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Pharmacogenomics is the study of how genes affect a person’s response to drugs.

Thus, understanding the effect of drug at the molecular level can be helpful in both drug

discovery and personalized medicine. Over the years, transcriptome data upon drug

treatment has been collected and several databases compiled before drug treatment

cancer cell multi-omics data with drug sensitivity (IC50, AUC) or time-series transcriptomic

data after drug treatment. However, analyzing transcriptome data upon drug treatment

is challenging since more than 20,000 genes interact in complex ways. In addition,

due to the difficulty of both time-series analysis and multi-omics integration, current

methods can hardly perform analysis of databaseswith different data characteristics. One

effective way is to interpret transcriptome data in terms of well-characterized biological

pathways. Another way is to leverage state-of-the-art methods for multi-omics data

integration. In this paper, we developed Drug Response analysis Integrating Multi-omics

and time-series data (DRIM), an integrative multi-omics and time-series data analysis

framework that identifies perturbed sub-pathways and regulation mechanisms upon

drug treatment. The system takes drug name and cell line identification numbers or

user’s drug control/treat time-series gene expression data as input. Then, analysis

of multi-omics data upon drug treatment is performed in two perspectives. For the

multi-omics perspective analysis, IC50-related multi-omics potential mediator genes

are determined by embedding multi-omics data to gene-centric vector space using

a tensor decomposition method and an autoencoder deep learning model. Then,

perturbed pathway analysis of potential mediator genes is performed. For the time-series

perspective analysis, time-varying perturbed sub-pathways upon drug treatment are

constructed. Additionally, a network involving transcription factors (TFs), multi-omics

potential mediator genes, and perturbed sub-pathways is constructed, and paths to
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perturbed pathways from TFs are determined by an influence maximization method.

To demonstrate the utility of our system, we provide analysis results of sub-pathway

regulatory mechanisms in breast cancer cell lines of different drug sensitivity. DRIM is

available at: http://biohealth.snu.ac.kr/software/DRIM/.

Keywords: multi-omics, drug-response, time-series, perturbed pathway, web-system, pharmacogenomics

1. INTRODUCTION

The variability in drug responses among cells is a major challenge
in cancer drug therapy, thus personalized drug response research
is much needed (Sweeney, 1983). With the recent advances in
instrument technologies, drug response analysis at the molecular
level has become possible, thus we have an opportunity to
investigate relationship between drug response phenotypes and
corresponding molecular data, for example, multi-omics data
upon drug treatment. Large-scale drug response genomics
data help identify molecular markers related with therapeutic
response (Garnett et al., 2012). Furthermore, more than 100 US
Food andDrugAdministration (FDA)-approved drugs have been
developed from rapidly growing pharmacogenomics studies.
This shows that pharmacogenomics data could be used for drug
development at various stages, from drug targets to patient
therapeutics. Moreover, genomics data of the patient can be
regarded as a predictive factor for drug response. It can be
thought of as an early response signal before the phenotypic
change of cells by drug (Surendiran et al., 2008).

Current pharmacogenomics data analysis can be extended in
two directions to broaden the understanding of drug response.
The first direction is to perform a pathway-level analysis.
Analyzing drug responses at the individual gene level is difficult
to explain biological variability and also difficult to interpret
gene-drug associations (Wang et al., 2019). Thus, focus of
pharmacogenomics research is changing to investigate multiple
gene products at the biological pathway level (Weinshilboum
and Wang, 2004). A recent study shows that analysis of
transcriptome data can be effectively done at the pathway level,
which facilitates clear biological interpretation (Lim et al., 2020).
The second direction is to perform multi-omics level analysis.
Recently, precision medicine studies have been conducted
at the multi-omics level, which is called “pharmaco-omics”
beyond pharmacogenomics by integrating genomics, proteomics,
epigenomics, and metabolomics data (Adam and Aliferis, 2019;
Ginsburg et al., 2019). Many studies have shown that multi-
omics integration helps unravel complex biological mechanisms
(Subramanian et al., 2020). Integrative analysis of multi-omics
data can help understand cell line-specific gene regulation
mechanisms for pathway activation (Kim et al., 2016; Oh et al.,
2020) and it can be used as a signature for drug response sub-
pathway identification (Xu et al., 2019). Single omics analysis
can detect only a smaller subset, but multi-omics analysis can
detect more comprehensive pathways that respond to chemical
exposure (Canzler et al., 2020).

There are several pharmacogenomics databases such as
Genomics of Drug Sensitivity in Cancer (GDSC) (Iorio et al.,

2016), Cancer Cell Line Encyclopedia (CCLE) (Barretina et al.,
2012), Patient-Derived Xenograft (PDX) mice models (Gao et al.,
2015), and NCI-60 Human Tumor Cell Lines Screen (Abaan
et al., 2013). These databases can be used for cell line-specific drug
sensitivity analysis with multi-omics signature at the molecular
level. In addition, data from after drug treatment time-series
experiments can be used to capture time-varying cell line-specific
drug response as signature of cell death, proliferation, and drug
resistance. The Library of Integrated Network-based Cellular
Signatures (LINCS) L-1000 (Subramanian et al., 2017) project
measures cell viability upon genetic and chemical perturbations
by 978 landmark genes. Another database compiled time-series
transcriptome data using the NCI-60 cell line upon anti-cancer
drug treatment (Monks et al., 2018).

There are several databases that enable computational
pharmacogenomics study. GDSC measured the response of 988
cell lines to 518 drug compounds (Iorio et al., 2016). It provides
mutation, copy number variation, DNA methylation, and gene
expression data of cell lines before drug treatment. CCLE
(Barretina et al., 2012) measured genomics profiles and response
to 24 anticancer drugs in 947 cell lines. A recent study (Ghandi
et al., 2019) performed RNA sequencing (RNA-seq), whole-
exome sequencing (WES), whole-genome sequencing (WGS),
reverse-phase protein array (RPPA), reduced representation
bisulfite sequencing (RRBS), microRNA expression profiling,
histone modification profiling, metabolites profiling (Li et al.,
2019), and 1,448 drugs response (Corsello et al., 2020) for CCLE
cell lines. NCI-60 cell lines are the most widely studied cell
lines in human cancer research. CellMiner (Reinhold et al.,
2012) is a website that provides 20,503 chemical compounds
response of NCI-60 cells and also genomics data before drug
treatment asmutation, DNAmethylation, microRNA expression,
gene expression, and protein data. The NCI Transcriptional
PharmacodynamicsWorkbench (NCI TPW) (Monks et al., 2018)
provides time-series pharmacogenomics data and a web page
that allows data exploration. They measured that gene expression
changes the NCI-60 cell line after drug exposure of 2, 6, and 24 h
to 15 anticancer drugs. NCI-DREAM community (Bansal et al.,
2014) measured that gene expression changes the OCI-LY3 cell
line after 14 anticancer drug treatment for 6, 12, and 24 h to
predict the activity of pairs of compounds.

By utilizing pharmacogenomics data in various databases,
a number of studies have been performed to analyze
pharmacogenomics data in terms of IC50 prediction and
drug response gene/pathway identification. Table 1 summarizes
pharmacogenomics data analysis methods. Multi-Omics Late
Integration (MOLI) (Sharifi-Noghabi et al., 2019) is an end-
to-end deep neural network-based drug response prediction
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TABLE 1 | Pharmacogenomics data analysis methods, their input, output, and

algorithms.

Method Input Output Algorithm

MOLI Multi-omics data Drug response

(IC50)

Deep learning

DSPLMF Multi-omics data,

chemical

structures

Drug response

(IC50)

Logistic Matrix

Factorization

CancerDAP Multi-omics data Sub-pathway

signatures for drug

response

Random forest,

logistic regression

DryNetMC Drug treatment

time-series gene

expression data

Clinically relevant

genes

Differential

network analysis

method. MOLI takes mutation, copy number, and gene
expression as input, and predicts drug response using each
omics type-specific encoder. Drug Sensitivity Prediction using a
novel regularization approach in Logistic Matrix Factorization
(DSPLMF) (Emdadi and Eslahchi, 2020) is a drug response
prediction method based on recommender systems. DSPLMF
takes cell line similarity matrix consisted of gene, copy number,
mutation, and IC50 and drug similarity matrix as input,
and predicts drug response using matrix factorization and
nearest neighbor algorithm. CancerDAP (Xu et al., 2019) is a
pipeline that integrates gene expression, copy number variation,
and DNA methylation to identify sub-pathway signature of
anticancer drug response. The user can browse drug active
sub-pathway using CancerDAP web page. Differential regulatory
Network-based Modeling and Characterization (DryNetMC)
(Zhang et al., 2019) is a network-based algorithm to detect key
cancer resistance genes based on time-series RNA-seq data.
DryNetMC uses time-series RNA-seq data after drug treatment
as input. From the data, it constructs drug-sensitive network and
drug-resistant network utilizing ordinary differential equations
and extracts differential network. Using differential network, a
node importance is measured by topology, entropy, and gene
expression changes to prioritize genes of clinical relevance.

Lv et al. (2018) performed an analysis of differentially
expressed genes (DEGs) on hepatocellular carcinoma (HCC)
patients for drug discovery from gene expression data. They
divided HCC patients into two groups: high/low-PKM2 to
investigate the effect of pyruvate kinase isozymes M2 (PKM2)
gene expression on HCC patients in terms of metabolic
changes and prognosis. The study identified metabolic genes
related to poor HCC patient survival and screened drugs that
target metabolic enzymes associated with poor survival. Some
of the screened drugs have been used in antitumor clinical
studies. Another study proposed a tensor decomposition-based
drug discovery method for neurological disorder from gene
expression data (Taguchi and Turki, 2019). They selected genes
through tensor decomposition-based feature extraction using
mouse Alzheimer’s single-cell RNA-seq data. These genes are
significantly overlapped with the target genes of Alzheimer’s
disease drugs. Recently, a deep learning-based generative model

(Méndez-Lucio et al., 2020) proposed to design active-like
molecules from gene expression signatures. The generativemodel
takes the desired gene expression profile induced by drug
treatment or gene knock-out experiment as input. The study
generates a molecular representation that is likely to have caused
a change in gene expression.

2. MOTIVATION

To utilize rapidly accumulating drug response omics data,
many computational methods for drug response prediction
have been developed. Machine learning methods are often
used to process high-dimensional genomics data, such
as matrix-factorization models (Brouwer and Lió, 2017;
Wang et al., 2017), network-based models (Zhang et al.,
2015, 2018), and deep learning models (Sharifi-Noghabi
et al., 2019; Baptista et al., 2020). Moreover, analysis
methods for time-series omics data have been developed
(Jo et al., 2016; Ahn et al., 2019; Kang et al., 2019; Kim
et al., 2019). However, utilizing these tools for the analysis
of pharmacogenomics databases requires expert-level
bioinformatics skill.

Thus, a web-based system called Drug Response analysis
Integrating Multi-omics and time-series data (DRIM) was
developed and presented in this paper by integrating condition-
specific multi-omics data to investigate temporal drug response
at the molecular level like Figure 1. The condition of the
sample can be defined as a combination of three variables that
are cell line type, drug type, and drug dose. DRIM aims to
identify perturbed sub-pathways and regulatory mechanisms
upon drug treatment using an integrative analysis framework
on both multi-omics and time-series data. By simply taking
drug name and cell line ID or user’s drug control/treat time-
series gene expression data as input, DRIM performs the
analysis in two perspectives. First, IC50-related multi-omics
potential mediator genes are chosen by embedding multi-
omics data into gene-centric vector space using either a
tensor decomposition or an autoencoder deep learning model.
The tensor decomposition does not require pre-training to
determine relationship among different omics components.
Feature space from tensor decomposition is linear combination
of input features, thus it is easy to interpret how the
feature space combines input features. On the other hand, the
autoencoder can learn nonlinear relationship of multi-omics
data. Autoencoder requires pre-training but it can generate a
feature space dynamically for new incoming multi-omics data.
In terms of computation time, tensor decomposition is faster
than the autoencoder. Then, the potential mediator genes are
extended to the identification of perturbed pathways upon
drug treatment over time. This time-series analysis construct
a network containing transcription factors (TFs), multi-omics
mediator genes, and perturbed sub-pathways by an influence
maximization-based method.

To demonstrate the utility of our system, we provide analysis
results of sub-pathway regulatory mechanisms in breast cancer
cell lines of different breast cancer drug sensitivity.
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FIGURE 1 | Phenotypic change of cell over time by drug. DRIM makes it possible to interpret drug response at molecular level by investigating perturbed

sub-pathways.

3. METHODS

The system workflow is illustrated in Figure 2. In Step 1, the user
selects a drug and cell lines to be analyzed for perturbed pathway
analysis or uploads their drug control/treat time-series gene
expression data. In Step 2, through time-series gene expression
data analysis after drug treatment, perturbed sub-pathways are
identified. In Step 3, multi-omics potential mediator genes are
selected by multi-omics integration methods. In Step 4, a time-
bounded network is constructed and the most regulatory path
is identified by influence maximization. In Step 5, the system
visualizes networks involving TF, mediator genes, and perturbed
sub-pathways that change over time upon drug treatment. A
detailed description of each step in the workflow is as follows.

3.1. Step 1: Input
The user selects a drug and cell lines to be analyzed for perturbed
pathway analysis or uploads their own drug control/treat time-
series gene expression data. The system uses two time-series gene
expression after drug treatment databases LINCS L-1000 and
NCI-60. In both databases, there are control and treated data
for drugs per cell line. For each condition, the gene expression
was measured at each time point. These databases are available as
GSE70138 and GSE116438 in GEO.

3.2. Step 2: Identifying Perturbed
Sub-pathway With Time Series
Step 2 is for identifying perturbed sub-pathways of DEGs that
are defined using a time-series data analysis tool, TimeTP (Jo
et al., 2016). First, each pathway is represented as a directed
graph from the KEGG pathway database. For each node in the

pathway, the system assigns a time vector Ev of 1 (overexpressed)
or −1 (underexpressed) and 0 (unchanged) that are defined by
comparing gene expression levels, treated vs. control. Limma
(Smyth, 2005; Ritchie et al., 2015) was used to define DEGs
at each time point with robust multiarray average (RMA)
normalization (Kupfer et al., 2012). When there is no control
sample, differential expression genes are defined by comparing
either to the expression level of the previous time point or to the
expression level of initial time point. Second, a perturbed sub-
pathway is determined by choosing valid edges in the pathway
graph. Assume that there is an edge N1 → N2 between two
genes,N1 andN2, that have differential time vectors Ev1 and Ev2. To
measure the direction of propagation and the number of delayed
time points between two vectors, cross-correlation is defined as

( Ev1 ⋆ Ev2)(n) =
∞∑

t=−∞

Ev1(t) Ev2(t + n) (1)

where Ev(t) = 0 for t ≤ 0 or t > T (this happens at the preceding
or trailing entries of two vectors). Cross-correlation is maximized
when the two vectors overlap most with n delay.

d( Ev1, Ev2) = argmax
n

( Ev1 ⋆ Ev2)(n) (2)

If d( Ev1, Ev2) is negative, it means that the propagation direction
is opposite to the given direction. The opposite edge is
considered as invalid and excluded from the perturbed sub-
pathway. When delay n is larger than a threshold value,
the edge is filtered out. After choosing valid edges, a sub-
graph that has more than two valid edges is determined
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FIGURE 2 | The systematic workflow of the system. Step 1 is for drug and cell line selection. Step 2 is for perturbed sub-pathway identification using expression

propagation. Step 3 is for selecting multi-omics potential mediator genes by multi-omics embedding methods. Step 4 is for constructing time-bound network and

determining regulatory path by influence maximization. Step 5 is to visualize the analysis result.

as a perturbed sub-pathway. P-value of a perturbed sub-
pathway is determined by permutation test. The null distribution
is generated by randomly re-assigning differential expression
vector for each gene in the sub-pathways. A sum of cross-
correlations of edges is used as a pathway-level statistics and
P-value for a perturbed sub-pathway is calculated from the
null distribution.

3.3. Step 3: Embedding Multi-Omics for
Selecting Potential Mediator Genes
Step 3 determines potential mediator genes related to drug
sensitivity from the multi-omics regulation perspective. The
system integrates four multi-omics data such as gene expression,
copy number variation, DNA methylation, and mutation from
the CCLE database. Each omics data processed to a gene-centric
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FIGURE 3 | Multi-omics potential mediator gene selection. (A) Multi-omics integration by tensor decomposition. (B) Multi-omics integration by autoencoder. (C)

IC50-related feature selection using Lasso regression with embedded feature matrix. (D) Gene selection of tensor decomposition from selected features. (E) Gene

selection of autoencoder from selected features.
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(cell line×gene) matrix to discover potential mediator genes from
the perspective of multi-omics regulation. The gene expression
and copy number variation values were normalized by min–
max normalization. The mutation data were binarized to 1
if mutations exist in the gene or 0 otherwise. To process
methylation data, methylation levels of probes located within the
transcription start site and 1 KB upstream of promoter regions
were averaged per gene. The IC50 value measured for each cell
line is used as the drug response phenotype.

The system uses two machine learning algorithms, a tensor-
decomposition method and an autoencoder method, to embed
high-dimensional multi-omics data to low-dimensional feature
space. The embedding of the multi-omics data is to create
a “gene-centric” feature space, which means that regulation
information, such as copy number variation, DNA methylation,
and mutation, is tied to a gene while embedding multi-
omics data.

Figures 3A,B illustrates the process of embedding gene-
centric multi-omics data with two algorithms. For tensor
decomposition, we used the PARAFAC model that decomposes
a tensor into three two-dimensional matrices (Rabanser et al.,
2017). As shown in Figure 3A, tensor T with elements xijk
composed of cell line× gene× omicsmatrix and is factorized into
three matrix Cg , Cc, and Co with gif , cjf , and okf . Cg , Cc, and Co

are defined as gene, cell line, and omics components, respectively.
f = 1, ....,R, R is the number of features.

xijk =

R∑

f=1

gif cjf okf + eijk (3)

We used Cc matrix that embeds cell line–specific multi-
omics relationship.

Figure 3B describes the process of autoencoder embedding
that is unsupervised artificial neural network to learn
efficient encoded representation of data (Kramer, 1991).
We constructed a late-integration autoencoder that encodes
gene-centric multi-omics data. An input vector is represented as
x = (x1, ..., xn, xn+1, ..., x2n, x2n+1, ..., x3n, x3n+1, ..., x4n) that is a
concatenation of four multi-omics values and n is the number of
genes. An autoencoder is to reconstruct x′ as output for an input
vector x. For each layer l, we used relu as activation function
between input layer x and output layer y.

y = fl(x) = relu(Wlx+ bl) (4)

The autoencoder consists of four system components: an
omics-specific encoder, an omics-integration encoder, an omics-
integration decoder, and an omics-specific decoder. In the omics-
specific encoder, features are learned individually for each omics
data. For each omics data of xi with i = (1, 2, 3, 4), xi is encoded
to hi.

hi = Fk(x) = fk ◦ ... ◦ f1(x) (5)

where k is the number of layer, and fk ◦ fk−1(x) = fk(fk−1(x))
is the composition function of f . The omics-integration encoder
learns relationship among multi-omics data using concatenated

omics features h = (h1, h2, h3, h4) and encodes h to z in a similar
way to Equation (5). z is an embedding vector that learns the
regulation of multi-omics relationship. The omics-integration
decoder decodes z to h′. The omics-specific decoder decodes
omics specific h′i to x

′
i and reconstruct input x

′ = (x′1, x
′
2, x

′
3, x

′
4) in

the opposite way to the encoder. For each encoder and decoder,
we used 2 layers and 2,048, 1,024 hidden neurons in the omics
specific layers, and 1,024, 256 hidden neurons in the omics
integration layers. We used mean squared error (MSE) loss as a
loss function with L2 regularization on the weight vector such as
Equation (6).

Loss =

N∑

i=1

1

N
(xi − x′i)

2 + λ ∗

P∑

i=1

|wi| (6)

N is the number of data, P is the number of layer, and wi is
the weight of ith layer. Figure 3C illustrates the feature selection
process, using Cc matrix by tensor decomposition or z vector
by autoencoder multi-omics embedding matrix. Least Absolute
Shrinkage and Selection Operator (LASSO) regression model
(Tibshirani, 1996) is constructed using IC50 as a target value.
Features with non-zero coefficients in regression are considered
as features that are significantly associated with the IC50 value.

Figures 3D,E depicts the gene selection step related to
associated features from Figure 3C. In Figure 3D, tensor-
decomposition method using Cg matrix is for gene selection.
For each gene, the row-wise argmax operation can be used to
obtain the feature most related to the gene, and if the feature is
among the IC50-related features obtained in the previous step
(features whose coefficients are large in Lasso regression), the
gene is selected. The product of Cg(g, f ) and coef (f ) is defined
as the omics score of the gene, where coef (f ) is the coefficient of
f ′th feature in Lasso regression.

The autoencoder method uses decoder part for gene selection
in Figure 3E. To evaluate features of a gene in terms of multi-
omics, a process-selected feature in the decoder is activated and
propagated to the omics data layer. Activation of the final layer
is measured through the gene-wise summation and the omics
score is computed. The significant genes related with the features
are selected.

Selection of multi-omics potential mediator genes is done by
combining the two scores, a condition-specific omics score and
a literature-based score using BEST, a biomedical entity search
tool (Lee et al., 2016). When a drug name is submitted to the
BEST system, genes that are known to be related to the drug
are selected in a ranked list in the order of relevance to the
drug. Combining the two scores is done by a method that was
developed for microRNA and target gene interaction (Oh et al.,
2017).

3.4. Step 4: Construct TF-Regulatory
Time-Bounded Network and Identify
Regulatory Path
Step 4 is for constructing TF-regulatory time-bounded network
and determining regulatory paths. First, two networks are
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FIGURE 4 | Multi-omics data analysis result before drug treatment. (A) Three tables are shown: cell line with IC50 table, multi-omics potential mediator genes with

score table, and perturbed pathway with P-value table. (B) Perturbed pathway mapping to KEGG pathway. (C) An enriched pathway dot plot.

constructed to search upstream regulators of perturbed sub-
pathway. A gene regulatory network (GRN) is constructed from
HTRIdb (Bovolenta et al., 2012) for interaction information
between TF and multi-omics potential mediator. A protein-
interaction network (PIN) is instantiated from STRING
(Szklarczyk et al., 2015) database for gene-gene interaction.
To combine GRN, PIN, and perturbed sub-pathways as
TF-regulatory time-bounded networks, we used the method
described in Step 2.

Next, the most likely regulatory paths are identified by the
influence maximization method that has been widely used to
select marketing targets in the social network to maximize the
spread of influence (Kempe et al., 2003). Our system uses a

labeled influence maximization algorithm (Li, 2011) to the time-
bounded network to identify most influential regulatory path
from TF to perturbed sub-pathway (Jo et al., 2016).

3.5. Step 5: Analysis Result on the Web
The system provides analysis results on the web from two
perspectives: multi-omics data before drug treatment and time-
series gene expression data after drug treatment.

3.5.1. Multi-Omics Analysis Result Before Drug

Treatment
In this part, system provides analysis results of multi-omics data
before drug treatment. As an example, in Figure 4A, there are
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FIGURE 5 | Time-series gene expression data analysis result after drug treatment. (A) Selector to visualize network of cell line. (B) A perturbed sub-pathway table of

cell line. (C) Visualized time varying network TF to perturbed sub-pathway. (D) Gene information window that contains time-series gene expression plot and

multi-omics data before drug treatment.

tables representing cell line IC50, multi-omics potential mediator
genes related to IC50 value, and perturbed pathways that are
enriched by potential mediator genes. In Figure 4B, when the
user clicks on the pathway in the pathway table, a KEGG
pathway plot is created. Figure 4C is GO enrichment analysis
plot of potential mediator genes to show the biological functions
of the multi-omics potential mediator gene set in relation to
drug sensitivity.

3.5.2. Time-Series Gene Expression Analysis Result

After Drug Treatment
This part provides time-series gene expression data after drug
treatment analysis results with perturbed sub-pathways. As an
example, in Figure 5A, user can select cell line and perturbed
sub-pathway to explore. When the user select a cell line, a
perturbed sub-pathway table (Figure 5B) is generated with P-
value. Figure 5C shows a TF-pathway network in time clock.
When user clicks the gene node, a popup window appears to
display multi-omics measurement of gene and expression plot of
gene over time like Figure 5D. Furthermore, the user can search
genes in the network. The user can control the network size by
choosing a cut-off value for DEGs to identify perturbed pathway.
If the cutoff is low, the number of nodes edges increases, which
may cause false positive problems. In the opposite case, there may
be a false negative problem. In either case, predicted perturbed

TABLE 2 | Five breast cancer cell lines that are available multi-omics data before

drug treatment with lapatinib sensitivity and time-series gene expression data

after drug treatment.

Cell line Molecular sub-subtype IC50(µM)

BT-549 Basal B 2.02

T-47D Luminal 2.90

MCF7 Luminal 3.04

MDA-MB-468 Basal A 3.77

MDA-MB-231 Basal B 6.50

pathways are computationally predicted, thus the user may need
to further investigate perturbed pathways.

4. CASE STUDY: COMPARATIVE ANALYSIS
OF BREAST CANCER CELL LINES THAT
HAVE DIFFERENT SENSITIVITY WITH
LAPATINIB

To demonstrate the usefulness of DRIM, we conducted an
analysis on breast cancer cell lines in response to lapatinib
administration. The lapatinib is a dual inhibitor on both
targets epidermal growth factor receptor (EGFR) and human
epidermal growth factor receptor 2 (HER2) tyrosine kinases
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(Medina and Goodin, 2008). It was approved by FDA in
combination therapy for HER2-positive/overexpressed breast
cancer patients. We chose five representative breast cancer cell
lines that have distinct sensitivity/resistance on lapatinib
(Table 2). These cell lines are all available on both multi-omics
and time-series data to fully utilize the nature of DRIM.

4.1. Multi-Omics Analysis Result Before
Drug Treatment
For multi-omics analysis for before drug treatment cells, DRIM
selected IC50-related multi-omics potential mediator gene sets
that are obtained by multi-omics integration analysis as shown in
Figure 4. We carefully examined the set of candidate multi-omics
potential mediator genes predictive of lapatinib sensitivity.
The top 15 multi-omics potential mediator genes lapatinib
are shown in Table 3 sorted by their relevance score with
respect to lapatinib. Among the genes, ERBB3 (HER3) was
previously known for its critical role in HER2-amplified breast
cancer cells (Lee-Hoeflich et al., 2008). It is strongly associated
with lapatinib sensitivity in coexpression with neuregulin-
1 (NRG1) (Wilson et al., 2011). Genetic perturbations on other
genes such as ABCG2, TP53, and HSF1 were also well known
for lapatinib resistance (Rahko et al., 2003; Dai et al., 2008;
Yallowitz et al., 2018).

4.2. Time-Series Gene Expression Analysis
Result After Drug Treatment
For the temporal pharmacogenomic analysis, we investigated
cell line-specific perturbed sub-pathways that may be related
to different lapatinib response. The lapatinib mainly
targets PI3K signaling pathway, which plays a critical role in
cell growth, survival, and proliferation (Fruman et al., 2017).
Conceivably, aberrant activation of PI3K signaling is known to
confer resistance to drugs targeting various receptor tyrosine
kinases (Eichhorn et al., 2008; Wang et al., 2011). As expected,
we collectively observed a significant time-course perturbation of
PI3K signaling in each of the five cell lines in Table 4.

We further examined in detail if there are differential sub-
pathway level regulations among cell lines that mediate the
response to the drug. Specifically, we asked whether each cell
line harbors a distinct time-course regulatory path that governs
the expression of a shared protein at the terminus of a pathway.
To systematically identify such examples, we seeked for the
regulatory paths with shared terminator protein for at least two
cell lines using the “overview” network generated by DRIM. To
simplify the analysis, we defined the terminator proteins as the
nodes without outgoing edges in the network. Moreover, for
biological interpretability, we only considered the paths starting
from the transcription factors, and also enforced the paths to
contain at least one multi-omics mediator. Different cell lines
responded to lapatinib, accompanying distinct molecular
perturbations, and shared the same terminal protein at the end
of the paths (Figure 6).

Interestingly, we observed that many proteins involved in
PI3K signaling pathway were regulated by different signaling
pathways in a cell line-specific manner. For example, vascular

TABLE 3 | Top 15 multi-omics potential mediator genes that are related to

lapatinib sensitivity.

Genes Score

ERBB3 8.01

VEGFA 6.11

PGR 5.96

CDAN1 5.96

ABCG2 5.83

ESR1 5.71

CASP8 5.64

TP53 5.63

MAP2K7 5.62

CNTN4 5.53

DCTN6 5.44

CD274 5.39

NF2 5.31

CBL 5.19

E2F1 5.14

TABLE 4 | The P-value of PI3K-Akt signaling pathway.

Cell line P-value

BT-549 1.6e-05

T-47D 6.07e-03

MCF7 7.11e-04

MDA-MB-468 4.94e-05

MDA-MB-231 1.08e-03

endothelial growth factor A (VEGFA), a well-known effector
molecule induced by PI3K signaling pathway (Karar and Maity,
2011), was shown to be activated through different signaling
cascades, as shown in Figure 6A. In MDA-MB-468, VEGFA
seemed to be induced by aryl hydrocarbon receptor (AhR)
and aryl hydrocarbon receptor nuclear translocator (ARNT)
signaling, presumably by the increased level of AhR/ARNT
heterodimer as shown in Figure 6A. In BT-549 and T-47D
cell lines, activation of JNK and NF-κB signaling was shown
to be associated with increased level of VEGFA, respectively.
Intriguingly, the time-bounded network allows the interpretation
of the temporal difference of VEGFA induction between
lapatinib-treated BT-549 and T-47D cell lines, as it can be
deduced that the earlier response of T-47D was due to the more
rapid induction of NF-κB than that of FOS in BT-549.

Bcl-2-like protein 1 (BCL2L1) and cyclin D3 (CCND3),
overexpressed in human breast cancer, are anti-apoptotic
proteins that delay cell death and increases cell survival
(Simonian et al., 1997; Chi et al., 2015). In Figure 6B, in T-
47D and MDA-MB-231 cell lines, BCL2L1 and CCND3 are
downregulated in response to lapatinib that leads to cell
death. In T-47D, overexpression of JUN throughout whole phases
is a prominent characteristic. JUN is a well-known transcription
regulator that induces apoptotic cell death (Bossy-Wetzel et al.,
1997). It can be hypothesized that promoted cell death in
response to lapatinib is attributed to the increased c-Jun.
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FIGURE 6 | Differentially perturbed sub-pathway networks. (A) Regulatory path sharing VEGFA in BT-549, T-47D, and MDA-MB-468. (B) Regulatory path sharing

CCND3, BCL2L1 in MDA-MB-231, T-47D. (C) Regulatory path sharing SHC1 in MDA-MB-231, MCF7.

Another interesting characteristic is that expression of
downstream molecule of JUN—transcription factor 7-like 2
(TCF7L2)—increases over time, while T-47D cell line retained
a high expression level of JUN. Since activity of c-Jun is
predominantly regulated through phosphorylation, expression
of molecules in regulatory relations should not be necessarily
correlated. In MDA-MB-231, downregulation of BCL2L1 and
CCND3 is induced by signal transducer and activator of
transcription 2 (STAT2) (Furth, 2014), which involved in the
JAK-STAT signaling pathway that leads to oncogenesis (Thomas
et al., 2015). Although temporal relations between molecules are
not clear, it still gives insight into which pathways are involved in
elevated cell death.

SHC-transforming protein 1 (SHC1), a core regulator
of receptor tyrosine kinase signaling, is an essential gene
for promoting immune suppression. Downstream effects of

SHC1 perturbation lead to STAT3/STAT1-related immune
impairment. As previouslymentioned, SHC1 can respond to EGF
stimulation usingmultiple paths of protein phosphorylations and
interactions (Zheng et al., 2013). There also exists PTPN12 as a
turning point of SHC1 pTyr/Grb2 signaling that regulates cell
invasion and morphogenesis. Reflecting the previous findings,
our results on the perturbed sub-pathways also show multiple
regulatory mechanisms that each of the breast cancer cell
lines can potentially utilize favorable/possible sub-paths on
the temporal flow, as shown in Figure 6C. This implies that
upstream stimuli including EGF regulation direct multiple paths
of temporal information among breast cancer cell lines (Zheng
et al., 2013).

Even though all the five breast cancer cell lines were treated
with the same drug, lapatinib, targeting receptors at cell
surface with extreme specificity, each cell line showed different
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sensitivity to the drug. This heterogeneity may occur due to the
complex crosstalk between various signaling pathways, which
makes the inactivation of single signaling pathway by drug
treatment not enough to cause systemic dysregulation of cellular
machineries. Our system allows us to dissect this phenomena by
differentially characterizing the fragments of regulatory cascades
toward various effector molecules for each individual cell line
as shown in Figure 6. Furthermore, since we have intracellular
mechanistic portraits of drug response for each of the cell lines, it
may allow us to devise novel combination therapeutic strategies
targeting additional molecules that cells depend on after the
primary drug is applied.

5. DISCUSSION

For understanding the cell variability in drug response,
personalized drug response analysis is demanded. In spite of
increasing drug response genomics data, the interaction of high
dimension multi-omics and time-series analysis are challenges
for pharmacogenomics analysis. Pathway level analysis and
multi-omics integration can be effective ways to interpret drug
response data.

We developed an integrative multi-omics and time-series
data analysis framework DRIM that finds perturbed sub-
pathways and regulatory mechanisms in drug response. DRIM
identifies the most likely regulatory path involving TF, multi-
omics mediator gene, and perturbed sub-pathway for each cell
line. DRIM provides analysis results in two perspectives. As a
demonstration, we conducted an analysis of breast cancer cell
lines that have different lapatinib sensitivity. In the multi-
omics perspective result, DRIM selected multi-omics potential
mediator genes that are related to lapatinib resistance in
previous studies. In the temporal pharmacogenomic analysis
result, we showed that DRIM can be used to discover distinct
temporal regulatory mechanisms governing the induction of
several common downstream proteins across cell lines.
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