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Rotating spiral waves organize excitation in various biological,

physical, and chemical systems. They underpin a variety of impor-

tant phenomena, such as cardiac arrhythmias, morphogenesis

processes, and spatial patterns in chemical reactions. Important

insights into spiral wave dynamics have been obtained from

theoretical studies of the reaction–diffusion (RD) partial differen-

tial equations. However, most of these studies have ignored the

fact that spiral wave rotation is often accompanied by substantial

deformations of the medium. Here, we show that joint consider-

ation of the RD equations with the equations of continuum

mechanics for tissue deformations (RD–mechanics systems), yield

important effects on spiral wave dynamics. We show that defor-

mation can induce the breakup of spiral waves into complex

spatiotemporal patterns. We also show that mechanics leads to

spiral wave drift throughout the medium approaching dynamical

attractors, which are determined by the parameters of the model

and the size of the medium. We study mechanisms of these effects

and discuss their applicability to the theory of cardiac arrhythmias.

Overall, we demonstrate the importance of RD–mechanics systems

for mathematics applied to life sciences.

electromechanics � nonlinear dynamics � stretch-activated channels �

cardiac arrhythmias

Rotating spiral waves have been found in a wide variety of
nonlinear systems in physics, chemistry, and biology. For

example, they occur in Belousov–Zhabotinsky (BZ) chemical
reactions (1, 2) and on platinum surfaces during the process of
catalytic oxidation of carbon monoxide (3). Biological examples
of spiral waves include spiral waves during morphogenesis of the
Dictyostelium discoideum amoebae (4), spiral waves of calcium-
induced calcium release in Xenopus oocytes (5), and spiral waves
in retinal and cortical nerve tissue (2). Another important
example is in the heart, for which spiral waves of electrical
activity are thought to lead to life-threatening cardiac arrhyth-
mias (2, 6).

Spiral waves have been studied extensively by using mathe-
matical modeling. In this context, spiral waves are solutions of
the reaction–diffusion (RD) equations in two dimensions. There
are a wide range of analytical and numerical approaches to study
the basic features of these systems, as well as specific models for
a variety of biological or chemical processes.

Spiral wave rotation typically is accompanied by other important
processes. One of the most fundamental is the mechanical defor-
mation of the medium. For example, spiral waves during D.
discoideum morphogenesis are relayed by chemotactically moving
cells (4), and chemical spiral waves in BZ reaction cause deforma-
tion of the medium in which they rotate (7). In the heart, the
electrical waves initiate muscle contraction, resulting in substantial
local deformations. These deformations in turn affect the process
of wave propagation in the heart, which is known as the phenom-
enon of mechano-electrical feedback. Mechano-electrical feedback
has been studied in electrophysiology for over a century (see
reviews in ref. 8) and may have both anti- and pro-arrhythmic
consequences. Although deformation is known to be important in
the above-mentioned systems, most previous theoretical and ex-

perimental studies have not addressed the combined effects of
medium mechanics and spiral wave dynamics.

To study the interactive effects of deformation and RD
systems, one needs to combine two classes of partial differential
equations: the RD equations (as above) and the equations of
continuum mechanics, which govern the deformation of the
medium. Furthermore, one must define the feedback relations
that exist between them. In the heart, local deformations of up
to 10–15% have been observed experimentally (9), thus finite
deformation elasticity theory must be used to describe the tissue
mechanics. The detailed coupling of the RD processes and
mechanical deformations is complex and not completely under-
stood; however, general relationships have been established. For
example, it is well known that heart tissue contraction is initiated
by an influx of calcium ions into the cardiac myocytes, which is
a typical state variable of biophysical RD models (10). On the
other hand, deformation changes the geometry of cardiac cells
and ionic currents through the cardiac membrane [via stretch-
activated channels (11)], thereby affecting the parameters of the
RD system. We have proposed the concept of a RD–mechanics
(RDM) system (12), which combines a very general description
of deformation with a low-dimensional RD system to study the
basic effects of mechanics on nonlinear wave propagation.

In this article, we apply our RDM modeling approach to study
the fundamental effects of deformation on spiral wave dynamics.
We find two types of dynamics: mechanically induced breakup of
spiral waves and drift of spiral waves toward dynamical attractors
caused by mechanical deformation. These types of dynamics may
be important in many applications. For example, in cardiac
tissue, spiral breakup is considered as a likely mechanism of
ventricular fibrillation, whereas meander and drift of spiral
waves are believed to determine the type of cardiac arrhythmia
(13, 14).

Mathematical Model

Our RDM model is based on a three-variable Fenton–Karma
RD model for cardiac excitation (15), coupled with the soft-
tissue mechanics equations described in refs. 12 and 16:
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where �(x) is the standard Heaviside step function: �(x) � 1 for
x � 0 and �(x) � 0 for x � 0. Eqs. 1–3 provide a standard
low-dimensional model of cardiac electrical propagation, which
includes a qualitative description of three main ionic currents
that modulate the activation of cardiac tissue: the fast inward
current Ifi(u, v) � �gfiv�(u � 0.25)(1 � u)(u � 0.25), with a
maximal conductance of gfi � 7.2, determines the primary
excitation of a cell; the slow outward current Iso(u) �
0.05u1.4�(0.2 � u) accounts for recovery of cell properties after
excitation; the slow inward current Isi(u, w) � �(u � 0.2)uw(0.46
	 0.085 � tanh[k(u � 0.5)]) determines the duration of the
excitation pulse; and Is(u, c) � the stretch-activated current,
which will be described later. The variable u represents the
(nondimensional) transmembrane potential scaled to the inter-
val [0, 1].

The Hodgkin–Huxley-type gating variable v determines inac-
tivation of Ifi, with the time constant given by: �v(u) � �1 for u �

0.085; �v(u) � �2 for 0.085 � u � 0.125; �v(u) � �3 for 0.125 �

u � uc; and �v(u) � �4 for u � uc. The gating variable w
determines activation of Isi, with the time constant �w(u) � 125
for u � 0.25 and �w(u) � 170 for u 
 0.25. The currents Ifi, Iso,
and Isi may be regarded as general descriptions of the sodium,
potassium, and calcium currents, respectively, of an excitable
cardiac cell.

After excitation, the tissue in our model contracts, and the
mechanics are modulated by the variable Ta (given by Eq. 4),
which represents the active stress generated by the medium. The
function �(u) � 1 for u � 0.05 and �(u) � 0.1 for u 
 0.05 governs
the delay between activation and active force development. kT

governs the rate of tension development during excitation and
thus the maximal value of active tension. Doubling kT results in
an approximate two-fold increase in active tension.

The mechanical part of our model is unchanged from ref. 16.
The main equations here are the equations of stress equilibrium
(Eq. 5) formulated by using the second Piola–Kirchhoff stress
tensor, TMN in Eq. 6, which contains two parts: (i) the active
stress components, TaCMN

�1 , where CMN � �xk/�XM � �xk/�XN is the
right Cauchy–Green deformation (metric) tensor and C is its
determinant and (ii) the passive elastic stress components, which
are expressed in terms of the derivatives of a strain energy
function (W) with respect to components of Green’s strain
tensor, EMN � 1/2(CMN � 	MN), where 	MN is the unitary tensor.
For the purposes of this study, the strain energy function was
chosen to be the isotropic Mooney–Rivlin constitutive law (17),
W � c1(I1 � 3) 	 c2(I2 � 3), where I1 and I2 are principal
invariants of CMN and c1 and c2 are stiffness coefficients that,
together with the parameter kT from Eq. 4, determine local
deformation during contraction (c1 � 2, c2 � 6, and kT � 10 for
all simulations, chosen to give rise to relative local deformations
of �15%).

The direct influence of deformation on the excitation prop-
erties is given by the stretch-activated current Is. In general, there

are three groups of mechanically activated channels in the heart,
but only two of them (the cation nonselective channels and the
potassium-selective channels) are activated by stretch (11). The
overall physiological action of these channels is depolarization of
the membrane in response to stretch, as shown in the majority
of experimental observations from isolated cardiac tissue and
the whole heart. Experimental studies of the electrophysiological
properties of stretch-activated channels show that they are
activated instantly by mechanical stimulation, and the current–
voltage (I–V) relationship for the most important nonspecific
cation channel is linear (18, 19). On the basis of these observa-
tions, linear ionic models for Is have been proposed (20, 21).
These linear models have been used to study the effects of
mechanical stretch on heart tissue by using detailed ionic models
of the cardiac myocyte. Therefore, we believe that a linear
time-independent description also will be sufficient for our
low-dimensional formulation for cardiac cells. Thus, we use

Is � Gs��C � 1��u � Es�, [8]

where Gs and Es are the maximal conductance and reversal
potential, respectively, of the stretch-activated channels. Follow-
ing ref. 16, the current in Eq. 8 is present only if �C 
 1 (which
indicates stretch).

The value of Es in most biophysically accurate models is
assumed to be around �20 mV (18, 20) and describes the
experimentally observed depolarizing effect of the stretch-
activated current. In our model, we used values close to Es  1
to provide the depolarizing effect. However, the exact value of
the reversal potential may depend on the cell type (11, 18, 19);
therefore, we performed simulations with lower values of Es to
investigate the possible effects on the main results of this study.

The value of Gs is one of the main determinants of the effects of
deformation on wave propagation and was varied in our compu-
tations. The complete list of parameters of the models used in this
study is given in supporting information (SI) Table 1.

Numerical Integration Methods. The coupled RDM model was
solved by using a hybrid approach that combines an explicit Euler
scheme for the RD system, with nonlinear finite element tech-
niques for large deformation mechanics. Full details are given in
refs. 12 and 16. The numerical parameters were the following.
Euler computations were performed on a deforming grid of up
to 513 � 513 finite difference points by using no-flux boundary
conditions. For all simulations, we used a time integration step
of �t � 0.1 (dimensionless time units [t.u.]) and a space
integration step of �x � �y � 0.8 (dimensionless space units
[s.u.]), consistent with previous studies involving a similar RD
model (15). Each mechanical element contained between 6 � 6
and 33 � 33 electrical grid points, and the mechanics solution
steps were separated by between 10 and 80 excitation integration
steps (consistent with refs. 12 and 16). When solving Eq. 5, the
boundaries of the medium were fixed in space, which is consis-
tent with an isometric contraction regime, a standard experi-
mental procedure for muscle mechanics, during which end points
or edges of the tissue are fixed to maintain a constant overall
dimension. Isometric contraction is appropriate for isovolumic
phases of contraction and relaxation during the cardiac cycle, for
which the overall dimension of the heart is approximately
constant, whereas regional deformations are heterogeneously
distributed.

Results

Spiral Wave Breakup. In the absence of deformation, Eqs. 1–3

describes nonoscillatory cardiac tissue that supports stable rotating
spiral waves (Fig. 1a). We found that in the presence of deformation
(Eqs. 1–8), rotation of spiral waves became unstable and broke up
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into complex spatiotemporal patterns (Fig. 1b) that persisted for the
duration of our simulations (�50 rotations).

We investigated the factors underpinning the transition from
a stable rotating spiral into spiral breakup. In Eqs. 1–3, the main
influence of mechanical deformation on excitation appears in
two ways: (i) via the stretch-activated current Is in Eq. 1 and (ii)
caused by deformation of the tissue, as expressed in Eq. 7. We
studied the relative contributions of these two factors to the
spiral wave instability. We performed one simulation using the
same parameter values and initial conditions as the simulation in
Fig. 1b but in the absence of Is. In this case, spiral wave stability
persisted despite the tissue deformations (SI Fig. 6a).

In another simulation, Is was maintained similarly to the
computation illustrated in Fig. 1b, but the effect of tissue
deformation on wave propagation was neglected [i.e., rather than
by using Eq. 7, the Laplacian was evaluated by using �2u �
(�2/�X2) 	 (�2/�Y2), as for the undeformed configuration]. In this
case, we observed that the onset of spiral breakup, and its
subsequent complexity, was similar to the simulation in Fig. 1b
(see SI Fig. 6b).

In additional sets of computations, we found that spiral
breakup occurred only if the conductance of the stretch-
activated channel was Gs � 0.028. We found that this threshold
value (which we denote as GsTH) was modulated by other
parameters of the model that influence the stretch-activated
current in Eq. 8. If the reversal potential for the stretch-activated
current was decreased to Es � 0.75, then the conductance
threshold for breakup increased to GsTH � 0.039, and a further
decrease to Es � 0.5 resulted in GsTH � 0.065. Clearly, decreasing
Es in Eq. 8 reduces the magnitude of the stretch-activated
current, and thus a larger value of Gs is necessary for breakup to
occur. The complete dependence of GsTH on Es is illustrated in
SI Fig. 7.

The observation that mechanically induced spiral wave
breakup was primarily caused by the stretch-activated current
was somewhat unexpected, because it is a depolarizing current,
and such currents typically promote excitation in cardiac tissue.
Thus, we investigated how propagation block could be caused by
the stretch-activated current, and it turns out that the mechanism
of this effect is related to the so-called ‘‘accommodation phe-
nomenon,’’ whereby the threshold for activation increases as the
rate of depolarization is decreased. This effect has been studied
in electrophysiology since 1936 (22, 23).

We illustrate this effect by using an example that incorporates
a recent detailed ionic model for human cardiac cells (24). This
model uses a widely accepted biophysical description of the

sodium current, for which conductance of the sodium channels
is proportional to the product of activation (m) and inactivation
(h, j) gates: INa  m3hj. Following the Hodgkin–Huxley approach
(23), the dynamics of the gating variables are given by equations
of the form: dm/dt � (m�(u) � m)/�m(u), where the parameters
of the voltage-dependent functions m�(u) and �m(u) are fitted to
experimental measurements. Similar exponential relaxation
equations are used for the h and j gates. The steady-state values
m�(u), h�(u), and j�(u) depend on the transmembrane voltage
and are shown in Fig. 2a. As voltage increases, we see that the
activation gate goes from 0 to 1, and the inactivation gate goes
from 1 to 0. It is important to note that the inactivation curve
approaches zero at a voltage of around u  0.15, whereas the
activation curve starts to increase for higher values of voltage
above about u  0.25. Thus, if cardiac tissue is depolarized slowly
from the resting state u � 0 such that the gating variables
approximately follow their steady-state values, then INa will be
inactivated (at u � 0.15) before the voltage reaches the activation
threshold (u � 0.25). A similar situation will occur if cardiac
tissue is incompletely repolarized after excitation such that the
resting potential is above the inactivation value of u � 0.15. This
type of INa inactivation occurs in our simulations and results in
spiral wave breakup.

This finding is illustrated in Fig. 3a, which shows the time
course of the transmembrane voltage u, the Fenton–Karma
variable v (which accounts for inactivation of the fast inward
current Ifi), and the currents Ifi and Is at a point where the wave
block occurs (marked by the filled square in Fig. 3b). The
horizontal pink lines in Fig. 3 a Upper and c show the voltage
above which Ifi is inactivated by the v gating variable (u � 0.15).
Because Ifi is responsible for excitation and thus wave propaga-
tion, inactivation of Ifi results in wave block.

Now let us explain the onset of new wave breaks. During spiral
wave rotation (Fig. 3 a Upper and c Inset), we see that the
minimal diastolic value of the transmembrane potential initially
is slightly below the pink (inactivation) line, resulting in recovery
of the variable v up to values of �0.6 (Fig. 3a Lower), which
allows recovery of Ifi required for generation of a new action
potential. However, we also observed that the minimal diastolic
voltage increased, and after the third action potential the
transmembrane potential did not decrease below the inactivation
value. As a result, the inactivation variable v was not recovered
and remained at zero, and thus Ifi did not recover as well (around
the vertical dashed line in Fig. 3a Lower). In the absence of the
fast inward current, excitation is not possible, and wave propa-
gation was blocked. This nonrecovery of the transmembrane

Fig. 1. Spiral wave breakup caused by mechanical activity. (a) Spiral wave

rotation in a RD system based on Eqs. 1–3 and in the absence of deformation

with uc � 0.15, �1 � �2 � �3 � 30, and �4 � 3. (b) Similar computations in a

deforming medium using Eqs. 1–8 with Gs � 0.03. Both snapshots are taken at

1,800 [t.u.]. The medium consists of 513 � 513 grid points and 16 � 16

mechanical elements, each containing 33 � 33 grid points.

Fig. 2. Breakup in a model with biophysical activation and inactivation of the

fast inward current Ifi. (a) The scaled activation and inactivation curves from

the TNNP model (24) (black lines). (The values are scaled from the original

values of voltage to the interval of voltage between 0 and 1 for the Fenton–

Karma model.) Plotted are the scaled curves of h�(u) � j�(u) (solid black line)

and of m3
�(u) (dashed black line) from ref. 24. The gray lines show the

Heaviside description of the activation (dashed gray line) and inactivation

(solid gray line) curves in Eqs. 1–3. (b) Spiral wave breakup in a model with

biophysical activation and inactivation of the fast inward current Ifi (see text

for details). The snapshot is taken at 1,200 [t.u.], gfi � 14.2, and all other

parameters and initial conditions are the same as in Fig. 1.
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potential was caused by the stretch-activated current. We can see
that Is was maximal during the late repolarization phase, which
prevented the voltage from decreasing below the pink line. To
confirm this effect, we performed a similar simulation but with
Is blocked (Fig. 3d). In this case, repolarization continued below
the inactivation threshold. Thus, the Ifi current was not inacti-
vated, and the spiral wave did not break up.

The breakup we observed was caused by sodium current
inactivation. However, although the representation of the so-
dium current in the Fenton–Karma model provides a qualita-
tively correct description of the activation–inactivation proper-
ties of this current, it is not based on experimental data of these
processes. To underline the importance of the activation–
inactivation processes for our mechanisms, we developed a
modification of the Fenton–Karma model, which included bio-
physically based activation and inactivation curves of the fast
sodium current. We replaced the Heaviside-based activation
function �(u � 0.25)(u � 0.25) from Eq. 1 with the activation
curve (m3) from the TNNP model (24), scaled to the interval
[0, 1] (Fig. 2a) and the Heaviside inactivation function �(uc � u)
from Eq. 2 with the voltage-dependent inactivation curve h � j
(Fig. 2a). Thus, in this modified model, activation and inactiva-
tion processes are based on experimentally measured properties
of the sodium current. We studied spiral wave rotation with this
model and found that with these modifications we also obtained
mechanically induced breakup of the spiral wave. As in the case
of the Fenton–Karma model, after a few rotations the spiral
wave broke down into a complex spatiotemporal pattern (Fig.
2b). Overall, the breakup process was similar to that observed in
the Fenton–Karma model; however, our modification of Ifi

resulted in some increase in the wavelength of the spiral waves.

Spiral Wave Drift. We studied the dynamics of spiral wave rotation
by using parameter values for which spiral breakup was absent in
the absence of deformation. Under these conditions, the spiral
wave rotation was stationary with a circular motion of the spiral
tip (Fig. 1a). Using the same parameter values in the presence
of mechanical activity, we observed drift of the spiral wave to the
center of the medium (Fig. 4a) and subsequent meander of the
spiral around the center. The meander pattern in Fig. 4a was a
combination of two motions: a counterclockwise rotation of the
spiral wave tip along a circular trajectory (similar to that in Fig.
1a), with the motion of the center of rotation of this circle after

another circular trajectory in the clockwise direction. This tip
trajectory was reproduced accurately in the complex plane Z �
X 	 iY (up to initial phases) by using:

Z�t� � R0 exp� i2
f0t� � R1 exp� � i2
f1t� . [9]

Eq. 9 describes a cycloidal motion that is a superposition of a
clockwise spiral wave rotation with frequency f0 along a circle of
radius R0 and a counterclockwise circular motion along the
radius R1 with frequency f1. For Fig. 4a, these parameters are
R0 � 7.50 [s.u.], f0 � 11.95 � 10�3 [t.u.]�1, R1 � 4.86 [s.u.], f1 �
0.56 � 10�3 [t.u.]�1. We performed several simulations with
different initial spiral wave locations, and in all cases, the spiral
wave approached the center of the medium and meandered
along a similar trajectory to that in Fig. 4.

We also have studied how the size of the medium affects spiral
wave drift. Fig. 4b illustrates the behavior of a spiral wave in a
larger medium (151 � 151 grid points, compared with the 141 �
141 grid in Fig. 4b). In this case, the spiral wave also drifted to
the center, but its meander pattern was of larger overall dimen-
sion. This meander also was reproduced by using Eq. 9 with R0 �
7.50 [s.u.], f0 � 11.95 � 10�3 [t.u.]�1, R1 � 10.67 [s.u.], f1 � 0.37 �
10�3 [t.u.]�1. Thus, the change in medium size did not affect the
spiral wave rotation (R0 and f0 are the same for Fig. 4 a and b);
however, the radius and the period of the circular meander
trajectory were greater for the larger medium.

Fig. 5a shows the effect of medium size on the characteristics
of the meander pattern. We observed that R0 and f0 remained
constant, whereas R1 increased and f1 decreased with the in-
crease in medium size. As a result, the radius of the meander
pattern increased, and the speed along the circular trajectory
2
 � R1 � f1 increased only slightly with size (data not shown).

Fig. 3. Mechanism of breakup caused by mechanical activity. (a) Time

courses of voltage u (black trace in Upper), stretch-activated current Is multi-

plied by 100 (green trace in Lower), the fast inward current Ifi (blue trace in

Lower), and the variable v (red trace in Lower), which are responsible for the

inactivation of Ifi at the point marked by the filled square in b. The dashed line

is located at 560 [t.u.], and the pink line is at u � 0.15. (b) Fragmentation of the

spiral wave, showing the same simulation as in Fig. 1b but at time 560 [t.u.].

All parameters and conditions are the same as in Fig. 1b. (c) Magnification of

the dashed rectangular region from a. (d) A similar computation as in a but in

the absence of Is (Gs � 0 in Eq. 8).

Fig. 4. Spiral wave drift caused by mechanical activity. (a) Initial position of

a spiral wave tip (black circle) and the final state of the spiral wave after 120

rotations (shaded image) in a medium containing 141 � 141 grid points with

11 � 11 points per mechanics element and Gs � 0.01. The arrow indicates the

direction of spiral wave drift, and the solid curve illustrates the trajectory of

the spiral tip. (b) A similar simulation to that in a but in a medium containing

151 � 151 grid points. Other parameter values were the same as those for Fig.

1b, except uc � 0.25, �1 � 95, and �3 � 300.

Fig. 5. Characteristics of meander patterns. (a) R0 and R1 in [s.u.] versus

medium size (in grid points). (b) f0 and f1 in [t.u.]�1 versus medium size.
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In a similar manner to the spiral breakup analysis, we studied
how this drift was modulated by the two feedback effects of
deformation: the stretch-activated current Is and the effect of
tissue deformation of wave propagation. We observed that drift
of the spiral wave occurred in the absence of Is, although the
meander pattern was not cycloidal (SI Fig. 8a). However, the
drift speed was much slower than that in Fig. 4a. After 120
rotations, the spiral wave had drifted approximately one-third of
the medium width, whereas by the same time in Fig. 4b, the spiral
had approached and made several rotations about the center of
the medium. In SI Fig. 8b, we see that Is alone induced drift and
meander of the spiral wave similar to that in Fig. 4a. The
characteristics of the meander trajectories also were similar
(R0 � 7.36 [s.u.], f0 � 12.07 � 10�3 [t.u.]�1, R1 � 4.23 [s.u.], f1 �
0.56 � 10�3 [t.u.]�1), although there was a small increase in the
spiral wave frequency f0 and a slight decrease in the radius of the
circular motion R1 compared with that of Fig. 4a. Thus, for these
parameters, we conclude that the dominant factor driving spiral
drift is the stretch-activated current.

We believe that the mechanism of this drift is similar to the
resonant drift of spiral waves reported in refs. 25 and 26. As
demonstrated in ref. 26, a periodical variation of the properties
of an excitable medium in synchrony with the period of a spiral
wave resulted in drift and subsequent stable meandering of the
spiral wave tip. In our model, deformation of the medium also
produced a periodical modulation of the tissue properties in
synchrony with the spiral wave period as a result of the excita-
tion–contraction coupling. Thus, the effects of mechanics in the
present study are likely to be similar to the effects of periodical
forcing during resonant drift, leading to drift and meandering
attractors for spiral wave rotation.

Discussion

We have demonstrated that deformation has a pronounced
effect on spiral wave rotation and can induce either breakup or
drift and meander of spiral waves.

By using very general descriptions of the excitation–mechanics
properties, our modeling has demonstrated that stretch-
activated channels can induce spiral wave breakup. This conclu-

sion requires confirmation both experimentally and by using
modeling studies involving detailed ionic descriptions of cardiac
tissue. In support of the latter, we have shown that spiral breakup
occurred as a result of inactivation of the fast inward current Ifi,
which was caused by diastolic depolarization mediated by the
stretch-activated current. Furthermore, the notion that the
stretch-activated current can block action potential has been
demonstrated by using the Beeler–Reuter ionic model for ven-
tricular cells (20), for which it was shown that increasing the
conductance of the stretch-activated current resulted in failure
of excitation of cardiac cells (see figure 3 in ref. 20). Note also
that inactivation of the fast sodium current by depolarization has
been observed experimentally (e.g., ref. 23) and reproduced by
using ionic models of cardiac tissue (27), for which it can cause
block of propagation.

We suggest that the mechanism of spiral drift is similar to the
resonant drift mechanism. Resonant drift of spiral waves in
cardiac tissue has not been studied experimentally in biological
tissues but has been shown to exist in detailed ionic models of
cardiac tissue (28), as well as in experiments involving BZ
reactions (26). Therefore, it is likely that these effects of
mechanics on spiral wave dynamics also could be reproduced by
using more detailed experimental and modeling studies in
cardiac tissue and in BZ reaction.

Here, we have presented a general study of spiral wave
dynamics in a deforming medium, but many potentially impor-
tant factors have been neglected, such as the fibrous anisotropy
of cardiac tissue, which is important both for the electrical and
mechanical properties of the heart. We chose not to consider this
factor because the main aim of this study was to investigate the
basic effects of mechanics on a general RD system. The influ-
ence of cardiac anisotropy is likely to add additional effects and
will need to be addressed in future studies.
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Corrections

BIOPHYSICS. For the article ‘‘Drift and breakup of spiral waves in
reaction–diffusion–mechanics systems,’’ by A. V. Panfilov, R. H.
Keldermann, and M. P. Nash, which appeared in issue 19, May
8, 2007, of Proc Natl Acad Sci USA (104:7922–7926; first pub-
lished April 27, 2007; 10.1073�pnas.0701895104), the authors
note that on page 7922, right column, the first sentence in
Mathematical Model, ‘‘Our RDM model is based on a three-
variable Fenton–Karma RD model for cardiac excitation (15),
coupled with the soft-tissue mechanics equations described in
refs. 12 and 16 . . . , where �(x) is the standard Heaviside step
function: �(x) � 1 for x � 0 and �(x) � 0 for x � 0,’’ should
instead read: ‘‘Our RDM model consists of RD equations
developed by F. H. Fenton (personal communication) and is
based on a three-variable Fenton–Karma RD model for cardiac
excitation (15), coupled with the soft-tissue mechanics equations
described in refs. 12 and 16 . . . , where �(x) is the standard
Heaviside step function: �(x) � 1 for x � 0 and �(x) � 0 for x

� 0.’’ Additionally, on page 7923, left column, beginning on line
10 of the text, the formula for Isi is incorrect in part. The portion
of the formula appearing as ‘‘(0.46 � 0.085 � tanh[k(u � 0.5)])’’
should instead appear as: ‘‘(0.23 � 0.085tanh[10(u � 0.65)]).’’
Thus, the corrected formula should read Isi(u, w) � �(u �

0.2)uw(0.23 � 0.085tanh[10(u � 0.65)]). Finally, on page 7926,
in the first sentence of the Acknowledgments, the authors would
like to more specifically acknowledge the assistance of Dr.
Fenton. Therefore, ‘‘We thank Dr. F. Fenton, Prof. P. J. Hunter,
and Dr. P. Kohl for valuable discussions’’ should instead read:
‘‘We are grateful to Dr. F. H. Fenton, who kindly provided
equations used in the construction of our RDM model, and to
Prof. P. J. Hunter and Dr. P. Kohl for valuable discussions.’’
These errors do not affect the conclusions of the article.

www.pnas.org�cgi�doi�10.1073�pnas.0710559104

IN THIS ISSUE, MEDICAL SCIENCES. For the ‘‘In This Issue’’ summary
entitled ‘‘Carvedilol sidesteps G proteins,’’ appearing in issue 42,
October 16, 2007, of Proc Natl Acad Sci USA (104:16392), the
figure caption appeared incorrectly. The online version has been
corrected. The figure and its corrected caption appear below.

Carvedilol recruits �-arrestin to the �2-adrenergic receptor. The �-arrestin2-

GFP is shown in green.

www.pnas.org�cgi�doi�10.1073�pnas.0710562104

PERSPECTIVE. For the article ‘‘Powering the planet: Chemical
challenges in solar energy utilization,’’ by Nathan S. Lewis and
Daniel G. Nocera, which appeared in issue 43, October 24, 2006,
of Proc Natl Acad Sci USA (103:15729–15735; first published
October 16, 2006; 10.1073�pnas.0603395103), the authors note
that in Fig. 1, the charges shown in the solar fuel cell are on the
wrong sides of the cell. The holes should be at the anode, and
the electrons should be at the cathode. This error does not affect
the conclusions of the article. The corrected figure and its legend
appear below.

Fig. 1. H2 and O2 are combined in a fuel cell to generate a flow of electrons

and protons across a membrane, producing electrical energy. The solar fuelcell

uses light to run the electron and proton flow in reverse. Coupling the

electrons and protons to catalysts breaks the bonds of water and makes the

bonds H2 and O2 to effect solar fuel production.

www.pnas.org�cgi�doi�10.1073�pnas.0710683104
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