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Schematic of cone pedicle showing four triad synapses



Schematic (Kamermans & Fahrenfort) of horizontal cell dendrite

contacting cone pedicle: simulate 600 nm × 900 nm region



Ephaptic Effect

1. Experiments show illumination of cone causes hyperpolarization

of horizontal cells & increased levels of intracellular cone Ca

(Ca2+ current flows into cone)

2. Ephaptic hypothesis: specialized geometry of synapse can force

currents through high-resistance bottlenecks causing potential

drop in extracellular cleft

3. Cone membrane senses this as depolarization, which increases

activation of voltage-sensitive Ca channels

4. Implies Ca2+ current is directly modulated by electric potential





Drift-Diffusion (PNP) Model

∂ni

∂t
+∇· fi = 0, i = Ca2+, Na+, K+, Cl−

fi = ziµiniE − Di∇ni, zi =
qi

qe

, ji = qifi, j =
∑

i

ji

parabolic/elliptic system of PDEs:

∂ni

∂t
+∇· (ziµiniE) = Di∇2ni, i = Ca2+, Na+, K+, Cl−

∇· (ǫ∇φ) = −
∑

i

qini, E = −∇φ



A Model of the Membrane

(similar to Mori-Jerome-Peskin)
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Poisson-Boltzmann Equation

ni = nbi exp

{

−qiφ

kT

}

∇· (ǫ∇φ) = −
∑

i

qinbi exp

{

−qiφ

kT

}

≈
(

∑

i

q2
i nbi

)

φ

kT

Debye length lD =
√

ǫkT/
(
∑

i q2
i nbi

)

≈ 1 nm

For z ⊥ & near membrane φzz ≈ φ/l2D

φ ≈ φ±e−|z|/lD , ni ≈ n±bi

(

1 − qiφ
±

kT
e−|z|/lD

)

Set σ+

i =
∫∞

0
qi

(

ni − n+bi

)

dz ≈ qilD
(

n+i − n+bi

)
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Comparison of nearly exact Poisson-Boltzmann solution for

σi/(qinbilD) vs. u0 = qi(φ0 − φb)/(kT) with approximations



Jump conditions for Poisson’s equation

[φ] ≡ φ+ − φ− = V =
σ

Cm

[n̂ · ∇φ] = 0

BCs for drift-diffusion equation (Mori-Jerome-Peskin), but we use

σ±
i = qil

±
D

(

n±i − n±bi

)

∂σ±
i

∂t
= qil

±
D

∂n±i
∂t

= −l±D∇· j±i ∓ jmi

σ ≡
∑

i

σ+

i = −
∑

i

σ−
i
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Along axis of symmetry, homogeneous Neumann BCs for ni & φ;

along other outer boundaries, Dirichlet (bath) BCs for ni &

homogeneous Neumann or Dirichlet (colors) BCs for φ: Uref = −40

mV, UHC = −60 (on) or −40 (off) mV, UBC = −80, −60, or −40 mV,

UCP = −80 to +10 mV



Numerical Methods

Simulate time-dependent equations to steady state ∼ few 100,000

timesteps

Given initial data, for each ∆t:

(i) Compute φ from Poisson’s equation with Dirichlet/Neumann BCs

using “chaotic relaxation” Chebyshev SOR

(ii) Compute ni from drift-diffusion equations with Dirichlet/

Neumann BCs using TRBDF2

(iii) Membrane sweep: Update σ±
i from dσ±

i /dt equations using

TRBDF2 & transcribe to n±i ; update φ± with two jump conditions



Numerical Methods

TRBDF2 for drift-diffusion equations (about 30% of computation

time), “chaotic relaxation” Chebyshev SOR for Poisson equation

(about 70%), membrane BCs (about 1%)

OpenMP gives speedup ∼ Ncores/2

∆t ∼ 1 ps initially → 50 ps, charge layer relaxation ∼ 1 ns

Steady state ∼ 1 µs, GABA diffusion ∼ 1 ms

Solution computed on 600 × 900 fine grid on 8 cores ∼ 10 hrs



TRBDF2 Method

TR

BDF2

n+1n

Timelevel n + γ = n + (2 −
√

2). For du/dt = f (u):

TR step

un+γ − γ
∆tn

2
f n+γ = un + γ

∆tn

2
f n

BDF2 step

un+1 − 1 − γ

2 − γ
∆tnf n+1 =

1

γ(2 − γ)
un+γ − (1 − γ)2

γ(2 − γ)
un
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after one timestep

Bank, Coughran, Fichtner, Grosse, Rose, & Smith (1985): composite

one-step method, second-order accurate & L-stable, ∆t dynamically

adjusted by divided-difference estimate of local error



Known Biological Parameters

Parameter Value Description

nb,Ca 10−4, 2 mM intra/extracellular bath density of Ca2+

nb,Na 10, 140 mM intra/extracellular bath density of Na+

nb,K 150, 2.5 mM intra/extracellular bath density of K+

nb,Cl 160, 146.5 mM intra/extracellular bath density of Cl−

ǫ 80 dielectric coefficient of water

Ns 20 number of spine heads per cone pedicle

Am 0.1 µm2 spine head area

Cm 1 µF/cm2 membrane capacitance per area

VCa 50 mV reversal potential for Ca2+

VNa 50 mV reversal potential for Na+

VK −60 mV reversal potential for K+

Ghemi 5.5 nS hemichannel conductance

mM = 6 × 1017 ions/cm3



Known Biological Parameters

Parameter Value Description

DCa 0.8 nm2/ns diffusivity of Ca2+

DNa 1.3 nm2/ns diffusivity of Na+

DK 2 nm2/ns diffusivity of K+

DCl 2 nm2/ns diffusivity of Cl−

µCa 32 nm2/(V ns) mobility of Ca2+

µNa 52 nm2/(V ns) mobility of Na+

µK 80 nm2/(V ns) mobility of K+

µCl 80 nm2/(V ns) mobility of Cl−

Einstein relation: Di = µikT/qe



Transmembrane Currents

jhemi =
∑

cations

gi (VHC − Vi) = ghemiVHC

jm,Ca =
gCa (VCP − ECa)

1 + exp{(θ − VCP) /λ}

Parameter Value Description

ECa 50 mV cone reversal potential for Ca2+

GCa 2.2 nS Ca conductance

θ 5 mV kinetic parameter (independent of bg)

λ 3 mV kinetic parameter

gi = Gi/(NsAm); ICa = Ns

∫

Am
jm,Ca da flows into cone



In desperation I asked Fermi whether he was not impressed by the

agreement between our calculated numbers & his measured numbers.

He replied, “How many arbitrary parameters did you use for your

calculations?” I thought for a moment about our cut-off procedures

& said, “Four.” He said, “I remember my friend Johnny von

Neumann used to say, with four parameters I can fit an elephant, &

with five I can make him wiggle his trunk.” –Freeman Dyson

Not a very good elephant though—see next page: Fitting an elephant

with (a) 30 (Wei 1975) & (b) 4 parameters, from J. Mayer, K. Khairy,

& J. Howard, Am. J. Phys. 78, 648 (2010)
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3-parameter fit to background off (blue) curve; then background on

(red) curve is a prediction of the model



2D Complex Geometry of the Synapse

1. Model effects of complex geometry

2. Specify holding potential UCP as in voltage clamp experiment

3. Apply 2D TRBDF2 drift-diffusion code (with Chebyshev SOR

for Poisson equation) inside cells as well as outside, along with

membrane boundary conditions

4. Computed potential shows simple compartment model is not

adequate for triad synapse



UCP = 0 mV, UHC = −40,−60 mV, UBC = −60 mV



UCP = −20 mV, UHC = −40,−60 mV, UBC = −60 mV



UCP = −40 mV, UHC = −40,−60 mV, UBC = −60 mV



UCP = −60 mV, UHC = −40,−60 mV, UBC = −60 mV



UCP = −20 mV, UBC = −60 mV, UBC = −60 mV



Experimental IV curves (Kamermans & Fahrenfort)



Experimental IV curves (Kamermans et al.)
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(red) curve is a prediction of the model



Future Work

1. Model nonperiodic arrays of synapses in order to realistically

model entire cone pedicle

2. Multiscale modeling: integrate out shortest time scales in

drift-diffusion model to obtain intermediate model, so we can

treat time-dependent illuminations of retina


