that a pseudo-complex

has a pseudo-contraction s∗= (sr ) provided that sr (Fi Cr )⊆ Fi Cr+1, and s∗ induces

an actual contraction on each subquotient complex Fi C/Fi+1C .

A pseudo-complex (C, ∂) has a natural completion

(C, ∂) −→ lim
←−

C/Fi C := (Ĉ, ∂̂)

given by the inverse limit precomplex with respect to the natural projections C→
C/Fi C , i ≥ 0. A pseudo-contraction s∗ of (C, ∂) induces a precontraction ŝ∗ of

(Ĉ, ∂̂).

Proposition 6.6. Let (C, ∂) be a pseudo-complex with filtration {Fi C | i ≥ 0}. If
(C, ∂) admits a filtered pseudo-contraction s∗, then there exists canonical data for
which (Ĉ, ∂ ′∗, s ′∗) is a contracted chain complex. If the pseudo-complex was already
a complex, ∂ ′∗ = ∂̂∗, and if in addition s∗ was already a contraction, then s ′∗ = ŝ∗.

Proof. The proof follows the same outline as for Proposition 6.4, but we notice

that the map ψr = 1Cr +u has the additional property that ui+1= 0 on the quotient

Cr/Fi Cr . This follows by induction from the exact sequences

0→ Fi+1C/Fi C→ F0C/Fi+1C→ F0C/Fi C→ 0

of pseudo-contractible complexes. Thenψr induces an invertible map on Cr/Fi Cr ,

for each i ≥ 0. We define s ′r = sr ◦ψ
−1
r on Cr/Fi Cr as before. By induction, we

have constructed contraction data (C/Fi C, ∂ ′, s ′), for each i ≥ 0. In addition, this

contraction data is compatible with the projections C/Fi+1C→ C/Fi , and hence

induce contraction data (Ĉ, ∂ ′, s ′) for the inverse limit complex. �

Remark 6.7. Once again, this process doesn’t change ∂1, so the new contractible

complex gives an expression for Ĉ0 as a direct summand of Ĉ1, with respect to

completion of the original boundary map ∂1 : C1→ C0.

Example 6.8 (Whitehead groups). Define the Whitehead groups, Whn(ZG), as the

homotopy groups of the spectrum which is the cofibre of the Loday assembly map

BG+ ∧ K (Z)→ K (ZG).

The Loday assembly map is a map of bifunctors [Nicas 1987, Main Theorem,

page 223], and the Whitehead groups are bifunctors. Furthermore, the Whn , n ≤
3, are Mackey functors, but it is not obvious from this description that the other

higher Whitehead groups are actually Mackey functors. However, from the long

exact sequence in homotopy theory we see that they are pseudo-Mackey functors.

From Example 3.12, Example 5.10 and Proposition 6.4, we see that the Whn(ZG)
are computed by the hyperelementary family. Similarly, the Whn(ZG)⊗Z(p) are
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computed by the p-hyperelementary family. See [Swan 1970; Lam 1968; Nicas

1987] for partial results in this direction).

Example 6.9 (Tate cohomology). The Tate cohomology of Whn or Quillen’s Kn

are bifunctors which are subquotients of Whn or Kn , and hence are computed

by the hyperelementary family. The localization maps Whn → Whn ⊗ Z(2) and

Kn→ Kn⊗Z(2) induce isomorphisms on Tate cohomology. Hence the Tate coho-

mology is computed by the 2-hyperelementary family. Given any pseudo-Mackey

subfunctor of Whn or Kn which is invariant under the involution, we can form the

Tate cohomology and this Tate cohomology functor is computed by any family

which contains the 2-hyperelementary family. �

7. Surgery obstruction groups

Dress [1975, Theorem 1] claims computability results for “any of the L-functors

defined by C. T. C. Wall” (in [Wall 1976]). However, the nonoriented L-groups

Ln(ZG, ω) are not always Mackey functors, and so the techniques described in

[Dress 1975] do not appear to be adequate to prove the result in this generality.

The point is that an inner automorphism by an element g ∈ G with ω(g)=−1 in-

duces multiplication by −1 (which may not be the identity) on Ln(ZG, ω) [Taylor

1973]. One of the main applications of our more general techniques is to supply

a proof that nonoriented L-theory is hyperelementary computable, in the sense

that Ln(ZG, ω) is the limit of restrictions or inductions involving hyperelementary

subgroups of G.

Fix a finite group G, and the geometric antistructure for which θ = id and b= e∈
G [HTW 1990, 1.B.3]. Let ω : G→ {±1} be a fixed orientation homomorphism,

and for each subgroup H ⊂ G let ωH = ω|H . We define the following categories:

(1) A(G, ω), with objects finite groups H isomorphic to some subgroup of G,

and morphisms given by a Grothendieck group construction on finite biset

forms (X, ωX ) (see [HTW 1990, page 256] for the definition). We construct

A • (G, ω) by taking the additive completion.

(2) (R,−)-Morita, with objects and morphisms as defined in [HTW 1990, 1.B.2],

and the quotient category (R,−)-Witt from [HTW 1990, 1.C.2], for any com-

mutative ring R with unit.

(3) (RG, ω)-Morita, with objects H isomorphic to some subquotient K/N of

G, with N ⊂ kerω, and morphisms given by the Grothendieck group con-

struction on finite biset forms (X, ωX ), modulo an equivalence relation, as

defined in [HTW 1990, 1.B.3]. We can define the analogous quotient category

(RG, ω)-Witt by setting metabolic forms to zero in the morphisms [HTW

1990, page 254].
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Notice that by forgetting the orientation map ω we get functors into the categories

discussed in Section 5. The construction of Definition 5.4 gives a prebifunctor

j : D(G)→ A • (G, ω)

extending the prefunctor Or(G)→A • (G, ω) out of the orbit category, defined on

objects by G/H 7→ H and on morphisms by sending the G-map f :G/H→G/K ,

given by f (eH)= gK , to the biset form (K K g−1 K g, ωK ). This definition depends

on the choice of coset representative g for the morphism f in Or(G), since this

time, if x ∈ K and ω(x) = −1, the two morphisms eH 7→ gK and eH 7→ gx K
are sent to different biset forms.

Lemma 7.1. In A • (G, ω), the morphism
[

H H x−1 H x, ωH
]
=ω(x)·id for all x ∈ H.

If F : A • (G, ω)→Ab is an additive functor, then

F ◦ j : A • (G, ω)→Ab

is a Mackey prefunctor, which is a Mackey functor if and only if all the inner
automorphism morphisms F(H Hx−1 H x , ωH )= id, for all x ∈ H.

Proof. The identity morphism in A • (G, ω) is represented by the biset form

(H H H, ωH ).

The map ψ :H HH → H Hx H x−1 of biset forms defined by ψ(h)= hx−1, see (5.3),

induces an isometry of biset forms (H H x−1 H x, ωH )∼= (H H H, ω(x)·ωH ) and hence

[
H H x−1 H x, ωH

]
= ω(x) · id

in the Grothendieck group of morphisms of A • (G, ω).
The property (M1) depends on conjugations acting trivially, or in other words,

should induce F(ψ)= id for all x ∈ H (including those with ω(x)=−1). �

The R-group ring functor of [HTW 1990, 1.B.4] induces a functor from A • (G,ω)
to (RG, ω)-Morita or further into (R,−)-Witt. The required formulas are in sec-

tion 1.B of [HTW 1990], including the remark that since our morphisms are formed

via a Grothendieck construction, we are entitled to equate metabolics on isomor-

phic modules. There is a functor a : A • (G, ω)→ (RG, ω)-Morita as before, and

we let

d : D(G)→ (RG, ω)-Morita

be the prebifunctor d = a ◦ j . There is a homomorphism from the Dress ring

GU (H,Z)→ Hom(R,−)-Morita(H, H)

given by tensor product (see [Dress 1975] where it is asserted that GU (G,Z)

acts on L-theory, or [Hambleton, Ranicki and Taylor 1987, page 143] for explicit

formulas). Dress [1975] showed that the hyperelementary family contracts the



Dress induction and the Burnside quotient Green ring 537

Dress ring. We observe that the same formulas give an action of the Burnside

quotient Green ring AGU on (RG, ω)-Morita.

Theorem 7.2. Let F : (RG, ω)-Morita→Ab be an additive functor. Then

F ◦ d : D(G)→Ab

is a Mackey prefunctor, and the 2-adic completion of any such Mackey prefunctor
is 2-hyperelementary computable. If M = F ◦ d is a Mackey functor, then M is
hyperelementary computable.

Proof. In the oriented case (ω≡ 1) the prefunctor M is actually a Mackey functor,

by Lemma 7.1. More generally, whenever M= F ◦d is a Mackey functor the result

follows as in Theorem 5.5, since M is a Green module over AGU . By [Dress 1975,

Theorem 3], and Theorem 3.6, the Burnside quotient Green ring of the Dress ring

is hyperelementary computable.

In the nonoriented case, we define a filtration Fi = 2i F , i ≥ 0, with F0 = F ,

and note that the subquotients (Fi/Fi+1) ◦ d are Mackey functors. Now we let

(C, ∂) denote the filtered Amitsur pseudo-complex for F∗ ◦ d with respect to 2-

hyperelementary induction, and the result follows from Proposition 6.6. Notice that

the passage from a pseudo-contractible pseudo-complex to a contractible complex

does not change the first boundary map, so F ◦d is 2-adically detected (generated)

by the given restriction (induction) maps to the 2-hyperelementary subgroups. �

Example 7.3 (Nonoriented L-theory). The main example for us is the surgery

obstruction group Ln(ZG, ω). It is a foundational result of Wall [1974] that the

surgery obstruction groups for finite groups are finitely-generated, with 2-primary

torsion exponent. Theorem 7.2 computes Ln(ZG, ω) ⊗ Ẑ2 as a limit (and as a

colimit) over the 2-hyperelementary subgroups H ⊂ G, H ∈ H. These limits use

the standard induction or restriction maps, for example, for induction we have the

surjective map

∂1 :
⊕

H∈H

Ln(ZH, ω)⊗ Ẑ2→ Ln(ZG, ω)⊗ Ẑ2

and our contraction data gives the relation subgroup ker ∂1 = Im ∂ ′2.

We conclude that Ln(ZG, ω) is also effectively 2-hyperelementary computable:

the torsion subgroup is isomorphic to that of Ln(ZG, ω)⊗ Ẑ2, and the divisibil-

ity of the signatures is computable since the kernel and cokernel of the natural

transformation

Ln(ZG, ω)→ Ln(RG, ω)

of pseudo-Mackey functors are both 2-primary torsion groups [Wall 1974, 7.3, 7.4].

The groups Ln(RG, ω) were computed explicitly in [Wall 1976, 2.2.1] in terms of

the irreducible characters of G. The proof of computability given here applies in
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the oriented case (ω ≡ 1), but in that case the L-group is a Mackey functor and

the argument is essentially the same as the one given by Dress. Other important

examples were listed in [HTW 1990, 1.B.8].

Example 7.4 (L-theory with decorations). Let R be a commutative ring with unit,

and consider any L-group L B
n (RG, ω) for RG with antiinvolution given by ω :

G→{±1} with decoration in any involution invariant subbifunctor, B, of Ki (ZG)
or Whi (ZG), i ≤ 1; see [Hambleton, Ranicki and Taylor 1987] for a summary of

the definitions. It was checked in Theorem 5.3, Corollary 5.5 and Example 5.14

of that same reference that the corresponding round L-theories are functors out

of (ZG, ω)-Morita. Hence these L-theories are pseudo-Mackey functors and are

contracted by the hyperelementary family. It was also checked in Proposition 5.6,

Corollary 5.7 and Example 5.14 of the same paper that the corresponding ordinary

L-theories are functors out of (ZG, ω)-Morita, so the same computation result

holds.

Example 7.5 (Localization). Dress [1975] shows that the Dress ring GU is con-

tracted by any family containing the 2-hyperelementary and p-elementary families.

More precisely, he showed that the 2-localization of the Dress ring is contracted

by the 2-hyperelementary family, and the p-localization, p odd, is contracted by

the p-elementary family.

Proposition 6.4 and a standard mixing argument shows that this smaller family

suffices to contract the L B functors described above. For subbifunctors B closed

under the action of the Dress ring, this was proved by Dress [1975] and Wall [1976].

A similar argument shows that the odd-dimensional L B-groups are contracted by

the 2-hyperelementary family alone.

Example 7.6 (Symmetric, hyper-quadratic and lower L-theory). The Ranicki sym-

metric and hyper-quadratic L-theories [Ranicki 1992] are also functors out of

(ZG, ω)-Morita and hence are contracted by the hyperelementary family. The

hyper-quadratic theory is a 2-torsion group with an exponent so it is contracted

by the 2-hyperelementary family (as above, we note that the 2-localization map

induces an isomorphism on this functor and use the 2-local contraction of functors

out of (Z,−)-Morita by the 2-hyperelementary family). The lower L-theories for a

ring with antistructure can be defined in terms of the L-theory of the ring with some

Laurent variables adjoined [Ranicki 1992] and hence are functors out of (ZG, ω)-
Morita. Therefore L-theories with decorations in sub-Mackey functors of Ki for

i<0 are contracted by the hyperelementary family. The higher L-theories of Weiss

and Williams [1989] should also be amenable to these techniques.

Example 7.7 (Farrell–Hsiang induction). The technique of Farrell and Hsiang

[1977, §§1–2] was originally introduced to apply induction theory to the L-groups

of an infinite group Ŵ. Let pr : Ŵ → G be a homomorphism to a finite group
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G, and define an orientation character for Ŵ by the composition ω ◦ pr, where

ω : G → {±1} is an orientation character for G. Then L B
∗ (RŴ,ω) is an additive

functor (RG, ω)-Witt→Ab, which defines a pseudo-Mackey functor as above. To

check this, note that we again have a generating set for the morphisms consisting

of the bisets X = H2×K H1, where K ⊂ H2× H1 is a subgroup. To produce the

needed biform on X , we adapt the formulas in [HTW 1990, 1.B] with θX = id. If

ω≡ 1, it follows that these L-groups can be computed in terms of the L-theory of

the various subgroups ŴH = pr−1(H), H ⊂ G. In particular, it is enough to use

the hyperelementary subgroups H of G.
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