
Vol.:(0123456789)1 3

Journal of Petroleum Exploration and Production Technology (2020) 10:2055–2068 

https://doi.org/10.1007/s13202-020-00857-w

ORIGINAL PAPER - EXPLORATION ENGINEERING

Drilling stuck pipe classi�cation and mitigation in the Gulf of Suez oil 
�elds using arti�cial intelligence

Haytham H. Elmousalami1,2,3  · Mahmoud Elaskary1,4

Received: 20 December 2019 / Accepted: 17 February 2020 / Published online: 20 March 2020 

© The Author(s) 2020

Abstract

Developing a reliable classification model for drilling pipe stuck is crucial for decision-makers in the petroleum drilling rig. 

Artificial intelligence (AI) includes several machine learning (ML) algorithms that are used for efficient predictive analytics, 

optimization, and decision making. Therefore, a comparison analysis for ML models is required to guide practitioners for the 

appropriate predictive model. Twelve ML techniques are used for drilling pipe stuck such as artificial neural networks, logistic 

regression, and ensemble methods such as scalable boosting trees and random forest. The drilling cases of the Gulf of Suez 

wells are collected as an actual dataset for analyzing the ML performance. The key contribution of the study is to automate 

pipe stuck classification using ML algorithms and mitigate the pipe stuck cases using the genetic algorithm optimization. 

Out of 12 AI techniques, the results presented that the most reliable algorithm was extremely randomized trees (extra trees) 

with 100% classification accuracy based on testing dataset. Moreover, this research presents a public open dataset for the 

drilled wells at the Gulf of Suez to be used for the future experiments, algorithms’ validation, and analysis.

Keywords Artificial intelligence (AI) · Ensemble machine learning · XGBoost · Drilling stuck pipe prediction · 

Optimization · Genetic algorithm

Abbreviations

AdaBoost  Adaptive boosting

AI  Artificial intelligence

ANNs  Artificial neural networks

CART   Classification and regression trees

DNNs  Deep neural networks

DT  Decision tree

Extra Trees  Extremely randomized trees

GA  Genetic algorithms

kNN  K-nearest neighbors

KW  Kilowatts

MA  Moving average

IoT  Internet of things

ML  Machine learning

GOS  The Gulf of Suez

MRA  Multiple regression analysis

MSE  Mean square error

ReLU  Standard rectified linear unit

RF  Random forest

RFR  Random forest regression

RGF  Regularized greedy forest

RMSE  The root mean squared error

RNN  Recurrent neural network

SVM  Support vector machine

SVR  Support vector regression

XGBoost  Extreme gradient boosting

KPIs  Key performance indicators

CNN  Convolutional neural networks

EC  Evolutionary computing

Introduction

Drilling for oil and gas is one of the riskiest activities on 

Earth. The drilling pipe stuck issue is one of the most critical 

drilling problems which costs more than $250 million per 
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year. Complications related to stuck pipe  can account for 

nearly half of total well cost, making stuck pipe one of the 

most expensive problems that can occur during a drilling 

operation. This problem may reache to the drill string loss or 

the complete loss of the well (Shadizadeh et al. 2010; Siru-

vuri et al. 2006). The stuck pipe occurs due to several mech-

anisms including improper hole cleaning, wellbore stability, 

poor well trajectory, improper drilling fluid, hole assembly 

design, and differential sticking forces. The risk of mechani-

cal or differentially stuck pipe can be minimized by adopting 

drilling variables. Pore pressure rises the probability of the 

pipe stuck. Moreover, lower mud densities can increase the 

risk of wellbore instability and mechanical sticking.

Pipe stuck risk can be effectively managed and mitigated 

based on reliable pipe stuck model. Model types can be 

divided into three main categories: empirical, physical, and 

mathematical (Noshi and Schubert 2018). However, empirical 

and physical models cannot capture high predictive accuracy 

and generalization. On the other hand, mathematical models 

statistically need dataset to be developed. In the oil and gas 

industry, huge dimensions of hourly real-time production data 

can be measured such as pressure, flow rate, and temperature 

profiles using sensors and internet of things (IoT) devices on 

the surface of down hole. Such observed data are known as 

the big data characterized by volume, velocity, and variety 

(Mishra and Datta-Gupta 2017). The main motivations to 

automate stuck classification and mitigation are as follows:

1. To provide a proactive prediction tool that can early pre-

dict the stuck occurrence based on the key drilling stuck 

predictors.

2. To provide a reliable tool that can avoid the stuck cases 

and optimize the drilling parameters.

3. To present a comprehensive comparison among ML 

algorithms for pipe stuck prediction.

4. To identify the importance of each predictor for drilling 

pipe stuck using sensitivity analysis.

5. To present a novel dataset for drilling pipe stuck clas-

sification and mitigation in the Gulf of Suez (GOS).

Love (1983) was the first one to use the past data to develop 

a predictive model for success rate of freeing stuck drill pipe 

using a trial-and-error method for key predictors’ selection. ML 

can be applied to identify stuck pipe incidents where the pre-

dictors have been collected based on historical data, reports of 

stuck pipe, and published literature. The collected predictors 

have been ranked to identify the key predictors. After valida-

tion and testing processes, the model showed promising results 

where the proposed model enhanced the describing and moni-

toring of the  drilling data streams (Alshaikh et al. 2019). Using 

real-time drilling operations, a framework for the early accurate 

detection of stuck pipe has been developed based on random 

forests. The model has automated data extraction module and 

reliable prediction classifier that helps drilling engineers and 

the rig crew to predict the stuck pipe risk (Magana-Mora et al. 

2019). Natural language processing and ML can be developed 

for the analysis of drilling data. The objective is to improve res-

ervoir management and determine the non-productive time and 

extract crucial information. The model shows successful per-

formance in the fields in North and South America and fields 

located in the Middle East (Castiñeira et al. 2018).

ANNs have been used for the stuck drill pipe prediction in 

Maroon field where the model is capable of producing reliable 

results (MoradiNezhad et al. 2012). Chamkalani et al. (2013) 

have proposed a new methodology based on SVM for stuck 

pipe prediction. ANNS and SVM have been implemented 

for stuck pipe prediction where both models present accu-

rate result of 83% based on binary classification (Albaiyat 

2012). Based on 40 oil wells, multivariate statistics has been 

conducted for prediction of stuck pipe. Multivariate statisti-

cal analysis consisted of regression analysis and discriminate 

analysis with success rate up to 86% (Shoraka et al. 2011). 

A convolutional neural network (CNN) approach has been 

used to predict the stuck occurrence in the Gulf of Mexico. 

Back-propagation learning rule and sigmoid-type nonlinear 

activation functions have been used to develop the model. 

The model presents reliable results for stuck prediction based 

on the collected data (Siruvuri et al. 2006). This literatures 

review did not reveal any comparison for different ML tech-

niques designed to prevent the sticking of the drill pipe.

Based on the literature survey, there is no a comprehensive 

comparison study of the different AI algorithms for the drill-

ing stuck pip prediction. The key objective of this research is 

evaluating the classification accuracy of different AI models to 

produce the most accurate classification model. Moreover, this 

research aims to present a comprehensive performance com-

parison for AI model to guide the researchers and practitioners 

during the drilling stuck classification modeling. This research 

consists of five steps as follows as illustrated in Fig. 1:

1. The past literature has been reviewed to know the past 

practices for drilling stuck modeling.

2. Real data of cases of the drilling pipe stuck have been 

gathered. The data have been quantitatively collected 

based on the site records for each drilling well.

3. The third step includes a model development based on 

AI models where a total of 12 predictive models have 

been built.

4. The fourth step is the models’ validation to select the 

most accurate model.

5. The fifth step is to analyze the results and conduct a 

sensitivity analysis to identify the contribution of the 

parameters on the pipe stuck.

6. Finally, an optimization system has been incorporated 

into prediction model to optimize drilling parameters to 

mitigate stuck and partially stuck cases.
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Application to drilled wells in the Gulf 
of Suez

The process of data acquisition is the most difficult and 

critical part of any statistical learning (Elmousalami et al. 

2018a, Elmousalami 2020). As shown in Fig. 2, a total 

number of 103 wells were drilled offshore and onshore 

during the five-year period from 2010 to 2015 by General 

Petroleum Company (GPC) and petroleum sector in Egypt. 

These data were collected using sensors and measuring 

devices on the drilling rig where these sensors are validated 

based on quality control and safety procedures before and 

during the drilling process. Moreover, these data have been 

handled to the drilling experts and engineers to check its 

quality and reliability where all outliers and missing data 

have been removed. The data contained 26 stuck and 77 

non-stuck and partially stuck cases. The type of stuck pipe 

is mechanical pipe sticking due to poor hole cleaning, well-

bore collapse, and key-seating. The parameter set includes 

a total of seven drilling parameters recorded on a daily 

basis as illustrated in Table 1.

The drilling pipe stuck issue could be a dynamic prob-

lem which could exist at different time periods of a drilling 

project. Thus, using a binary string cannot effectively repre-

sent the whole problem. Therefore, the output can be three 

general groups of data: stuck, partially stuck, and non-stuck. 

The output probability ranges from 0 to 1 where the range 

from 0 to 0.4 represents non-stuck case, the range from 0.4 

to 0.7 represents partially stuck, and the range from 0.7 to 1 

represents the stuck case.

Correlation analysis has been done to identify the key 

performance indicators (KPIs) as shown in Fig. 3. Scatter-

plots of all the independent variables with each other were 

drawn to check the collinearity among the variables. Of 

the two variables which showed collinearity, the one that 

showed a weak correlation with the outcome was dropped. 

This deletion was also based on discussions with the experts, 

common wisdom, and knowledge about the subject and sta-

tistics. The characteristic of the formation along the drill-

ing trajectory has been excluded from the collected features 

because the formation of the collected dataset has the same 

characteristic in the Gulf of Suez fields. Moreover, the pro-

posed classification model aims to classify the stuck case 

based on the least number of the input parameters.

Machine learning methods

ML algorithms are scalable algorithms used for pattern 

recognition and obtaining useful insight based on the col-

lected data (LeCun et al. 2015, Bishop 2006). AI and ML 

are general purpose techniques which can be applied for 

several applications (Elmousalami 2020; Witten et al. 2016). 

The ML models in this study can be applied in the abroad 

area of oil and gas industry where modeling methodology 

can valid for different projects types. ML can be single or 

ensemble type. Single ML models are such as SVM, DT, and 

ANN. On the other hand, ensemble ML models are bagging, 

booting, XGBoost, and random forest. Before training the 

ML algorithms, the data input values have been normalized 

using min–max feature scaling (Dodge and Commenges 

2006). The normalization process improves the computa-

tion for each classifier.

Single AL model

Support vector machines (SVM)

SVMs are supervised learning algorithms that can be 

used for both classification and regression applications 

Literature Review

Case study

ML models development

Single 

Bagging

RF

Boosting

SGB

XGBoost

Comparison and analysis

Models validation

Ensemble

DT

DNNs

SVM

Linear regression

Polynomial regresssion

Extra_Trees

Fig. 1  Research methodology
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(Elmousalami 2019a, 2020). SVM optimizes hyperplanes 

distance and the margin as shown in Fig. 4. Hyperplane 

distance can be maximized based on two classes of bound-

aries using the following equation (Vapnik 1979): For i = 1,2,3,…, m, a positive slack variable ( � ) is added for 

handling the nonlinearity as displayed in Eq. (2):

(1)Linear SVM =

{

W ⋅ Xi + b ≥ 1, if yi ≥ 0

W ⋅ Xi + b < −1, if yi < 0

Fig. 2  Oil fields map in the Gulf 
of Suez

Table 1  The drilling pipe stuck parameters

Notation Predictor Predictor description Unit

P1 Mud pump circulation rate Mud pump circulation rate produces less stuck probability with good hole 
cleaning

Gallon per minute(gpm)

P2 Mud type Mud type can be water-based mud model or oil-based mud model Binary

P3 Total drilling time The total duration of drilling operation in the well Hour

P4 Rate of penetration Rate of penetration is annular velocity where high rate with bad cleaning 
gives more stuck probability

Meter/hour

P5 Maximum inclination Maximum angle of inclination from vertical where more inclination pro-
duces more stuck probability

Degree

P6 String rotation More rate of string rotation produces less stuck case Revolution per minute (rpm)

P7 Drilled depth The actual measured depth during the well drilling process Meter

O The model output The output is probability ranges from 0 to 1 where the range from 0 to 0.4 
represents non-stuck case, the range from 0.4 to 0.7 represents partially 
stuck, and the range from 0.7 to 1 represents stuck case

Multi-classes
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Accordingly, the objective function will be as shown in 

Eq. (3):

Decision trees (DTs)

Decision tree (DT) is a statistical learning algorithm that is 

dividing the collected data into logical rules hierarchically 

(Elmousalami 2019b; Breiman et al. 1984) as shown in 

(2)yi

(

W.Xi + b
)

≥ 0 − �, i = 1, 2, 3,……m

(3)Min

i=m
∑

i=0

1

2
w ⋅ w

T
+ C

i=m
∑

i=0

�
i

Fig. 5. Splitting algorithm is repetitively used to formulate 

each node of the tree. Classification and regression trees 

(CART) and C4.5/C5.0 algorithms are the most common 

tree models used in the research and practical community. 

This model is applied for both classification and continues 

prediction applications (Curram and Mingers 1994). DT 

algorithm can interpret data and feature importance based 

on the generated logical statement for each tree node. 

However, DT is not a robust and stable algorithm against 

noisy and missing data (Perner et al. 2001).

Logistic regression

Logistic regression (logit regression) is a predictive 

regression analysis which is appropriate for the dichoto-

mous (binary) dependent variable (Hosmer et al. 2013). 

Logistic regression is used to explain data and to describe 

the relationship between one dependent binary variable 

and one or more independent variables. No outliers exist in 

the data, and there should be no high correlations (multi-

collinearity) among the predictors (Tabachnick and Fidell 

2013). Mathematically, logistic regression can be defined 

as follows:

where P is the classification probability, e is the base of the 

natural logarithm and (a) and (b) are the parameters of the 

model. Adding more predictors to the model can result in 

overfitting, which reduces the model generalizability and 

increases the model complexity.

(4)P =
1

1 + e−(a+bX)

Fig. 3  The predictors correlation heat map

Fig. 4  Linear support vector machine

Fig. 5  Additive function concept
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K-nearest neighbor classi�er (KNN)

KNN algorithm is building a nonparametric classifier (Alt-

man 1992, Weinberger et al. 2006). KNN is an instance-

based learning used for classification or regression appli-

cations. The object is classified by a majority vote of its 

neighbors in the training set. If K = 1, then the case is simply 

assigned to the class of its nearest neighbor. Many distance 

functions can be applied to measure the similarity among 

the instances such as Euclidian, Manhattan, and Minkowski 

(Singh et al. 2013).

Gaussian Naive Bayes algorithm

Gaussian Naive Bayes classifier is an algorithm for clas-

sification technique which assumes independency among 

predictors (Patil and Sherekar 2013). Naive Bayes is use-

ful for very large datasets and known to outperform even 

highly sophisticated classification methods. Bayes theorem 

computes posterior probability P (c|x) from P(c), P(x), and 

P(x|c) as shown in Eq. 5:

where P(c|x) represents the posterior probability of the target 

class (c, target) given the input predictors (x, attributes); P(c) 

represents the prior probability of the target class; P(x|c) is 

the likelihood which is the probability of predictor given 

class; P(x) is the prior probability of predictor. Naive Bayes 

algorithm works by computing likelihood and probabilities 

for each class. Naive Bayesian formula computes the pos-

terior probability for each class where the highest posterior 

probability class is the prediction outcome (Kohavi 1996).

(5)P(c|x) =
P(x|c)P(c)

P(x)

Arti�cial neural networks (ANNs)

ANNs are computational systems biologically inspired by 

the design of natural neural networks (NNN). Key abilities 

of ANNs are generalization, categorization, prediction, and 

association (LeCun et al. 2015). ANNs have high ability 

to dynamically figure out the relationships and patterns 

between the objects and subjects of knowledge based on 

nonlinear functions (Elmousalami et al. 2018b). The feed-

forward network such as multilayer perceptron networks 

(MLPs) applies the input vector (x), a weight matrix (W), an 

output vector (Y), and a bias vector (b). It can be formulated 

as Eq. (6) and Fig. 6.

where f (.) includes a nonlinear activation function.

Ensemble methods and fusion learning

Ensemble methods and fusion learning are data mining tech-

niques to fuse several ML algorithms such as ANNs, DT, 

and SVM to boost the overall performance and accuracy 

(Hansen and Salamon 1990). Ensemble methods can merge 

several ML algorithms such as DT, SVM, or ANNs. Each 

single ML used in the ensemble method is called a base 

learner where the final decision is taken by the ensemble 

model. K is an additive function to predict the final output 

as given in Eq. (7):

where ŷi represents the predicted dependent variable. Each 

fk is an independent tree structure and leaf weights w·xi are 

(6)Y = f (W ⋅ x + b)

(7)ŷi =

K
∑

k=1

fk
(

Xi

)

, fk ∈ F

Fig. 6  Multilayer perceptron network (MLP)
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the independent variables. F is the regression trees space. 

Ensemble methods include several methods such as bag-

ging, voting, stacking, and boosting (Elmousalami 2019c; 

2020). The ensemble learning models deal effectively with 

the issues of complex data structures, high-dimensional 

data, and small sample size (Breiman 1996; Dietterich 2000; 

Kuncheva 2004).

Breiman (1999) proposed bagging technique as shown 

in Fig. 7a. Bagging applies bootstrap aggregating to train 

several base learners for variance reduction (Breiman 1996). 

Bagging draws groups of training data with replacement to 

train each base learner. Random forest (RF) is a special case 

of the bagging ensemble learning techniques. RF draws 

bootstrap subsamples to randomly create a forest of trees 

as shown in Fig. 7b (Breiman 2001). Using adaptive resa-

mpling, boosting method can be established for enhancing 

the performance of weak base learners (Schapire 1990) as 

shown in Fig. 7c. Adaptive boosting algorithm (AdaBoost) 

has been proposed by Schapire et al. (1998). Serially, Ada-

Boost draws the data for each base learner using adaptive 

weights for all instances. These adaptive weights guide the 

algorithm to minimize the prediction error and misclassified 

cases (Bauer and Kohavi 1999).

Extreme gradient boosting (XGBoost) is a gradient boost-

ing tree algorithm. XGBoost uses parallel computing to 

learn faster and diminish computational complexity (Chen 

and Guestrin 2016). The following equation uses regulariza-

tion term to the additive tree model to avoid overfitting of 

the model as shown in the following equation:

(8)

L(�) = (x + a)n =

n∑

k=0

l
(
ŷi, yi

)

+

K∑

k=1

�
(
fk
)
, where �(f ) = �T +

1

2
�
‖
‖
‖

w2‖‖
‖

where L represents a differentiable convex cost function 

(Friedman 2001). Moreover, XGBoost assigns a default 

direction into its tree branches to handle missing data in 

the training dataset. Therefore, no effort is required to clean 

the training data. Stochastic gradient boosting (SGB) is 

a boosting bagging hybrid model (Breiman 1996). SGB 

iteratively improves the model’s performance by injecting 

randomization into the selected data subsets to enhance 

fitting accuracy and computational cost (Schapire et al. 

1998).

Extremely randomized trees algorithm (extra trees) is 

tree-based ensemble method which can be applied for both 

supervised classification and regression cases (Vert 2004). 

Extra trees algorithm essentially randomizes both cut-point 

choice and attribute during tree node splitting. The key 

advantage of extra trees algorithm is the tree structure ran-

domization which enables the algorithm to be tuned for the 

optimal parameters’ selection. Moreover, extra trees have 

high computational efficiency based on a bias/variance 

analysis (Vert 2004).

In ML, many parameters are assessed and improved dur-

ing the learning process. By contrast, a hyperparameter is a 

variable whose value is set before training. The performance 

of the ML algorithms depends on the tuning parameter. The 

objective of hyperparameters optimization is to maximize 

the predictive accuracy by finding the optimal hyperpa-

rameters for each ML algorithm. Manual search, random 

search, grid search, Bayesian optimization, and evolutionary 

optimization are the most common techniques used for ML 

hyperparameters optimization. However, manual search ran-

dom search and grid search are brute force techniques which 

needs unlimited trails to cover all possible combinations to 

get the optimal hyperparameters (Bergstra et al. 2011). On 

the other hand, Bayesian optimization and evolutionary 

optimization are automatic hyperparameters optimization 

Fig. 7  a Bagging, b RF, and c boosting
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which selects the optimal parameter with less human inter-

vention (Shahriari et al. 2015). Moreover, these techniques 

can solve the curse of dimensionality. Therefore, this study 

used genetic algorithms to select the global optimal setting 

for each model before training stage. Starting with a random 

population, the iterative process of selecting the strongest 

and producing the next generation will stop once the best-

known solution is satisfactory for the user. Objective func-

tion is defined as minimization of classification accuracy 

(Acc in Eq. 10) for each classifier. Classification accuracy 

(Acc) computes the ratio between the correctly classified 

instances and the total number of samples as in Eq. (9):

where TP is the true positive; FP the false positive; TN the 

true negative; FN the false negative. The domain space is 

defined as the range of the all possible hyperparameters 

for each algorithm as shown in Table 2. This study applied 

a decision tree algorithm as based learners for all ensem-

ble methods. Accordingly, the proposed ensemble models 

and decision tree have been classified as tree-based models 

which have the same parameter as shown in Table 2. The 

maximum number of iterations to be run is defined as 10,000 

iterations.

(9)Acc =
TP + TN

TP + TN + FP + FN

To compare machine learning algorithms, the identical 

blind validating cases are used to test the algorithms per-

formance. The datasets have been divided into training set 

(80%) and validation set (20%), where the validation cases 

are excluded from the training data to ensure the generaliza-

tion capability. This study applied tenfold cross-validation (10 

CV) approach using the validation data set (20% of the whole 

data set). The K-fold cross-validation boosts the performance 

of validation process using a limited dataset.

Classification accuracy (Acc), specificity, and sensitivity are 

scalar measures for the classification performance. Moreover, 

receiver operating characteristic (ROC) is graphical measure 

for classification algorithm (Tharwat 2018). The receiver oper-

ating characteristic (ROC) curve is a two-dimensional graph in 

which the true positive rate (TPR) is represented in the y-axis 

and false positive rate (FPR) is in the x-axis (Sokolova et al. 

2006a, b; Zou 2002):

Based on ROC, the perfect classification happens when 

the classifier curve possesses through the upper left corner 

(10)TPR =
TP

TP + FN

(11)FPR =
FP

TN + FP

Table 2  Optimal 
hyperparameters settings

Model class Optimal hyperparameters settings

Tree-based models Minimum number of samples for node splitting: 2 sample
Minimum number of samples be stored in a tree leaf: 1 sample
Maximum number of features for splitting a node: log2 (number of the 

features)
Maximum number of levels allowed in each tree: expanded until all 

leaves are pure or until all leaves contain less than minimum number 
of samples for node splitting.

The function to measure the quality of a split: the mean squared error 
(MSE)

Maximum number of trees in the ensemble: 20 trees.

ANNs Number of hidden layers: 3 layers
Number of neurons in each layer: 10 neurons/layer
Activation function: rectified linear unit function (Relu)
Weight optimization: stochastic gradient-based optimizer

Polynomial regression Degree polynomial features: second order

Logistic Regression Intercept and coefficients weights of the input features

SVM Penalty parameter = 1
Tolerance for stopping criteria = 1e−4

Epsilon parameter in the epsilon-insensitive loss function = 0.00
Kernel: radial base function (RBF)

Naïve Bayes Prior probabilities of the classes = None
Variance smoothing = 10-9

KNNs Number of neighbors = 5 neighbors
Weights = ’uniform’
Leaf size = 30
Algorithm used to compute the nearest neighbors: Ball Tree Algorithm



2063Journal of Petroleum Exploration and Production Technology (2020) 10:2055–2068 

1 3

of the graph. At such a corner point, all positive and nega-

tive samples are correctly classified. Therefore, the steepest 

curve has better performance. Area under the ROC curve 

(AUC) is applied to compare different classifiers in the ROC 

curve based on the scalar value. The AUC score is ranging 

between zero and one. Therefore, no realistic classifier has 

an AUC score lower than 0.5 (Metz 1978; Bradley 1997). 

ROC curves for each classifier must be potted to show the 

performance of classifier against different thresholds. In 

addition, the cost function is represented in the following 

equation:

where Error: TN + FP, N: the number of cases, Ŷ (i) is the 

predicted value, Y (i) is the actual value, and L is the loss 

function. In the current study, weights are added to the error 

formula (Eq. 10) to emphasize the weight of the true nega-

tive cases where the case is stuck in the reality and the model 

predicted it as a non-stuck case. To handle such case, Eq. 11 

is added to Eq. 10 to formulate Eq. 13:

where X(i) is the actual classification of the oil well stuck 

case.

Results and discussion

In engineering practice, the operator and decision-makers 

have to select a mathematical model regarding accuracy, 

the easiness of implementation, generalization, and uncer-

tainty. The scope of the current study focused on the accu-

racy and the generalization ability of the developed algo-

rithms. Based on validation dataset, accuracy (Acc), and 

AUC, 12 classifiers were validated as displayed in Table 3. 

The classifiers have been descendingly sorted from C1 to 

C12 based on AUC as shown in Table 3. This study pre-

sents that extra trees classifier (C1) is the most accurate 

for pipe stuck classification. Based on ROC comparison 

as shown in Fig. 8, extra trees classifier was in the first 

place. Based on the test data set, extra trees classifier (C1) 

yielded an overall correct classification of 100%, which 

means that 100% of the time this model was able to iden-

tify correctly the wells belonging to the given predictors. 

DT, RF, XGBoost, and AdaBoost produce RF produced 

(12)Error =
1

N

N
∑

i=1

L
{

Ŷ
(i) ≠ Y

(i)
}

(13)W
(i) =

{

1 if X
(i)is nonstuck case

10 if X
(i) is stuck case

(14)Modified Error =
1

∑

W (i)

N
�

i=1

W
(i)

L
�

Ŷ
(i) ≠ Y

(i)
�

0.83 and 0.74 for AUC and accuracy, respectively. Ensem-

ble methods such as [extra trees (C1), bagging (C8), RF 

(C3), AdaBoost (C5), and SGB (C9)] have produced a high 

acceptable performance.

High-dimensional data can be effectively handled using 

ensemble machine learning. In addition, ensemble machine 

learning solves small sample size and complex data struc-

tures problems (Breiman 1996, Schapire et al. 1998). On 

the other hand, ensemble ML increases the model complex-

ity (Kuncheva 2004). Accordingly, noisy data can be effec-

tively computed by random forests algorithm than decision 

tree algorithm (Breiman 1996; Dietterich 2000). However, 

the RF algorithm is unable to interpret the importance of 

features or the mechanism of producing the results. On the 

other hand, ANNs, KNN, and logistic regression produced 

the least performance based on AUC of 0.592, 0.575, and 

0.500, respectively.

Table 3  The classifiers’ accuracy

Notation Model Algorithm type AUC Accuracy

C1 Extra Trees Ensemble 1.000 1.000

C2 DT Single 0.833 0.744

C3 RF Ensemble 0.833 0.744

C4 XGB Ensemble 0.833 0.744

C5 AdaBoost Ensemble 0.833 0.744

C6 Naive Bayes Single 0.817 0.501

C7 SVM Single 0.808 0.610

C8 Bagging Ensemble 0.808 0.610

C9 SGB Ensemble 0.808 0.610

C10 ANNs Single 0.592 0.287

C11 KNN Single 0.575 0.265

C12 Logistic Single 0.500 0.231

Fig. 8  Average ROC curve for different classifiers
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DT presents an alternative to the black box existing in 

ANNs based on formulating logic statements (Perner et al. 

2001). Furthermore, splitting procedure of DT can compute 

the high-dimensional data (Prasad et al. 2006). On the other 

hand, DT produced poor performance for noisy, nonlinear 

data or time series data (Curram and Mingers 1994). There-

fore, tree-based models and ensemble models produce super 

performance than single algorithms. DT (CART) is inher-

ently used as a based learner for the ensemble methods. 

Naive Bayes, SVM, bagging, and SGB produced a moderate 

accuracy where AUC ranged 0.817 to 0.808 and accuracy 

ranged from 0.501 to 0.61. Table 4 summarizes the limi-

tations and strengths of each classifier. Table 4 guides the 

researchers and drilling engineers to select the appropriate 

ML model based on the algorithms’ characteristics.

Classi�ers computational cost

The prediction accuracy should not be only the evalua-

tion criterion for selecting the optimal ML algorithms. The 

computational costs (e.g., memory usage and computational 

time) of the algorithms are also significant criteria during 

the data processing. Figure 9 illustrates the computational 

time of the twelve developed algorithms. All models showed 

an acceptable computational time where the highest time 

was consumed by logistic regression and KNN algorithms 

of 192 s and 184 s, respectively. Conversely, XGBoost was 

the fastest algorithm. On the other hand, Fig. 9 shows that 

extra trees and DT consumed high memory of 205 and 197 

MBs, respectively. ANNs and bagging DT consumed the 

least memory for classification.

Accordingly, using ensemble algorithms require more 

computational resources such as extra trees, AdaBoost, 

and bagging. Therefore, the memory usages that were used 

by all the ML algorithms were acceptable as at least 4 GB 

RAM memory. As a result, XGBoost, RFR, and DNNs were 

the most efficient algorithms based on the computational 

cost criterion. However, the computational cost (time and 

memory consumed) of the ML algorithms would exponen-

tially increase with increasing data dimensions such as data 

features or data size.

A sensitivity analysis for the predictors was done to 

evaluate the impact of each predictor on the model’s perfor-

mance. The F-score is the harmonic average of the preci-

sion and recall, where an F-score reaches its best value at 1 

(perfect precision and recall) and worst at 0 (Sokolova et al. 

2006a). Moreover, F-score calculates how many times this 

variable is split. Different ML model would have a differ-

ent interpolation regarding the input parameters sensitivity. 

Accordingly, the sensitivity analysis has been done for the 

most accurate classifier [extra trees (C1)].

As illustrated in Fig. 10, the sensitivity analysis indicated 

that drilled depth (P7) had the highest impact on the out-

put (drilling pipe stuck). String rotation (P6) and maximum 

Table 4  Algorithms comparison

Algorithm Strengths Weaknesses Interpretation Uncertainty Missing values 
and noisy data

C1 Handing data randomness Black box nature and sufficient data No No Yes

C2 Working on both linear and nonlinear 
data, and producing logical expressions

Poor results on too small datasets, overfit-
ting can easily occur

Yes No No

C3 Accurate and high performance on many 
problems including nonlinear

No interpretability, need to choose the 
number of trees

No No Yes

C4 High scalability, handing missing values, 
high accuracy, low computational cost

No uncertainty and interpretation No No Yes

C5 High scalability, and high adaptability Depends on other algorithms perfor-
mance

No No Yes

C6 high accuracy and fast algorithm for clas-
sification problem

No uncertainty and interpretation No No No

C7 Easily adaptable, works very well on non-
linear problems, not biased by outliers

Compulsory to apply feature scaling, 
more difficult to understand

No No No

C8 Providing higher performance than a 
single algorithm

Depending on other algorithms perfor-
mance

No No Yes

C9 Handing difficult examples Highly sensitive to noisy data No No Yes

C10 Works on small size of dataset Linear assumptions Yes No No

C11 simple and fast algorithm for classifica-
tion problem

selecting the optimal number of cluster-
ing point (k)

No No No

C12 Capturing complex patterns, processing 
big data and high-performance comput-
ing

Sufficient training data and high cost 
computation

No No No
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inclination (P5) approximately had the same impact on the 

output. Similarly, rate of penetration, total drilling time, and 

mud type had the same impact on the output. The engineer-

ing and scientific insights that can be drawn from the sensi-

tivity analysis are as follows:

1. All seven input parameters that are mentioned in Table 1 

have significant impact on the pipe stuck classification.

2. Drilled depth (P7) is the key classifier for stuck cases 

identification where more drilled depth means more 

stuck probability percentage.

3. String rotation (P6) comes in the second place impacting 

on the stuck probability. Therefore, drilling engineers 

must accurately calculate the suitable string rotation.

4. Maximum inclination (P5), rate of penetration, total 

drilling time, and mud type have approximately the same 

impact on pipe stuck classification.

Fig. 9  Computational speed and 
memory for each classifier
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5. Mud pump circulation rate had the least impact on the 

output.

Drilling stuck pipe mitigation module

The drilling pipe stuck issue could easily exist for various 

reasons in the field applications. Unless the model could pro-

vide an effective way to design the drilling project and avoid 

the issue, predicting whether pipe sticking would happen or 

not has very little value for field operation. Therefore, once 

the well condition had been classified as stuck or partially 

stuck case, the optimization system is needed to determine 

the optimal values of the seven input parameters. As a result, 

an optimization system has been incorporated into optimal 

classification algorithm [extra trees model (C1)] to convert 

the seven input parameters form stuck or partially stuck case 

into a non-stuck case. The optimization system has used the 

genetic algorithm (GA) to optimize the seven input param-

eters as shown in Fig. 11.

The concept of evolutionary computing (EC) is based on 

the Darwin’s theory: survival for the fittest (Darwin 1859). 

Genetic algorithm (GA) is a branch of EC applied for optimi-

zation and searching applications (Holland 1975; Siddique 

and Adeli 2013). A chromosome can be represented as a 

vector (C) consisting of (n) genes denoted by (ci) as follows: 

C = {c1, c2, c3… ci}. Each chromosome (C) represents a 

point in the n-dimensional search space (Elmousalami 

2020). In the current case study, the chromosomes represent 

the seven input parameters. Each chromosome consists of 

seven genes, where seven genes represent the well drilling 

parameters (P1, P2, P3, P4, P5, P6, P7), respectively, as shown 

in Table 1. Each gene consists of one of the membership 

functions  (MFi) where (I) is ranging through the boundary 

condition for each variable (P1: P7). The number of chromo-

somes (initial population) is set as 10 chromosomes, and the 

number of generations is determined to be 10,000 genera-

tions. Crossover probability and mutation probability are set 

to be 0.7 and 0.03, respectively. Accordingly, a group of the 

initial population of chromosomes have been identified to be 

evaluated through fitness function.

Fitness function (F) is the function that evaluates the 

quality of the possible solutions. Crossover and mutation 

processes are used for developing new offspring generations. 

The objective is to minimize the stuck probability to be in 

the range of non-stuck case [0,0.4]. Therefore, the objective 

function of the GA is the minimization of the stuck prob-

ability by optimizing the seven input parameters to reach the 

characteristics of a non-stuck well. The fitness function can 

be formulated as Eq. (15) where the objective is to minimize 

the fitness function as follows:

where (F) is a fitness function and ŷi is the predicted clas-

sification based on extra trees model (stuck probability).

To maintain the variables within the reasonable limits, 

the seven input parameters have been constrained to defined 

boundary for each parameter. The boundary constraints 

have ranged for the minimum and maximum values of each 

parameter. Moreover, functional constraints have been added 

based on design criteria such as the summation of the solids 

% and water % not exceeding 100%. However, relatively 

(15)F = Minmization
(

ŷi

)

Fig. 11  Stuck mitigation system
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high degree of judgment is required to logically select any 

combination of the seven parameters for drilling process.

Conclusion

Complications of the stuck pipe can account for approxi-

mately half of total well cost, making stuck pipe one of the 

most expensive problems that can occur during a drilling 

operation (Muqeem et al. 2012). Therefore, the key contri-

bution of the study is to automate the classification and the 

mitigation of the drilling pipe stuck for the drilled wells at 

the Gulf of Suez (GOS). Out of 12 machine leaning algo-

rithms, the results presented that the most reliable algorithm 

was the extremely randomized trees (extra trees) with 100% 

classification accuracy based on testing dataset. On the other 

hand, genetic algorithm can optimize the drilling parameters 

to mitigate the risk of drilling pipe stuck.

The methodology addressed in this study enables the oil 

and gas drilling industry in GOS to evaluate the risk of stuck 

pipe occurrence before the well drilling procedure. A com-

prehensive comparison of ML algorithms has been provided 

for drilling piping stuck prediction. More data mean more 

generalization of the trained algorithms. The key limitation 

of this study is the size of the collected data. However, the 

collected dataset is sufficient to train the classifiers and to 

avoid the overfitting problem. Therefore, the future research 

is to apply this research framework to different datasets in 

oil fields. The future work will rely on deep learning where 

deep learning is a powerful tool for pattern recognition. The 

big data of the drilling projects will be modeled using deep 

learning algorithms such as deep neural networks and con-

volutional neural networks.
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