
Drift Compensation of Gas Sensor Array Data by

Common Principal Component Analysis

A. Ziyatdinova,b, S. Marcoe,b,f, A. Chaudryc, K. Persaudd, P. Caminala,b, A.
Pereraa,b
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Abstract

A new drift compensation method based on Common Principal Component

Analysis (CPCA) is proposed. The drift variance in data is found as the

principal components computed by CPCA. This method finds components

that are common for all gasses in feature space. The method is compared in

classification task with respect to the other approaches published where the

drift direction is estimated through a Principal Component Analysis (PCA)

of a reference gas. The proposed new method – employing no specific refer-

ence gas, but information from all gases –has shown the same performance as

the traditional approach with the best-fitted reference gas. Results are shown

with data lasting 7-months including three gases at different concentrations

for an array of 17 polymeric sensors.
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1. Introduction

Chemical sensor arrays combined with read-out electronics and a prop-

erly trained pattern recognition stage are considered to be the candidate

instrument to detect and recognize odors as gas mixtures and volatiles [1].

However, a strong limitation in sensor array technology, in addition to selec-

tivity and sensitivity constraints, arise from sensor drift. This phenomenon

degrades the stability of the device and makes obsolete the models built in

order to recognize and quantify volatiles.

The drift phenomena, in general, are defined as gradual changes in a

quantitative characteristic that is assumed to be constant over time. The

drift in chemical sensor array devices (also known as e-noses) is a rather

complex and inevitable effect, which is generated by different sources. Sensor

aging and sensor poisoning influence the device directly through a change

in the sensing layer (reorganization of sensor material and contamination).

Additionally, the drift of the sensor response is also implied by experimental

operation, this includes thermal and memory effects of sensors, changes in

environment and odor delivery system noise.

Many efforts have been made in sensor technology and experimental de-

sign aiming to improve the stability of sensors with time. Other efforts have

been focused on the data processing methods for drift counteraction that can

assist these systems to enlarge their calibration lifetime.

An important assumption for drift-compensation methods in chemical
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sensor signal processing is that the drift observed int the data is considered

to have a preferable direction, rather than a random distribution (according

to the definition of drift). This assumption reasonably conforms to the fact

that the most disturbances in sensor array data are induced by the sensor

side. Other sources of drift also contribute to principal directions of vari-

ance as sensors are also assumed to react similarly to the same changes in

environment as temperature, humidty variations and others.

The drift evolution can be learned from calibrant samples or the reference

process like wash/reference cycle, but that requires a special experimental set

up. Univariate methods on baseline manipulation are simple and widely used

in the industry [2]. However multivariate methods capture more complex or

non-linear drift effects using the information from several sensors in order

to model the drift, at the cost of increasing the number of the parameters

involved in the correction. Different multivariate methods based on adaptive

filters, Component Correction and System Identification theory can be found

in the literature [3–5]. Most of the methods are linear, which allows capturing

the most drift variance component, but more complex non-linear approaches

have also been reported [6, 7].

This paper proposes a new multivariate method based on Common Prin-

cipal Component Analysis (CPCA) for drift compensation. The method is

compared with respect to the well-established approach of Arthursson et

al. as both methods compensate the linear component drift in data by em-

ploying a Component Correction (CC) routine [5]. The performance of the

algorithms is evaluated on a classification task, with a special attention given

to the determination of the variance component of drift, which is a critical
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point of the methods. The novelty of the CPCA approach consists in com-

puting the drift direction explicitly as a variance common for all the odors

classes, so it does not need any specific reference gas. The rest of the paper

is organized as follows. The Section 2 describes the dataset and presents the

details of the two methods on drift conuteraction. Section 3 reports about

results and Section 4 presents the conclusions.

2. Materials and Methods

2.1. Materials

The dataset was obtained the facilities of the University of Manchester.

Three gases at different concentration level were measured: ammonia (0.01%,

0.02%, 0.05%), propanoic acid (0.01%, 0.02%, 0.05%), n-buthanol (0.01%,

0.1%). The experiments were repeated on a regular basis during 7 month.

The sensor array was composed by 17 polymeric sensors. A total number of

3925 were acquired and labeled to aforementioned gases and concentrations.

The response of the sensors has 329 seconds time-length, sampled at 1Hz

frequency. The compound is induced to the sensor array at instant t = 0s,

then the clean air enters the chamber at instant t = 185s.

For feature extraction, the data at instant t = 180s is used from the sensor

response, thus forming a 17-dimensional feature space from the array of 17

sensors. The option of using complete number of transient points (329) in the

signal was discarded, because of the small improvement in class separation

and it would help to exposing the method clearly. The operation on removing

the outliers was performed by means of the algorithm of Filzmoser et al. with

the default parameters [8]. Hence, the number of samples has been reduced
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from 3925 to 3484.

2.2. Component Correction Method

The component correction method was first proposed by Arthursson at

al. in 2000[5]. The drift component of variance is calculated as the principal

component p (or for several components P ) of a certain class, namely the

reference gas. To remove the drift from the measurement matrix X, the drift

direction in data is subtracted by means of a component correction (CC),

Xcorrected = X − (X · p)pT (1)

where the vector p represents the linear approximation of the drift direction.

The CC operation is also linear, that in turn preserves the variance in data

responsible for class separation and relationship of concentrations.

The approach strictly assumes that the drift component is highly corre-

lated along the gas classes, such that the vector p obtained from the reference

gas explains the drift variance for the rest of gases. Since drift often stands

for one strong direction in data common for all classes, this strategy seems

to be reasonable, but a number of assumptions are considered.

First, there is the assumption that the subspace defined by P (if more

than one component is captured) captures only the variance responsible for

the drift. However, the data projected onto P may correspond to the vari-

ance of the concentration induced by the odor delivery system, for example.

Hence, there is the risk of that some information for gas quantification to

be subtracted from the data after the CC operation. Another assumption

is related with the fact that sensors can respond to the reference and other
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gases differently, but this relationship is not managed by the method, as the

subspace P contains only information of the reference gas.

2.3. Common Principal component Analysis

This paper proposes a generalization of the CC method through a mod-

ification on the method of computing the drift subspace of the data. The

main basis is to compute the vector p so that it can express the common co-

variance for all classes, rather than only the variance shown in the reference

gas. The Common Principal Component Analysis (CPCA) can be viewed as

a generalization of PCA to k groups of classes. Under the Common Principal

Component hypothesis HC , there exists an orthogonal matrix V such that k

covariance matrices Σi are diagonal in the data space defined by V .

Hc : Li = V T · Σi · V, i = 1, 2, . . . , k (2)

CPCA was proposed by Flury in 1984 who first derived the normal theory

maximum likelihood estimates of V and Li [9]. CPCA is also referred to as

Joint Diagonalization (JD), as simultaneous diagonalization of matrices Σi

is performed.

The exact CPCA solution exists if all the matrices Σi commute. When

it is not the case, the approximate JD problem is stated and can be solved

by optimizing different diagonality criterion [10]. In this work, the algorithm

of Cardoso is used which performs the orthogonal diagonalization based on

Weighted Least-Squared criteria by means of the Givens rotations[11].

Comparison between PCA and CPCA can provide insight into the appli-

cation of joint diagonalization for the problem on drift compensation. On
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one side, PCA finds the direction of maximum variance blindly to the class-

separation information. The principal component can be useful for interpre-

tation only in the trivial case of one class, which is the reference gas. On the

other side, CPCA analyzes the between-class relationship and its principal

components cover the direction of variance common for all classes.

In other words, the CPCA approach has the confident mathematical base

to find the drift variance in accordance with the definition of long-term drift.

The PCA approach with the reference class works well only if the reference

gas satisfies the requirement to be physically representative. Otherwise, the

principal components may capture not only the drift variance, but also the

variance in data valuable for data analysis in classification, like concentration

oriented components.

An important property of CPCA is that the transformation matrix V is

orthogonal (a non-orthogonal formulation of CPCA also exists). Hence, this

allows using only several principal components P extracted as columns of the

matrix V , in the same manner as for PCA. To estimate the fitness of JD in

this work, signal-to-nose ratio (SIR) is used for the components, as in signal

processing on speech recognition.

3. Results

3.1. Dataset Description

The sensor data shows complexity for analysis because the influence of a

strong drift effect, as shown on Figure 1, where the steady response of sensor

1 is depicted for all classes. The spikes of the signals indicate so-called

short-term drift caused by some temporal changes, for example, warm-up of
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sensors. The objective of study in this work is related with long-term drift

that can be observed in changes in base-line of the signals similar for all the

classes.

[Figure 1 about here.]

[Figure 2 about here.]

The PCA scores of the data are showed in Figure 2, where first two prin-

cipal components capture about 96% of total variance. In order to generate

a simple figure, PCA is computed employing a subset of data (1000 sam-

ples) rather than the complete dataset of 3484 samples. That can give some

reference on how the two examined methods on drift compensation will pro-

ceed in the dataset. The depicted confidence ellipses show graphically the

different covariance structure for each of the classes. The main direction of

the ellipses matches the choice of the direction component for each reference

in the Arthurssons approach. The advantage of the new method based on

CPCA relies on the mathematical base of computing the common variance

along the classes. This common variance is assumed to provide more general-

ization in the drift compensation process and is the main basis of this method.

Two Component Correction (CC) methods on drift compensation are exam-

ined in this work. The first one is the classical approach of Arthursson where

the drift subspace is computed by PCA of the reference gas. The second

one is the new method proposed in this manuscript that employs CPCA to

evaluate the drift component in data using the relationship along all classes.

The methods are referred to as CC-PCA and CC-CPCA respectively.
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To evaluate the algorithms towards drift counteraction, a simple k-NN

classifier is used with the parameter of nearest neighbors k = 3. The choice

of the classifier seems reasonable to test comparatively the performance of

both approximations.

Figure 3 shows the validation scheme employed in this paper. The dataset

is divided into two Training Sets (T1,T2), representing the first 1000/1200

samples of the data, respectively, and a variety of Validation Sets, which

are generated with a moving sliding window as the time between training

and validation set increases. The classification model and drift direction in

data are computed at the beginning of the time period, in the Training Set.

Then the classification ratio is measured on the data of the Validation Set,

previously corrected by one of the drift counteraction methods. This follows a

validation scheme specially devised for testing drift algorithms, first proposed

by Gutierrez-Osuna in 2000 [12].

[Figure 3 about here.]

The number of drift components p in the CC methods can be set to

any number. When one component is selected, the drift is assumed linear,

whereas several drift components could hint a non-linear or more complex

nature of drift. However, there is certain risk that the more components

are calculated the more variance is subtracted from the data, and the sub-

tracted variance could capture not only for drift. In this work, only one drift

component is used as the final goal is a comparison of the two examined

methods.
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3.2. Drift Component

The two methods CC-PCA and CC-CPCA differ in the way of calculation

the subspace of drift in the Training Set. On the other side, the Component

Correction operation is common to both methods in order to subtract the

drift (computed in the Training Set) from the data in the Validation Set.

Hence, the performance on the two drift-aware methods depends only on the

accuracy of calculation of the drift component.

In the CC-PCA method, the first principal component of the reference

gas represents the drift direction. The fitness of this direction to the real

drift in data is as good as the reference gas is representative along the oth-

ers. Under CC-CPCA approach, covariance matrices of k gases (in this work

k = 3) are jointly diagonalized, and the transformation matrix V determines

the common subspace in the data, which is interpreted as the drift compo-

nent. The number of components for both methods is set to one in order to

ease the comparison, but this number should be optimized for each specific

application. Since the number of drift component is set to one, the basis

vector p with the greatest SIR ratio in the matrix V is selected. For both

Training Sets T1 and T2, the SIR value is at the acceptable level and equals

to 73% and 82% respectively.

[Figure 4 about here.]

The evolution of drift in data can be observed in Figure 4, where the

complete dataset is divided into eleven consequent groups of 300 samples,

and the drift direction is computed by CPCA for each group. Since the drift

is modelled as a vector in the 17-dimencional feature space, the 2-dimencional

10



projection to the PCA plane of the first group is selected for visualization.

The statistical Wilk-Shapiro normality test has been performed for the angle

of all the eleven vectors, in order to conclude that there is a statistically

significant difference along them ( p − value ≤ 0.001). Therefore, the size

of the Training Set (1000-1200 samples) seems to be selected correctly to

capture the as much drift variance as reasonable for the given size of the

dataset (3484 samples). Additionally, one can see that the first 3− 4 arrows,

which correspond to the region of the Training Set, are visually different.

Drift directions for the Training Sets T1 and T2 are showed in the PCA

space in Figure 5. For both Sets T1 and T2, all drift vectors of three reference

gases are quite different, that underline the weakness of CC-PCA approach

when the choice of the reference in not clear. Comparing plots for T1 and T2,

the drift direction obtained from propanoic acid 0.05% (red arrow) reference

gas appeared to be sensitive to switch from 1000 to 1200 of sample size of the

Training Set, while the drift vectors from n-buthanol 0.1% (grey arrow) and

ammonia 0.05% (green arrow) reference mostly preserve the same direction.

The orange arrow on Figure 5 depicts the drift direction obtained via

joint diagonalization (JD) of covariance matrices of three gases propanoic

acid 0.05%, n-buthanol 0.1% and ammonia 0.05%, as stated in the equation

(2). The JD drift vector lies very close to the drift vector obtained from the

ammonia 0.05% reference gas. The mathematical explanation is illustrated

on the Figure 2 , where the covariance structure (confidence ellipse) of am-

monia 0.05% gas is dominant along the other two gases. This could hint a

contamination from ammonia in a number of samples for the other gases.

[Figure 5 about here.]
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Following the mathematical intuition of CPCA, the drift direction from

joint diagonalization is believed to correspond to the actual variation of data

caused by drift. Thus, the performance of the drift-aware methods based on

the joint diagonalization and the ammonia 0.05% reference gas is expected to

be close to each other and superior in comparison with the rest two reference

gases. The numerical results will be presented in the section 3.3.

3.3. Evaluation of the Methods

The power of the examined methods on drift counteraction is performed

on classification problem on the corrected data and compared in respect to

the results obtained for non-corrected data. The validation process has been

accomplished with help of the sliding window conforming Validation Sets

with the same size as the size of the Training Set.

Figure 6 shows the main results in terms of a comparison between the

two methods CC-PCA and CC-CPCA. The curve of classification ratio for

non-corrected data is of black colour, the curves of the references ammonia

0.05%, propanoic acid 0.05%, n-buthanol 0.1% and joint diagonalization are

marked by grey, green, red and orange respectively. The X axis represents

the distance between Training and Validation Sets measured in days as state

in figure 3.

[Figure 6 about here.]

For both experiments T1 and T2 the reference curve of uncorrected data

(black line) indicates the low classification rate during all period of time.

That means the sensor data is strongly affected by drift starting from the

beginning of validation phase, 37 and 49 days respectively on the X axis.
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Consequently, the drift counteraction for smaller Training Set T1 has

improved the classification results significantly at the beginning and fail at

the time instant of 63 days. The larger size of the Training Set T2 allows

compensating the drift during the complete time period of experiments by

the best drift-aware method (orange line of join diagonalization). Please note

that there is some recovery on the non-corrected method after the second

month for the first Validation Scheme T1/V1. This could be explained by a

sudden change after month two that is recovered in month three (e.g. due

to a contamination spike that is removed over time), but the true reason is

unknown. This is in agreement with figure 4, were the projection of the drift

direction is continuously being modified over the experiment. The direction

computed at month one is no longer valid as the experiment advances in

time and induce a decrease of the performance in the last segment of the

experiment. In this case the performance of uncorrected data behaves better

in the last part as the Component Correction could be adding more noise

than correction. On the other hand, in T2/V2, as the training set includes

part of the drift present in month two, the corrected models behave better

than the uncorrected, as the drift component found partially includes this

information. In this later case, the models show overall better figures with

time, which yields to an increase in the calibration specifications over time.

In terms of performance of the methods, the CC-PCA approach with the

reference gas ammonia 0.05% performs as well as CC-CPCA method, as ex-

pected from their almost coincident drift directions, for the Training Set T1.

In the experiments with the Training Set T2 the CC-CPCA method shows

superior efficiency along the others, and the time-stability of the classification
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is increased being at the level not below than 80%.

4. Conclusion

In this manuscript we have proposed a new method based on common-

class variance CC-CPCA that has proven to perform at same level of confi-

dence as CC-PCA approach with the best reference gas (ammonia 0.05%).

Moreover, the drift direction captured by Joint Diagonalization is able to

show better stability to artifacts in the training set for a particular class, as

it employs information from all classes, as seen from Training Set T2 experi-

ment. The direction of future work will be related with application of CPCA

to the drift compensation problem optimizing the dimension of the subspace

obtained by CPCA, using higher order components rather than the first one.

Acknowledgment

This work was partially funded from the European Community’s Seventh

Framework Programme (FP7/2007-2013) under grant agreement no. 216916:

Biologically inspired computation for chemical sensing (NEUROCHEM) and

the Ramon y Cajal program from the Spanish Ministerio de Educación y

Ciencia. CIBER-BBN is an initiative of the Spanish ISCIII.

References

[1] K. Persaud, G. Dodd, Analysis of discrimination mechanisms in the

mammalian olfactory system using a model nose., Nature 299 (5881)

(1982) 352–355.

14



[2] J. Haugen, O. Tomic, K. Kvaal, A calibration method for handling the

temporal drift of solid state gas-sensors, Analytica Chimica Acta 407 (1-

2) (2000) 23–39.

[3] M. Holmberg, F. Winquist, I. Lundström, F. Davide, C. DiNatale,

A. D’Amico, Drift counteraction for an electronic nose, Sensors & Ac-

tuators: B. Chemical 36 (1-3) (1996) 528–535.

[4] M. Holmberg, F. Davide, C. Di Natale, A. D’Amico, F. Winquist,

I. Lundström, Drift counteraction in odour recognition applications:

lifelong calibration method, Sensors & Actuators: B. Chemical 42 (3)

(1997) 185–194.

[5] T. Artursson, T. Eklov, I. Lundstrom, P. Martensson, M. Sjostrom,

M. Holmberg, Drift correction for gas sensors using multivariate meth-

ods, Journal of chemometrics 14 (5-6) (2000) 711–723.

[6] C. Natale, F. Davide, A. D’Amico, A self-organizing system for pattern

classification: time varying statistics and sensor drift effects, Sensors &

Actuators: B. Chemical 27 (1-3) (1995) 237–241.

[7] S. Marco, A. Ortega, A. Pardo, J. Samitier, Gas identification with

tin oxide sensor array and self-organizing maps: adaptive correction of

sensor drifts, IEEE Transactions on Instrumentation and Measurement

47 (1) (1998) 316–321. doi:10.1109/19.728841.

[8] P. Filzmoser, R. Maronna, M. Werner, Outlier identification in high

dimensions, Computational Statistics and Data Analysis 52 (3) (2008)

1694–1711.

15



[9] B. Flury, Common principal components in k groups, Journal of the

American Statistical Association 79 (388) (1984) 892–898.

[10] X.-L. Li, X.-D. Zhang, Nonorthogonal joint diagonalization free of de-

generate solution, IEEE Transactions on Signal Processing 55 (5) (2007)

1803–1814. doi:10.1109/TSP.2006.889983.

[11] J. Cardoso, A. Souloumiac, Jacobi angles for simultaneous diagonaliza-

tion, SIAM Journal on Matrix Analysis and Applications 17 (1) (1996)

161–164.

[12] R. Gutierrez-Osuna, Drift reduction for metal-oxide sensor arrays using

canonical correlation regression and partial least squares, in: Electronic

Noses and Olfaction 2000: Proceedings of the Seventh International

Symposium on Olfaction and Electronic Noses, Held in Brighton, UK,

July 2000, Institute of Physics Publishing, 2000, p. 147.

16



List of Figures

1 Trajectories of steady-state point recorded from the sensor 1
during 7 months of experiments for all three gasses at their
concentration levels. The plots of trajectories are listed from
left to right: ammonia (0.01% in black, 0.02% in red, 0.05% in
green), propanoic acid (0.01% in blue, 0.02% in cyan, 0.05%
in magenta), n-buthanol (0.01% in yellow, 0.1% in grey). For
each of eight plots the dashed lines separates the samples to
the training set on the left and the validation set on the right. 18

2 PCA scores of the first 1000 samples with the depicted con-
fidence regions depicted for three classes: ammonia 0.05%,
propanoic acid 0.05%, n-buthanol 0.1%. . . . . . . . . . . . . . 19

3 The data is split into Training and Validation Sets, where the
last is moving as a sliding window with step of 100 samples.
The performance of each algorithm is tested as the distance
to the training set increases, following a validation scheme
proposed by Gutierrez-Osuna in 2000 [12] . . . . . . . . . . . 20

4 Given the complete dataset divided into eleven consequent
groups, the drift direction computed by CPCA is plotted as a
projection onto the first two principal components (PCA) of
the first group. . . . . . . . . . . . . . . . . . . . . . . . . . . 21

5 PCA scores and principal drift directions for the Training Set
T1/T2 (left/right). . . . . . . . . . . . . . . . . . . . . . . . . 22

6 k-NN performance as a function of the distance of the Valida-
tion Set from the Training Set T1/T2 (top/bottom). . . . . . 23

17



si
gn

al
 (

ar
bi

tr
ar

y 
un

its
)

4
5

6
7

8

Time

si
gn

al
 (

ar
bi

tr
ar

y 
un

its
)

4
5

6
7

8

Time

si
gn

al
 (

ar
bi

tr
ar

y 
un

its
)

4
5

6
7

8

Time

si
gn

al
 (

ar
bi

tr
ar

y 
un

its
)

4
5

6
7

8

Time

si
gn

al
 (

ar
bi

tr
ar

y 
un

its
)

4
5

6
7

8

Time

si
gn

al
 (

ar
bi

tr
ar

y 
un

its
)

4
5

6
7

8

Time

si
gn

al
 (

ar
bi

tr
ar

y 
un

its
)

4
5

6
7

8

Time

si
gn

al
 (

ar
bi

tr
ar

y 
un

its
)

4
5

6
7

8

Time

Figure 1: Trajectories of steady-state point recorded from the sensor 1 during 7 months
of experiments for all three gasses at their concentration levels. The plots of trajectories
are listed from left to right: ammonia (0.01% in black, 0.02% in red, 0.05% in green),
propanoic acid (0.01% in blue, 0.02% in cyan, 0.05% in magenta), n-buthanol (0.01% in
yellow, 0.1% in grey). For each of eight plots the dashed lines separates the samples to
the training set on the left and the validation set on the right.
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Figure 2: PCA scores of the first 1000 samples with the depicted confidence regions de-
picted for three classes: ammonia 0.05%, propanoic acid 0.05%, n-buthanol 0.1%.
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Projections of Drift directions onto a reference PCA space over time

time(days)

0 23 46 69 92 115 138 161 184

Figure 4: Given the complete dataset divided into eleven consequent groups, the drift
direction computed by CPCA is plotted as a projection onto the first two principal com-
ponents (PCA) of the first group.
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Figure 5: PCA scores and principal drift directions for the Training Set T1/T2 (left/right).
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Figure 6: k-NN performance as a function of the distance of the Validation Set from the
Training Set T1/T2 (top/bottom).
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