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ABSTRACT In industry, the ability to detect damage or abnormal functioning in machinery is very

important. However, manual detection of machine fault sound is economically inefficient and labor-

intensive. Hence, automatic machine fault detection (MFD) plays an important role in reducing operating

and personnel costs compared to manual machine fault detection. This research aims to develop a drill

fault detection system using state-of-the-art artificial intelligence techniques. Many researchers have applied

the traditional approach design for an MFD system, including handcrafted feature extraction of the raw

sound signal, feature selection, and conventional classification. However, drill sound fault detection based

on conventional machine learning methods using the raw sound signal in the time domain faces a number

of challenges. For example, it can be difficult to extract and select good features to input in a classifier, and

the accuracy of fault detection may not be sufficient to meet industrial requirements. Hence, we propose

a method that uses deep learning architecture to extract rich features from the image representation of

sound signals combined with machine learning classifiers to classify drill fault sounds of drilling machines.

The proposed methods are trained and evaluated using the real sound dataset provided by the factory. The

experiment results show a good classification accuracy of 80.25 percent when using Mel spectrogram and

scalogram images. The results promise significant potential for using in the fault diagnosis support system

based on the sounds of drilling machines.

INDEX TERMS Deep learning; machine fault diagnosis; machine learning; sound signal processing.

I. INTRODUCTION

A drilling machine is a kind of rotating cutting machine that

is used widely in factories to drill holes in materials such as

metal, wood, and plastic. The timely detection of problematic

drill bits is essential to preventing damage to materials due to

drilling faults. Because the cutting of a drill makes sounds,

skilled technicians can distinguish the sound of a drill that

is not working properly and immediately stop production so

that the drill can be repaired. Recent advances in automation

technology in factories have promoted the creation of an

automated support system that can classify drill sounds and

provide an alert when sound indicates that a drill is broken.

The benefit of a drill fault diagnosis system is that it reduces

production costs and manpower.

In recent years, many researchers have investigated dif-

ferent ways of classifying the sound signals emitted from

machines. Delgado et al. [1] analyzed sound and vibra-

tion signals to detect fault induction motors. The authors

used the complete ensemble empirical mode decomposition

(CEEMD) to isolate important information and eliminate

noise signals. The authors then calculated the frequency

marginal of the Gabor representation to obtain the intrinsic

mode functions (IMF) in the frequency domain. Neverthe-

less, it is necessary to know the motor speed or the slip to

locate the fault frequency. This makes it difficult to apply

widely in industry because it is not always possible to de-

termine the specific motor speed.

Some approaches extracted statistical features from sound
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signals and classified them using conventional machine

learning methods. For detection and diagnosis of mechan-

ical faults in ball bearings, Kankar et al. [2] extracted six

statistical features (range, mean value, standard deviation,

skewness, kurtosis, and crest factor) to train the support

vector machine (SVM) and artificial neural network (ANN)

classifiers. The accuracy of this research was only 71.23

percent and 73.97 percent when using ANN and SVM,

respectively. Adarsh Kumar et al. [3] developed a system

for automatic drilling operations using vibration signals. The

authors used low pass Butterworth filter to preprocess vibra-

tion signals before extracting eight features from the time

domain, eight features from the frequency domain, and five

Morlet wavelet features. These extracted features were nor-

malized using zero one normalization and applied singular

value decomposition to remove the redundant and irrelevant

features. Then Support Vector Machine (SVM), Artificial

Neural Network (ANN), and Bayes classifier were used for

drill fault detection and recognition. Jonguk et al. [4] ex-

tracted Mel-frequency cepstrum coefficients (MFCCs) from

the audio signals and also employed SVM for classification.

The accuracy reached 94.1 percent on their dataset, which

is collected from an NS-AM-type railway point machine at

Sehwa Company in Daejeon, South Korea. The length of

each sound on their dataset was around 5000 ms. However,

their method did not show a promising result when applied

in our drill sound dataset because each sound recording

is extremely short. Kemalkar et al. [5] extracted MFCCs

features and made a comparison between these features and

a library of features to decide on the fault or non-fault

state of a bike engine. Ning Zhang [6] used the principal

component analysis (PCA) algorithm to extract and train the

training samples. Then, the author used self-organizing maps

(SOM) to cluster the principal component by neural network

clustering into four categories and the Bayesian discriminant

method to identify the testing samples. The dataset for his

experiment was collected by a self-developed drilling test

rig using a signal acquisition hardware system (sensors, data

acquisition cards, and industrial computers).

Turker et al. [7] proposed using a time-domain signal as the

input of a small 1-D CNN to classify motors as either healthy

or faulty. The authors used a balanced dataset of 260 healthy

and 260 faulty cases for training a 1-D CNN model. Bo

Luo et al. [8] detected the fault stage of CNC machine tools

based on their vibration signals. The authors used 10 000

samples; 9000 of these were used for training and 1000 were

used for testing a deep auto-encoder (DAE) model. The DAE

model, which is combined between the SAE layer and the

BPNN layer, is used to classify impulse and non-impulse

responses. A dynamics identification algorithm was then

used to identify dynamic properties from impulse responses.

Finally, similarities between the dynamic properties were

used to detect the health of the CNC machine tool. Similarly,

Jianyu Long et al. [9] combined a sparse autoencoder (SAE)

and an echo state network (ESN) to diagnose the transmission

faults of delta 3-D printers. These authors collected attitude

data from an attitude sensor and used SAE to extracted

features from attitude data. Then these features were used

as the input of an ESN for fault recognition. Jianyu Long

et al. [10] also combined a hybrid evolutionary algorithm

featuring a competitive swarm optimizer and a local search

to optimize parameter values and hyperparameter settings of

echo state network for intelligent fault diagnosis. To test the

performance of their proposed method, the authors conducted

fault diagnosis experiments for a 3-D printer and a gearbox.

Satyam Paul and Magnus Lofstrand [11] proposed an interval

type-2 (IT2) Takagi-Sugeno (T-S) fuzzy-based observer fault

detection scheme for drill bit fault detection and raising an

alarm after 45 seconds.

Many recent studies gained remarkable results when us-

ing image representation of the sound signal to train state-

of-the-art deep learning architectures such as convolutional

neural networks (CNNs) on machine fault sound diagnosis

[12]–[15]. However, the vast majority of the research was

conducted using a large and balanced dataset. In reality,

the sounds recorded when the drills were broken occupy

only a small percentage of the whole dataset compared to

the normal working sound of drill machines. The imbal-

anced real-world dataset leads to a bias for training CNN

architectures; for example, the CNN model might predict

poorly on the minority class since this class has fewer data.

Besides, since each sound sample in our real-world dataset

is too short, around 20.83 ms and 41.67 ms, the extracted

features from raw sound signals cannot carry much important

information for classification. This leads to more difficulties

in drill sound classification compared to previous studies. To

the best of our knowledge, no studies have been conducted

using such short drill sounds. Therefore, the use of an end-

to-end system (only a conventional machine learning or an

advanced convolutional machine learning architecture) does

not meet the desired accuracy of sound classification in the

industry sector. To solve the problem of drill fault sound

detection, an architecture consisting of many layers is nec-

essary (preprocessing, image conversion, feature extraction,

feature selection, classification). For each layer, different

algorithms that include both a deep learning architecture and

machine learning methods may be used. The limitation of

the traditional approach, which includes several steps/layers,

is that each step requires to be optimized separately under

different criteria. However, instead of losing discriminative

information, optimizing each step separately under different

criteria can help to improve the performance of each step and

the whole system.

In this paper, we propose using image representations of

the sound signals instead of using raw sound signals in the

classification task. Two linear transformations from audio to

images are utilized for classifying drill sounds: Mel spectro-

gram images and scalogram images. Section II.B describes

these transformation methods in detail. Furthermore, we also

propose a new method combining both modern deep learning

methods and traditional machine learning classifiers for drill

fault sound diagnosis. Firstly, effective features are extracted
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automatically using a pre-trained CNN architecture instead

of hand-crafted features. Secondly, neighborhood component

analysis [16] is implemented to select rich features that carry

the most relevant information. Afterward, these selected fea-

tures are used to train machine learning classifiers to compare

the performance.

As the comparative studies, we compare the performance

of literature studies including (1) extracting features from

raw sound signals and classifying them using conventional

machine learning classification methods, and (2) using Mel

spectrogram or scalogram images to train CNN architectures.

We conducted the experiment before and after utilizing the

NCA algorithm to assess the effectiveness of the feature

selection method for the classification result. The experiment

results prove the significant efficiency of the feature selection

algorithm in maximizing the prediction accuracy of classifi-

cation algorithms.

The rest of this paper is organized as follows. Section

II describes the proposed methods step-by-step, including

data collection, pre-processing data, converting sound signals

into images, feature extraction, feature selection, and clas-

sification. The result, comparative study, and discussion are

presented in section III. Finally, the conclusion is presented

in section IV.

II. PROPOSED METHOD

A. DATA COLLECTION

The dataset was recorded from a drill machine at Valmet

AB, a company in Sundsvall, Sweden, using four AudioBox

iTwo Studio microphones. The microphones have high-

performance mic preamplifiers. Figure 1 shows a drill ma-

chine at Valmet AB when it is idle and when it is active. The

sampling frequency used to record drill sounds is 96 kHz.

The dataset includes two parts. One part has a total of 833

files. Each file is a vector containing 2000 samples corre-

sponding to a time of 20.83 ms. Another part has a total of

40 417 files. Each file contains 4000 samples corresponding

to a time of 41.67 ms.

Valmet AB is currently operating multiple drilling ma-

chines to drill thousands of small holes in metal plates, as

shown in Figure 1. There are two types of drilling machines

that are used in the factory, one comprises of 90 drill bits, the

other comprises of 120 drill bits. A technician usually turns

off the drill every 10 minutes to check its status. Any drill bits

that are damaged must be replaced to ensure that all holes are

drilled on the surface of the metal plate as intended. Stopping

the production line is time-consuming and labor-intensive.

Therefore, an automated system that detects broken drill bits

is essential in production to reduce production and labor

costs.

It is widespread to use vibration sensors for machine fault

detection. However, the use of vibration sensors for the drill

fault detection system at Valmet AB faces many challenges.

Firstly, each drilling machine consists of 90 or 120 drill bits,

as shown in Figure 1. Each drill bit needs a vibration sensor

in order to detect any fracture. Mounting 90 to 120 sensors

as one sensor array and classifying the vibration differences

is complicated and costly. Secondly, when cutting metal, in

particular, it is necessary to ensure a smooth and accurate

hole while preventing the metals from grabbing the drill bits.

Therefore, water is used to clean the surface of the metal, as

shown in Figure 1. Besides, water is also used to cool down

the drill bits. It is difficult to use vibration sensors in a very

wet environment. Finally, an artificial intelligence supported

sound measurement system enables a more robust and accu-

rate way to detect drill breaks in this type of machine. All of

these reasons motivated us to use sound to detect the broken

drill instead of using vibration.

Addressing an actual demand, this research aims to detect

abnormal functioning of the drills based on the sound signals.

These sounds are generated when a drilling machine is oper-

ating. Based on data collected from the factory, the dataset is

divided into three groups: broken sounds, normal sounds, and

unrelated sounds. The broken sounds group contains all of

the sounds recorded when the drill was broken. They account

for approximately 0.16 percent (67 sound signal files) of all

files in the dataset (41 250 sound signal files in total). The

normal sounds were recorded when the drilling machine was

working properly. These sounds make up most of the dataset,

up to 99.54 percent (41 062 sound signal files). Figure 2

shows a normal drill bit and a damaged drill bit. Unrelated

sounds were caused by the surrounding environment, such

as the sound made when knocking on the microphone or

knocking in the scrap box, vacuum cleaner sounds, volume

control sounds, unknown sounds, etc. There are 119 sound

files in this group, and they make up around 0.29 percent of

all the sound files.

FIGURE 2: A healthy drill bit (on the left side) and a broken

drill bit (on the right side).

The actual rate of broken drill bits in the production line
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is only around 0.16 percent compared to the total number

of drill sounds obtained (67 broken-drill sound files out of

41 250 files in total). Thus, it is difficult to detect broken

drills. Consequently, creating a balanced dataset is an im-

portant step to take before proceeding further. We selected

the number of sounds in majority classes (normal sounds

and unrelated sounds classes) equal to the number of sounds

in the minority class (broken sounds class), as shown in

Figure 3. The total number of sounds in the dataset after

undersampling is 201.

The balanced dataset that has 201 samples are small to

work with. Therefore, training an end-to-end learning model

on a small number of samples tends to overfit and produce

inaccurate results. Because the more parameters the complex

model has, the more susceptible it is to overfit. Besides,

some conventional classifiers are good at dealing with small

datasets. To overcome overfitting with the small dataset, we

decided to extract features from the image representations of

sounds (Mel spectrogram and scalogram images) and choose

the conventional classification models for the classification

task. The detail of our proposed methods is presented in the

next section.

B. METHOD

In this section, the pre-processing, Mel spectrogram, scalo-

gram, feature extraction using transfer learning, and feature

selection are presented. Figure 4 shows the detailed steps

of the proposed method. All drill sounds are processed step

by step following the training progression. Then, the new

sound signal that needs to be classified goes through the same

process in the prediction phase.

1) Sound Pre-processing

A human can hear sounds ranging in frequency from 20

Hz to 20 000 Hz. Hence, the sample rate of 44 100 Hz

corresponding to a maximum sound frequency of 22 050 Hz

is usually used for recording sound. However, the sample

rate that is higher than 44 100 Hz makes the sound smooth.

Although the drill sounds in our dataset were recorded at the

sample rate of 96 000, the sound of an operating drill ranges

from roughly 1000 Hz to 22 000 Hz. Thus, low pass filter and

high pass filter are performed in the passband of 1000–22 000

Hz.

2) Mel Spectrogram

Sound is usually visualized as an airwave that is a two-

dimensional representation of amplitude and time. Figure

5(a) shows an example of a sound signal in the time domain.

Sound can also be represented as a frequency spectrum of an

audio signal as it varies with time. This is called a spectro-

gram. A spectrogram of sound is created from a time signal

using the fast Fourier transform (FFT). "Mel" is short for

melody. It implies that this is a perceptual scale measurement

based on the comparison of the pitches.

A Mel spectrogram, a combination of the Mel scale and the

spectrogram, is a visual representation of a drill sound in both

frequency and amplitude by the time domains. The amplitude

of a particular time is represented by colors. Brighter col-

ors up through orange correspond to progressively stronger

amplitudes, as shown in Figure 5(b). The horizontal axis

presents the time from left to right. The vertical axis presents

the frequency from low to high.

Frequencies in a sound signal change over time. Hence,

the use of Fourier transforms on the entire audio signal

results in a loss of meaningful frequency information in the

time domain. Supposing the frequency of the sound signal is

uniform for a very short period of time, each sound is divided

into short time frames of 20 ms (2000-points windows) with

a 512-point overlap between successive frames. The FFT

length is 2000 points. Implementing Fourier transforms on

these consecutive frames can help us obtain a good approxi-

mation of frequencies across the time domain.

A Hamming window is applied to each frame to greatly re-

duce spectral leakage before conducting FFT. The Hamming

window has the form [17]:

w(n) = α0 − (1− α0) cos(
2πn

N − 1
), 0 ≤ n ≤ N − 1 (1)

where α0 = 25
46 , and N is the window length.

(a) A drill machine when idle. (b) A drill machine when active.

FIGURE 1: A drill machine at Valmet AB.
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Fast Fourier transform (FFT) using N -point is applied

to calculate the power spectrum of each frame. Finally,

frequency bands are extracted by applying the Mel filter

bank on the power spectrum of each frame to obtain the

Mel spectrogram. The Mel filter bank is composed of many

triangles. Each triangle overlaps half of the next triangle.

Each filter on the filter bank is triangular that has the value

1 at the center of the frequency. It is important to use the

Mel filter bank because the Mel scale simulates the way

a human ear reacts to a sound, by being more sensitive at

the lower frequency and less so at the higher frequency.

Mathematically, the Mel scale is the result of the frequency

scale that is transformed in a non-linear way. The Mel scale

(mel) is converted from the frequency (f ) using the following

formula [18]:

mel = 2595 lg(1 +
f

700
) (2)

Figure 6 shows the comparison of the Mel spectrogram of

a broken sound, a normal sound, and a sound in the unrelated

sound class. The stronger amplitudes corresponding to the

orange region of the broken sound presented at the highest

frequency. The orange region of the normal sound presented

at the second-highest frequency and the unrelated sound

has the lowest frequency. We can see the clear differences

between the Mel spectrograms of the broken, normal, and

unrelated sounds. Moreover, the normal drill sound recorded

by any microphone has similarities to other normal drill

sounds, regardless of the difference in volume, pitch, or

timbre. Thus, Mel spectrograms of normal drill sounds are

FIGURE 3: Undersampling the original dataset.

FIGURE 4: Process of representations for the proposed drill fault diagnosis method.
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similar regardless of the length of time or the microphone

used. This conclusion is also confirmed for sounds in the bro-

ken sound class. Because the sounds in the unrelated sound

class are very diverse, Mel spectrograms of the sounds in

the unrelated sound class may be different. However, strong

power is distributed mainly at low frequencies, as shown in

Figure 6(c). Consequently, the yellow region is located lower

than in the Mel spectrograms of the normal sound and the

broken sound. Based on the striking differences in the Mel

spectrograms, we can classify the sounds of the drills.

3) Scalogram

A scalogram is an image representation of the continuous

wavelet transform (CWT) [19], [20]. CWT is a function that

represents the frequency over time of sound waves. However,

unlike a spectrogram, a scalogram is obtained by windowing

a sound signal with a wavelet shifted in time. Contrariwise, a

spectrogram is obtained when the sound signal is windowed

with a window of constant length shifted in time and fre-

quency. A scalogram is helpful for a short sound signal with

high frequency. The CWT, X(a, b) of a sound signal x(t) is

given by

X(a, b) =
1
√
2

∫
∞

−∞

x(t)ψ(
t− b

a
)dt (3)

where ψ(t)is a continuous function called an analyzing

wavelet, a is a scale a > 0, a ∈ R∗

+, b ∈ R is a translation

value.

CWT uses a source function (mother wavelet) that is

continuous in both time and frequency. There are different

mother wavelets, such as the Morlet wavelet, Paul wavelet,

Morse wavelet, and Bump wavelet. Because we are interested

in the analysis of time-frequency, the Bump wavelet is used

as a wavelet basis function (mother wavelet) in this research.

The continuous function ψ(t) is the Bump wavelet in our

experiment and is defined as

Ψ(sω) = e
1− 1

1−(sω−µ)2/σ2 1[µ− σ/s, µ+ σ/s] (4)

where 1[µ − σ/s, µ + σ/s] is the indicator function for the

interval µ− σ/s ≤ ω ≤ µ+ σ/s .

4) Feature Extraction

The balanced dataset used for the experiment has only 67

Mel spectrogram images corresponding to 67 sounds for each

class. Consequently, training a new CNN model from scratch

would yield overfitting. To take advantage of the incredible

performance of deep CNN architectures, we extracted infor-

mative features from Mel spectrogram images with a pre-

trained CNN. A pre-trained network [21] is a saved model

that was trained on a large dataset such as ImageNet, MS

COCO, etc. In this research, VGG19 architecture that was

trained on the ImageNet dataset was utilized as the pre-

trained network to extract features on our dataset. Although

many state-of-the-art models have been proposed recently

– ResNet, Inception V3, Xception, and so on – we chose

VGG19 because this architecture is quite simple but it also

performed well on our dataset for the feature extraction task.

The architecture of VGG19 is shown in Figure 7. The low-

level features, such as edges, colors, and blobs are learned

from the early layers. The high-level features are learned

at the last three fully connected layers and a softmax layer

for the specific classification task. Therefore, we extracted

features at the global pooling layer that is marked as “Pool

5”, as shown in Figure 7.

(a) (b)

FIGURE 5: (a) The sound signal in the time domain, (b) Mel spectrogram of drill raw signal. Dark blue corresponds to low

amplitudes. Brighter colors up through orange correspond to progressively stronger or louder amplitudes.
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FIGURE 7: Feature extraction uses VGG19 and feature se-

lection uses NCA.

5) Feature Selection and Classification

The number of features extracted from Mel spectrogram

images is 25 088. To reduce the unnecessary features, neigh-

borhood component analysis (NCA) [6] was utilized for se-

lecting the most relevant information for classification. Min-

imizing the redundancy of extracted features from VGG19

can help the model train faster and more effectively. We used

classifiers provided in the Matlab toolbox to classify drill

sounds using the extracted features from images.

III. RESULT

A. EXPERIMENT RESULTS

We use accuracy and F1-score to evaluate the performance

of our proposed methods. The overall accuracy indicates

the rate of correct classification. The F1-score is a measure

arrived at by computing both the precision and the recall. In

the F1-score, precision is the result of true positives divided

by the sum of true positives and false positives. The recall

is the number of true positives divided by the sum of true

positives and false negatives. The confusion matrix shows

the precise accuracy for each class in the classification task.

Since the purpose is to detect damaged drills, accuracy is

the most important consideration when classifying broken

sounds.

In the following subsections, we show the experiment

results for both approaches. The first way is to extract fea-

tures from Mel spectrogram images, and the second way is

to extract features from scalogram images. These extracted

features are used to train various classifiers.

1) Extract features from Mel spectrogram images and

classify using machine learning classifiers

In this section, we converted all 201 drill sounds (67 broken

sounds, 67 normal sounds, and 67 unrelated sounds) to Mel

spectrogram images. In the next step, image features were

extracted using the pre-trained network VGG19. The size

of Mel spectrogram images is 875×656×3, but the required

size of input images for the VGG19 network is 224×224×3.

Therefore, we automatically reduced the size of images in

our dataset before inputting them to the pre-trained network.

Since we wanted to extract high-level features, we acquired

the feature representations of the Mel spectrogram on the last

max-pooling layer of VGG19. The dataset was divided into

60 percent for the training set and 40 percent for the testing

set. Hence, we received 120-by-25 088 training features from

the training set and 81-by-25 088 testing features from the

testing set. We used NCA to reduce the number of features

because we would like to use only the powerful predictive

features (feature weights are higher than 2*6e-5), which

carry the most meaningful information for the classification

purpose. The number of features after reducing was 402.

Figure 8 shows the chart of selection features where the y-

axis shows the feature weights of the selected features.

Afterward, these selected features were used to train var-

ious predictive models, such as SVM, KNN, Ensemble, etc.

The purpose of training various classifiers was to compare

the performance and select the best classifier for the clas-

sification task. Table 1 shows the experimental results of

various classifiers. Medium Gaussian SVM and Quadratic

SVM show the best overall accuracy (80.25 percent) and F1-

score (0.8) when classifying three classes of drill sounds.

(a) A broken sound (b) A normal sound (c) An unrelated sound

FIGURE 6: The comparison between a broken sound, a normal sound, and an unrelated sound.
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FIGURE 8: A plot of selected features. The y-axis presents

feature weights. The x-axis presents feature indexes.

TABLE 1: The performance of classifiers using extracted

features from Mel spectrogram images.

Classifier Accuracy(%) F1-Score

Fine KNN 75.31 0.75
Weighted KNN 75.31 0.75
Cubic SVM 76.54 0.77
Linear SVM 76.54 0.77
Ensemble Subspace KNN 76.54 0.76
Linear Discriminant 79.01 0.79
Quadratic SVM 80.25 0.8

Medium Gaussian SVM 80.25 0.8

Table 2 shows the confusion matrix for the best classifiers,

Medium Gaussian SVM and Quadratic SVM. Since the goal

of this research is to detect broken drills based on their

sound, the accuracy of the broken sounds class is of greatest

concern. We can notice that the precision for the "Broken

sounds" class reached 81.48 percent, which is desirable for

the industry practice, as shown in Table 2. After careful

analysis of the confusion matrix of eight classifiers, the drill

sounds from the "Unrelated sounds" class were more difficult

to distinguish from the "Normal sounds" class. The reason is

that the features of the "Unrelated sounds" class are similar

to the features of the "Normal sounds" class. The detail of

the configuration for SVM models is described as follows.

We used fitcecoc function in Matlab 2019b with the input

argument was a table of selected features, a coding design

was "onevsall" and the learner template was templateSVM

function in Matlab. The parameters for templateSVM func-

tion included: PolynomialOrder was 2, kernel functions were

"polynomial" for Quadratic SVM and "gaussian" for Medium

Gaussian SVM, respectively, kernel scale parameters were

"auto" for Quadratic SVM and 30 for Medium Gaussian

SVM, the box constraint was set to 1, and standardize was

"true" (it means Matlab centers and scales each column of

the predictor data by the weighted column mean and standard

deviation, respectively).

TABLE 2: The confusion matrix of the Quadratic SVM

and Medium Gaussian SVM. The first number repre-

sents the Quadratic SVM and the second number repre-

sents the Medium Gaussian SVM, illustrated as Quadratic

SVM/Medium Gaussian SVM format.

Labels Broken
sounds (%)

Normal
sounds (%)

Unrelated
sounds (%)

Broken sounds 81.48/81.48 3.704/7.407 14.81/11.11
Normal sounds 7.407/7.407 85.19/85.19 7.407/7.407
Unrelated sounds 7.407/3.704 18.52/22.22 74.07/74.07

Although Medium Gaussian SVM and Quadratic SVM

have the same overall accuracy, the accuracy when classi-

fying the broken sounds class of Medium Gaussian SVM is

higher than Quadratic SVM, as can be seen in the "Accuracy"

column of Table 3. The accuracies for the "Broken sounds"

class reach 90.12 percent and 88.89 percent when using

Medium Gaussian SVM and Quadratic SVM, respectively.

Table 3 shows the accuracy, precision, recall, and F1-score

for the Quadratic SVM and Medium Gaussian SVM. These

evaluation metrics are parameters to measure the perfor-

mance of the Quadratic SVM and Medium Gaussian SVM.

For example, precision for the "Broken sounds" class mea-

sures how often a classifier correctly predicts broken sound

for a group of different sounds. The precision for the "Broken

sounds" class in Table 3 is 0.81. However, we want to predict

the broken sound even when we are not sure it is a broken

sound. Hence, recall is a good evaluation metric for fault

sound detection. The recall for the "Broken sounds" class

of Medium Gaussian SVM reaches 0.88. It means the false

negative (predicted as not a broken sound but where the drill

actually had broken) is low. Because both precision and recall

are important metrics in evaluating the performance of a

classification model, F1-score is a balancing metric between

precision and recall.

TABLE 3: The accuracy, precision, recall, and F1-score per

class of the Quadratic SVM and Medium Gaussian SVM.

The first number represents the Quadratic SVM, and the

second number represents the Medium Gaussian SVM, illus-

trated as Quadratic SVM/Medium Gaussian SVM format.

Class Accuracy
(%)

Precision Recall F1-Score

Broken
sounds

88.89/90.12 0.81/0.81 0.85/0.88 0.83/0.85

Normal
sounds

87.65/85.19 0.85/0.85 0.79/0.74 0.82/0.79

Unrelated
sounds

83.95/85.19 0.74/0.74 0.77/0.8 0.75/0.77

2) Extract features from scalogram images and classify

using machine learning classifiers

Figure 9 shows the magnitude scalogram (CWT) with the

cone of influence (COI) of drill sounds using the bump

wavelet. The cone of influence and the scalogram is displayed

during the time period (the x-axis), as shown in Figure 9.
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The gray region from the dashed white line to the x-axis

and y-axis is the cone of influence. This indicates areas in

the scalogram chart that may be affected by edge effects.

The edge effects are strongly significant in the shaded gray

region outside of the white dashed line. Edge effects are

effects in scalograms that arise from regions where extended

wavelengths expand beyond the edges of the observation

interval. Therefore, the gray side area outside the dashed

white line is an unreliable representation of a scalogram,

whereas the area inside the cone represents information that

is reliable and accurate in a scalogram.

Similar methods to those described above are used for

scalogram images. Pre-trained VGG19 is also utilized to ex-

tract features from 201 scalogram images (67 broken sounds,

67 normal sounds, and 67 unrelated sounds). As a result, we

obtained 25 088 training features from the training set. After

using NCA to reduce the number of features, there are 448

features selected. The chart of selected features is shown in

Figure 10.

FIGURE 9: The magnitude scalogram (CWT) of a broken

drill sound.

FIGURE 10: A plot of selected features. The y-axis presents

feature weights. The x-axis presents feature indexes.

Table 4 shows the accuracy and F1-score of different

classifiers. It is clear that a scalogram is a good image

representation for a sound signal on the classification task.

These features, which are extracted from scalograms of drill

sounds, are meaningful for diverse classifiers. The overall

accuracy rises from approximately 75.31 percent (Linear

Discriminant) to 80.25 percent (Subspace KNN).

TABLE 4: The best performance of classifiers using extracted

features from scalogram images.

Classifier Accuracy(%) F1-Score

Linear discriminant 75.31 0.75
Linear SVM 76.54 0.77
Medium KNN 76.54 0.77
Weighted KNN 76.54 0.77
Quadratic SVM 77.78 0.78
Fine KNN 77.78 0.78
Cubic SVM 79.01 0.79
Medium Gaussian SVM 79.01 0.79
Ensemble Subspace KNN 80.25 0.80

The confusion matrix for the best classifier is shown in

Table 5, which shows that the accuracy for the "Broken

sounds" class reaches 81.48 percent. The accuracy of the

"Normal sounds" class is the highest in the confusion matrix.

The precision, recall, and F1-score for each class are shown

in Table 6. The experiment results prove that the Ensemble

Subspace KNN classifier provides the best result for the drill

sound classification using scalograms, as shown in Table 4.

Detail configuration for the Ensemble Subspace KNN model

is described as follows. We used the fit ensemble function in

Matlab 2019b with the input argument as a table of selected

features. The ensemble aggregation method was “subspace”,

the number of ensemble learning cycles were 30, the weak

learner to use in the ensemble is k-nearest neighbors, and the

number of predictors to sample was the number of selected

features.

TABLE 5: The confusion matrix of the best classifier (Sub-

space KNN).

Labels Broken
sounds (%)

Normal
sounds (%)

Unrelated
sounds (%)

Broken sounds 81.48 11.11 7.407
Normal sounds 3.704 85.19 11.11
Unrelated sounds 3.704 22.22 74.07

TABLE 6: The precision, recall, and F1-score per class of the

best classifier (Subspace KNN).

Class Precision Recall F1-score

Broken sounds 0.81 0.92 0.86
Normal sounds 0.85 0.72 0.78
Unrelated sounds 0.74 0.8 0.77

B. COMPARATIVE STUDY

Most previous works were conducted on different datasets or

different kinds of signals. For example, approaches utilized
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ultrasonic data or vibration signals. Moreover, some previ-

ous work experimented with large and balanced datasets. In

addition, the accuracy of the system can be affected by the

length of the sound. As a result, we do not provide a precise

and flawless comparison. The aim of this comparison part is

to provide the discrimination potential of different machine

fault detection methods, in particular, the conventional ma-

chine learning method and deep learning CNN architecture.

The conventional machine learning methods were conducted

using manually extracted features as the input of the tradi-

tional machine learning classifiers, as presented in section

III.B.1. We also examined the use of Mel spectrogram images

or scalogram images as an input to a CNN architecture, as

figured out in section III.B.2.

1) Extract features from raw sound signals and classify using

a machine learning classifier

This section demonstrates a machine learning approach to

classify drill sounds based on the extracted features of the

raw sound signals. The dataset was also split into two parts

so that 60 percent for each class was used for training, and

the remaining 40 percent was used for testing. Pitch and 13

MFCCs were extracted from the sounds by a HelperCom-

putePitchAndMFCC function in the library of Matlab 2019b.

The extracted features were normalized by subtracting the

mean and dividing the standard deviation. These features

were used to train a K-nearest neighbor (KNN) classifier

by fitcknn function in Matlab 2019b. KNN proves to be a

suitable classifier for the classification of multiple classes, as

seen in the results from the experimental evidence in section

III.A, in which the number of nearest neighbors is 5. Eu-

clidean distance was the distance metric to compute the dis-

tance to the neighbor. The distance weight was calculated by

the inverse of distance squared (Distance weighting function

was set to "squaredinverse"). The standardized parameter of

fitcknn function was set to "False". The overall validation

accuracy reaches 67.49 percent. The confusion matrix of

KNN is visualized in Table 7.

TABLE 7: The confusion matrix of KNN classifier.

Labels Broken
sounds (%)

Normal
sounds (%)

Unrelated
sounds (%)

Broken sounds 67.62 18.57 13.81
Normal sounds 8.095 76.9 15
Unrelated sounds 13.98 28.07 57.95

2) Using Mel spectrogram or scalogram images as the input

of the CNN architecture

Because the small number of Mel spectrogram or scalogram

images is not enough to train an end-to-end CNN model,

transfer learning with GoogLeNet is applied for the classifi-

cation task. GoogLeNet is a pre-trained image classification

network that has been trained on the ImageNet dataset to

classify 1000 object categories. The dataset was also divided

into two parts, 70 percent for the training part and 30 percent

for the testing part (60 images). Because the size of the input

images for GoogLeNet is 224×224×3, all images in the

dataset need to be resized to 224×224×3. Data augmentation

methods were used to increase the number of images in the

training part: reflexed images via x-axis, translated images

randomly via x-axis and y-axis in a range of [-30 30] pixels,

and scaled images by a random scale in the range of [0.9 1.1].

The fully connected layer of GoogLeNet was replaced with

a new fully connected layer in which the number of outputs

is three because there are three classes in which to classify.

We set the learning rates in earlier layers to zero so the

network did not update the parameters of these layers. This

helps reduce the training time and prevents overfitting to the

new small dataset. The initial learning rate was set to a small

number of 3e−4 to slow down the training in the transferred

layers. The batch size was 20. The maximum epochs were

20 because we did not need to train many epochs for transfer

learning.

The overall accuracy when using transfer learning to re-

train GoogLeNet to classify Mel spectrogram and scalogram

datasets reached 70 and 75 percent, respectively. The con-

fusion matrices for Mel spectrogram and scalogram datasets

are shown in Table 8 and Table 9.

TABLE 8: The confusion matrix when using transfer learning

to retrain GoogLeNet to classify Mel spectrogram dataset.

Labels Broken
sounds (%)

Normal
sounds (%)

Unrelated
sounds (%)

Broken sounds 75 20 5
Normal sounds 0 80 20
Unrelated sounds 10 35 55

TABLE 9: The confusion matrix when using transfer learning

to retrain GoogLeNet to classify scalogram dataset.

Labels Broken
sounds (%)

Normal
sounds (%)

Unrelated
sounds (%)

Broken sounds 80 15 5
Normal sounds 5 75 20
Unrelated sounds 10 20 70

C. DISCUSSION

The experiment results for all mentioned methods are shown

in Figure 11. The method, which extracts pitch and MFCC

features and classifies three classes using KNN, shows the

worst result. The accuracy only reaches 67.49 percent for

this method. For the Mel spectrogram images, the classifi-

cation accuracy reaches 70 percent with the deep learning

CNN architecture GoogLeNet, and 80.25 percent with our

proposed procedures (feature extractions, feature selection,

and Weighted KNN classifier). Similarly, for the scalogram

images, the classification accuracy reaches 75 percent and

80.25 percent when classifying using GoogLeNet and our

proposed procedures, respectively. It is clear that our pro-

posed methods reach outstanding results.

Moreover, for the comparison between scalogram images

and Mel spectrogram images, we use both of them as the
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input of GoogLeNet. The scalogram images achieved 75

percent accuracy, 5 percent higher than Mel spectrogram

images. When using scalogram and Mel spectrogram images

as the input of our proposed procedures (feature extractions,

feature selection, and the classifier), both of them achieve

80.25 percent accuracy. In conclusion, scalogram images

prove more effective for classifying drill sound signals when

used as inputs to both a CNN architecture and our own

proposed procedures.

FIGURE 11: Results of different methods.

IV. CONCLUSIONS

In this research, we propose a novel approach for drill sound

classification that consists of using image representations

of sounds (Mel spectrogram and scalogram) and extracting

features from these images based on deep learning CNN. We

also utilize NCA to reduce the number of extraction features

from CNN before inputting them to the machine learning

classifiers. Our proposed methods achieve 80.25 percent on

scalogram and Mel spectrogram images. The obtained result

is promising with regard to applications for early fault drill

detection in the industry.

For the comparison study, we compare two time-frequency

analyses (Mel spectrogram and scalogram) when using these

images as the input of our proposed methods. Scalogram

images obtained using the bump wavelet with the COI

contribute to boosting the performance of our procedures.

Moreover, we also experimented with the traditional method

(classifying drill sounds using pitch and 13 MFCCs features

as the input of a KNN classifier) and the state-of-the-art deep

convolutional neural network on our dataset as the compari-

son. The experiment results prove the robustness of using im-

age representation of drill sounds for classifying drill sounds

whether using a CNN architecture such as GoogLeNet as a

classifier or using our proposed procedures.

ABBREVIATIONS

The following abbreviations are used in this manuscript:
ANN Artificial neural network

CEEMD Complete ensemble empirical mode decomposition

CNN Convolutional neural network

COI The cone of influence

CWT Continuous wavelet transform

DAE Deep auto-encoder

ESN Echo state network

FFT Fast Fourier transform

IMF Intrinsic mode functions

KNN K-nearest neighbor

MFCCs Mel-frequency cepstrum coefficients

MFD Machine fault detection

NCA Neighborhood component analysis

SAE Sparse autoencoder

SOM Self-organizing maps

STFT Short-time Fourier transform

SVM Support vector machine

PCA Principal component analysis
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