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Abstract—Convolutional neural networks (CNNs) have revolu-

tionized medical image analysis over the past few years. The U-
Net architecture is one of the most well-known CNN architectures
for semantic segmentation and has achieved remarkable successes
in many different medical image segmentation applications.
The U-Net architecture consists of standard convolution layers,
pooling layers, and upsampling layers. These convolution layers
learn representative features of input images and construct seg-
mentations based on the features. However, the features learned
by standard convolution layers are not distinctive when the differ-
ences among different categories are subtle in terms of intensity,
location, shape, and size. In this paper, we propose a novel
CNN architecture, called Dense-Res-Inception Net (DRINet),
which addresses this challenging problem. The proposed DRINet
consists of three blocks, namely a convolutional block with dense
connections, a deconvolutional block with residual Inception
modules, and an unpooling block. Our proposed architecture
outperforms the U-Net in three different challenging applications,
namely multi-class segmentation of cerebrospinal fluid (CSF) on

brain CT images, multi-organ segmentation on abdominal CT
images, multi-class brain tumour segmentation on MR images.

Index Terms—Convolutional neural network, medical image
segmentation, brain atrophy, abdominal organ segmentation.

I. INTRODUCTION

Significant progress has been achieved in the field of

medical image analysis in recent years due to the advent

of CNNs [1]. Within medical imaging, the problem of im-

age segmentation has been one of the major challenges.

Segmentation is a pre-requisite for many different types of

clinical applications, including brain segmentation [2], cardiac

ventricle segmentation [3], abdominal organ segmentation [4],

and cell segmentation in biological images [5]. In these

applications, the results of the segmentation are usually used to

derive quantitative measurements or biomarkers for subsequent

diagnosis and treatment planning.

Among the different approaches that use CNNs for medical

image segmentation, the U-Net architecture [5] and its 3D

extension [6] are widely used because of their flexible architec-

tures. In the first part of the U-Net architecture (analysis path),

deep features are learned while the second part of the U-Net

architecture (synthesis path) performs segmentation based on

these learned features. Training the two parts of the network

in an end-to-end fashion yields good segmentation results. As

the number of features in the first part of network is reduced

because of convolutions and poolings, skip connections are

used to allow dense feature maps from the analysis path to

propagate to the corresponding layers in the synthesis part of

the network, which improves the performance significantly.

However, the limitation of the U-Net architecture is its scal-

ability. Specifically, deeper networks learn more representative

features and result in better performance. Adding more layers

to the network enlarges the parameter space, which allows the

network to learn more representative features. However, this

also increases the difficulties in training the network because

gradients are likely to vanish during training. Therefore, the

challenge is to make the network wider and deeper without

gradient vanishing.

In computer vision, the state-of-the-art CNN architec-

tures include the densely connected convolutional network

(DenseNet) [7], [8] and the Inception-ResNet [9]. The

DenseNet approach consists of a number of dense blocks with

pooling layers between them to reduce the size of the feature

maps. Within each dense block, layers are directly connected

with all of their preceding layers, which is implemented

via concatenation of feature maps in subsequent layers. This

dense architecture has a number of advantages: Firstly, the

concatenation of feature maps enables deep supervision so

that gradients are propagated more easily to preceding layers,

which makes the network training easier. Secondly, bottleneck

layers (convolution layers with 1-by-1 kernels) are used to

control the growth rate of parameters in the network. Finally,

in the DenseNet architecture the final classifier uses features

from all layers (instead of only features from the last layer as in

standard CNN approaches), leading to improved classification

performance.
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The Inception network [10] is a CNN architecture which

uses the Inception modules and allows for very deep net-

works. The main purpose of the Inception modules are: 1)

to increase the depth and width of networks without adding

more parameters; and 2) to achieve multi-scale features for

processing. These are achieved by carefully designing struc-

tures of the Inception modules. The latest version of the

Inception architecture [9] also uses residual connections, i.e.

Inception-ResNet. Fig. 1 shows an overview of the Inception-

ResNet: a stem convolution block, stacks of inception and

reduction blocks, and the classifier. The stem block consists of

a number of standard convolution and pooling layers, reducing

the size of feature maps in lower layers (the ones close

to the input). This aims to be memory efficient in training

but is not strictly necessary. Each inception block consists

of number of inception modules. The reduction blocks are

inception modules with dimension reduction. An inception

module consists of a number of branches of convolution

layers. In each branch, a bottleneck layer reduces the number

of feature maps. The feature maps are then processed by

convolution layers with different sizes of kernels in different

branches. The output of all branches are finally aggregated as

the output of the inception module.

Fig. 1. The overall schema of the Inception-ResNet [9]. The whole architec-
ture consists of some Inception and Reduction blocks. Each block contains a
number of modules. The detailed structures in different blocks vary slightly.

Inspired by the DenseNet and the Inception-ResNet, we

propose an architecture consisting of dense connection blocks,

residual Inception blocks, and unpooling blocks. We term this

architecture Dense-Res-Inception Net (DRINet). We apply the

proposed DRINet architecture for three challenging clinical

segmentation problems, namely multi-class segmentation of

brain CSF in CT images, abdominal multi-organ segmenta-

tion in CT images, and brain tumour segmentation (BraTS)

in multi-modal MR images. The former two problems are

based on clinical datasets while the last one is based on

a publically benchmark dataset. Our main contributions are:

1) a novel combination of the dense connections with the

inception structure to address segmentation problems. The

use of dense connection blocks, residual inception blocks,

and the unpooling blocks achieve high performance while

maintaining computational efficiency; 2) easy and flexible

implementation of the proposed network architecture; 3) state-

of-the-art segmentation performance for challenging image

segmentation tasks.

II. RELATED WORK

The basic CNN architecture for many semantic segmenta-

tion problems is the fully convolutional network (FCN), shown

in Fig. 2(a), which consists of cascaded convolution, pooling,

and deconvolution layers. Convolution and pooling layers form

the analysis path while the convolution and deconvolution

layers form the synthesis path. The analysis path and the

synthesis path are usually symmetric.

The U-Net (Fig. 2(b)) is the FCN with skip layers between

layers in analysis path and synthesis path. The skip layers

are implemented via concatenations and they allow deep

supervision for the network. As such, the errors can propagate

easily through the network. Therefore, the skip layers improve

the network performance. In addition, residual connections can

be used in the U-Net, which results in the Res-U-Net (Fig.

2(c)). In the Res-U-Net, the residual learning is implemented

using the bottleneck building blocks with residual connections,

which were used in the ResNet-50/101/152 architectures [11].

The DeepLab approach [12] involved atrous convolutions

and poolings within the CNN architecture to solve segmenta-

tion problems, as well as conditional random field (CRF) mod-

els for post processing. Based on the DeepLab architecture,

Chen et al. [13] proposed the latest DeepLabV3 architecture.

In DeepLabV3, a simple synthesis path is used. This synthesis

path only consists of very few convolution layers, which is

different from the synthesis path used in the FCN and the U-

Net architectures. Skip connections are used to connect the

analysis path and the synthesis path.

The DenseNet was extended in a fully convolutional fashion

so that it can be used for segmentation tasks [14]. Specifically,

an upsampling transition module was proposed in correspon-

dence to the downsampling transition module in the original

DenseNet. In addition, the macro-architecture of the fully

convolutional DenseNet is similar to the U-Net where skip

connections are used.

Finally, the Pyramid Scene Parsing Network (PSPNet) [15]

was proposed to solve the challenging scene parsing problem.

In the scene parsing problem, prior knowledge could be

incorporated in CNNs to improve performance. For example,

cars are likely to be on the road while they should not be in the

sky. Global context is required to incorporate these priors. The

pyramid pooling module in the PSPNet investigate features in

multiple levels, achieving the state-of-the-art performance.

III. DRINET

A. Overview

Fig. 2(d) demonstrates our proposed DRINet architecture.

Similar to the FCN, the DRINet has an analysis path and a

synthesis path. Stacks of dense connection blocks, instead of

standard convolution layers make up the analysis path, which

is inspired by the DenseNet. The synthesis path consists of

residual inception blocks and unpooling blocks, which are

inspired by the Res-Inception Net. To be more efficient in

terms of memory, the DRINet has no skip connections.

B. Dense connection block

We employ convolutional dense connection blocks [7] in

the analysis path, which are shown in Fig. 3. Formally,

let us assume xl is the output of the lth layer and f(·)
is a convolution function followed by batch normalization
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Fig. 2. Overview of the FCN, the U-Net, the Res-U-Net and the DRINet. DC block and RI block represent the dense connection block and the residual
Inception block. In the DRINet, the DC, RI, and unpooling blocks are depicted in Fig. 3, 4, and 5, respectively. In the Res-U-Net, the residual convolution
means the bottleneck building block used in the ResNet-50/101/152 [11].

Fig. 3. A dense connection block contains m convolution layers. The output channel number of each convolution layer ki is the growth rate. BN and ReLU
apply on every convolution layer. The input and output of a convolution layer is concatenated so deep supervision is allowed.

(BN) [16] and rectified linear unit (ReLU). In the standard

convolution layer, we have:

xl+1 = f(xl) (1)

while in the dense connection block [7] we have

xl+1 = f(xl) ◦ xl. (2)

Here ◦ indicates concatenation.

The number of output channels from standard convolution

layers are usually fixed and typically 64 or 128. As a result,

it is expensive in terms of memory to concatenate the outputs

of preceding convolution layers. In addition, the concatenation

also leads to many redundant features. Therefore, Huang et al.

[7] propose to use 1×1 convolutions to reduce the output size.

As shown in Fig. 3, within a dense connection block, the size

of the output channel for each convolution layer ki is typically

small, e.g. 12 or 24 and this is commonly referred to as the

growth rate of the network.

Using dense connection blocks in the analysis path leads

to three major advantages: 1) Gradient propagation through

the network is more efficient. Conventionally, it is difficult

to ensure that gradients backpropagate to lower layers in the

network. Therefore, it is important to use dense connection

blocks to alleviate the effect of vanishing gradients. 2) The

input to the synthesis path consists of feature maps output from

all preceding layers, instead of only the last layer, which reuses

the feature maps. 3) It is easy to use the growth rate to control

the parameter space, resulting in good network performance.

The latter two advantages will be verified in the following

experiments.

C. Residual Inception block

In the synthesis path of the DRINet, we propose to use

the residual Inception blocks, which is depicted in Fig. 4.

Similar to the original inception modules [10], the idea is

to aggregate feature maps from different branches, where the

input feature maps are convolved using kernels in different

sizes. The residual connections make the learning easier since

a residual inception block learns a function with reference to
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Fig. 4. A residual Inception block is an Inception module with residual
connections. An Inception module is a weighted combination of features
maps from a few branches. Each branch process the input feature maps using
deconvolutions with different kernel sizes.

the input feature maps, instead of learning an unreferenced

function.

In terms of the kernel sizes in convolutions, it is difficult to

determine the optimal size for each convolution. In the FCN

and the U-Net, the kernel size of convolutions is fixed as 3×3.

In the inception module, convolutions of different kernel sizes

are used in parallel. In implementation, the feature maps are

combined using concatenation and a deconvolution layer with

1× 1 kernel learns the combination weights. The deconvolu-

tions are transposed convolutions. In the proposed Inception

modules, deconvolutions work the same as the convolutions.

The purpose of this is to differentiate with convolutions in the

analysis path in symbols.

Unlike the Inception Res-Net [9] having various inception

modules, we propose to use identical inception blocks in the

DRINet, which is easy to implement. We propose to aggregate

feature maps convolved by three kernels, namely 1× 1, 3× 3,

and 5 × 5. Inspired by the DeepLab [17], the deconvolution

with a 5×5 kernel is replaced by a dilated deconvolution with a

3×3 kernel, which is more efficient in memory. To further limit

the size of the parameter space, a bottleneck deconvolution is

used in each branch.

Formally, let g(·) denotes a deconvolution function followed

by BN and ReLU and gb(·) and gd(·) represent bottleneck and

dilated deconvolution respectively. As a result we obtain

xl+1 = gb(gb(xl) ◦ g(gb(xl)) ◦ gd(gb(xl))) + xl. (3)

D. Unpooling block

Fig. 5. An unpooling block is a mini Inception module and it upsamples the
input feature maps.

We propose an unpooling block shown in Fig. 5 to upsample

the feature maps in the synthesis path. The unpooling block

can be viewed as a mini inception module, which combines

upsampled feature maps from two branches. In each branch,

the input feature maps are convolved using kernels in different

sizes, namely 1 × 1 and 5 × 5. The resulting feature maps

are then upsampled using a deconvolution layer with stride

2. Again, the deconvolution with a 5 × 5 kernel is replaced

by a dilated deconvolution with a 3 × 3 kernel in order

to ensure memory efficiency. Also, to limit the parameter

space, the input feature maps are firstly convolved by a

bottleneck layer in each branch, which is similar to the residual

inception block. The combination of upsampled feature maps

is achieved via concatenation. Formally, let g2(·) denotes the

deconvolution function with stride 2. The upsampled feature

maps are therefore:

xl+1 = g2(gb(xl)) ◦ g
2(gd(gb(xl))). (4)

The major advantage of the proposed unpooling block is the

aggragation of different upsampled feature maps. Specifically,

simply upsampling the input feature maps using a deconvo-

lution layer is likely to produce errors. For instance, a small

error in the input feature maps is likely to be enlarged, which

finally results in errors in the segmentation results. In contrast,

convolving the input feature maps with different kernels leads

to different intermediate feature maps. Upsampling these fea-

ture maps separately and combining them together reduce the

effect of errors.

E. Evaluation metrics

In multi-class segmentation on brain CSF and abdominal

organs, we use the well-known Dice coefficient as well as sen-

sitivity (SE) and precision (PR) for evaluation. In evaluation

in the BraTS challenge, we use the same metrics used in the

challenge, namely the Dice coefficient, the SE, the specificity

(SP), and the Hausdorff95 distance. The Hausdorff95 distance

is a robust version of the standard Hausdorff distance, which

measures 95 quantile of the distance between two surfaces,

instead of the maximum.

F. Implementation details

In this work, we use cross-entropy as the loss function for all

networks. We use the Adam method [18] for optimization with

the following parameters: β1 = 0.9, β2 = 0.999, ǫ = 1e − 8.

An initial learning rate of 1e−3 is utilized. The weights are all

initialised from a truncated normal distribution of standard de-

viation of 0.01. Batch normalization [16] layers are employed

in all convolution and deconvolution layers except the last

convolution/deconvolution layer. There are three convolution

layers in each dense connection block and the kernel size

is 3 × 3 with stride 1. There are three residual inception

modules in each residual Inception block. For the standard

deconvolution layers in the residual Inception module, the

kernel size is 3 × 3 and the stride is 1. All networks used

in this paper are implemented on the Tensorflow1 platform.

1https://www.tensorflow.org/
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IV. EXPERIMENTS AND RESULTS

A. CSF segmentation in CT images

Overview: Assessment of CSF volume, within ventricles

and cortical sulci, is important for numerous neurological

and neurosurgical applications. In many applications where

rapid assessment is required (e.g. stroke), CT is preferred over

MRI [19]. A common condition requiring the quantification of

CSF is hydrocephalus (ventricular enlargement), a potentially

life-threatening, but reversible condition; caused by a wide

range of pathologies including hemorrhage, edema or tumours

[20]. In these cases, CSF space quantification, especially

comparison of ventricular to sulcal compartments, is important

for distinguishing hydrocephalus from atrophy (due to age-

related ischemia or degeneration) [21]. Standard quantification

methods rely upon simple measurement of ventricular spans

[22]. However, given the complex ventricular shape, these

are imprecise, vary between observers and do not allow for

accurate estimation of sulcal CSF [23].

The challenges for multi-class CSF segmentation in CT

are three-fold: 1) clinical CT images are often acquired as

stacks of 2D image slices with large slice thickness. Thus,

each slice is usually separately analyzed, however the position

of the patient’s head is usually highly variable. Therefore,

the CSF on each 2D image slice can vary significantly in

terms of its configuration and shape; 2) patients often have

background disease (e.g. old infarcts) which can have similar

intensities to CSF. 3) at the borders of different categories of

CSF, segmentation errors often occur. Many existing methods

[24]–[32] are not robust to these problems. To the best of our

knowledge, this is the first attempt to solve the multi-class

CSF segmentation problem in CT images.

Dataset: CT scans from 133 stroke patients were collected

from two local hospitals. All clinical CT scans were collected

retrospectively from local PACS databases and anonymized

before performing research. Ethical approval was obtained

from the Imperial College Joint Research Office. The scans

were acquired on three types of CT scanners (GE, Siemens,

and Toshiba). The thicknesses of image slices range from

1mm to 7mm and the voxel spacing in plane is approximately

0.4 × 0.4mm. The image size is 512 × 512. Table I displays

the demographic information of the patients.

The training and validation datasets consist of 781 2D image

slices randomly chosen from 101 subjects. 500 of these images

were used for training and 281 for validation. A separate test

set containing 32 subjects was used. The training, validation,

and testing datasets were manually annotated by a human

expert. The CSF was segmented into three categories: 1) CSF

in the ventricles, 2) CSF in the cerebral cortical sulci, fissures,

arachnoid cysts, and 3) other CSF spaces, namely: basal and

brainstem cisterns, cerebellar sulci, infratentorial arachnoid

cysts. For these image slices, a threshold was chosen to obtain

a coarse segmentation on the whole CSF and then the expert

edited them using the MRICron software2. The suprasellar cis-

tern was bisected, such that CSF anterior to a line joining the

bilateral anterior most parts of the cerebral peduncles/midbrain

2https://people.cas.sc.edu/rorden/mricron/index.html

was classified within the cerebral compartment (reflecting

atrophy of medial temporal and orbitofrontal cortices, and

including Sylvian cisterns); while CSF posterior to this line

(including interpeduncular, crural and ambient cisterns) was

classified within the third cisternal compartment.

TABLE I
DEMOGRAPHICS OF PATIENTS IN THE CSF SEGMENTATION EXPERIMENT.
THE NIHSS IS THE NATIONAL INSTITUTES OF HEALTH STROKE SCORE

WHICH MEASURES PATIENTS’ FUNCTIONAL SEVERITY ON ADMISSION.

Age (years)
mean±std 71± 14

range 28-94

Gender male % 52.63

NIHSS
mean±std 10± 6.03

range 1-27

Pre-processing and augmentation: In this work, we do

not perform resampling on the CT images. This is because the

thickness of the clinical CT images is large (up to 7mm) and

resampling the images can introduce inaccuracies and interpo-

lation artefacts. In terms of the image intensity normalization,

we employed the similar strategy as described in [17]. We

normalized CT images on a per slice basis. This means for

each slice, background (i.e. air, bone) was excluded and the

remaining intensities were normalized to zero mean and unit

deviation. We randomly cropped 128× 128 patches from the

slice to construct the training set. In this way, the training set

contains sufficient number of patches. As our CNNs are fully

convolutional, in the testing stage, the input can be the entire

image slice.

Results: We use the FCN, the U-Net, and the Res-U-Net as

baselines. The baseline networks are compared to the DRINet

with various growth rates. The results are displayed in Table

II.

The FCN and the U-Net perform similarly well in terms of

Dice. The results suggest that segmenting the CSF in ventricles

is relatively easy while segmenting CSF around brainstem is

challenging. As depicted in Fig. 6, the CSF around brainstem

is likely to be misclassified. In addition, the skip connections

in the U-Net do not improve the segmentation results in this

case.

Changing the U-Net architecture into the Res-U-Net archi-

tecture makes the network deeper and reduces the number of

training parameters. According to [11], this change should

only marginally influence on the results. However, the Dice

score of the CSF around brainstem decreases under the Res-

U-Net architecture. This result indicates that reducing param-

eters is problematic although the network uses the residual

connections.

The growth rate is the key hyper-parameter in the DRINet

because it controls the network parameter space and per-

formance. Changing the growth rate allows to compare the

performance between baseline networks and the DRINets with

a similar number of parameters. Table II shows the results

evaluating the effects of growth rate. The DRINet with a

growth rate of 12 has a similar number of parameters as the

Res-U-Net. This DRINet segments the CSF around brainstem

significantly better than the Res-U-Net. The DRINet with a
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TABLE II
PERFORMANCE COMPARISON AMONG THE BASELINE CNNS AND THE DRINET WITH DIFFERENT GROWTH RATES. THE NUMBERS UNDER THE DRINET

INDICATE THE GROWTH RATES IN EACH DENSE CONNECTION BLOCK.

Dice (%) SE (%) PR (%)
# params

Ventricles Cortex Brainstem Total Ventricles Cortex Brainstem Ventricles Cortex Brainstem

FCN
val 83.29 76.71 80.74 84.16 90.17 80.06 79.48 93.47 85.13 83.19

2.71M
test 92.89 89.01 85.25 90.91 92.86 88.50 86.73 94.76 91.18 84.52

U-Net [5]
val 82.67 76.10 80.45 84.65 90.07 83.72 78.50 93.24 82.60 83.28

2.91M
test 92.45 89.18 85.20 91.03 92.18 91.70 85.31 94.44 88.22 85.73

Res-U-Net
val 81.66 73.99 76.34 84.15 89.72 79.48 75.84 92.84 85.50 81.67

0.96M
test 91.64 88.73 82.94 90.76 91.54 87.67 82.43 93.81 91.39 84.34

DRINet val 84.98 76.87 86.72 82.96 87.24 75.47 76.99 95.87 89.49 88.71
0.85M

12,12,12,12 test 92.13 87.77 86.08 89.37 88.76 82.78 82.99 97.52 95.75 90.29

DRINet val 85.08 80.70 90.87 84.44 91.32 79.67 82.57 93.21 87.12 85.58
2.80M

24,24,24,24 test 93.84 89.97 88.40 91.27 94.78 88.34 89.55 94.27 93.23 87.91

DRINet val 85.00 80.19 90.08 84.67 89.97 81.73 81.18 94.30 85.57 86.71
5.85M

36,36,36,36 test 93.70 90.33 88.48 91.52 92.80 90.23 88.22 96.20 91.93 89.45

DRINet val 87.39 80.00 91.08 84.89 91.06 82.36 82.18 93.59 85.29 86.74
10.03M

48,48,48,48 test 94.28 90.64 88.96 91.85 94.19 91.00 89.39 95.55 91.74 89.24

DRINet val 86.97 79.95 90.58 84.62 90.63 80.51 81.15 93.96 86.64 88.33
17.33M

64,64,64,64 test 94.15 90.20 88.96 91.53 94.27 88.78 87.43 95.37 93.37 91.28

DRINet val 85.74 79.38 87.92 84.55 90.88 81.81 82.21 93.50 85.40 85.21
4.11M

12,24,36,48 test 93.87 90.26 88.15 91.50 93.95 90.32 88.91 95.38 91.77 88.15

DRINet val 86.98 79.63 90.84 84.69 93.90 85.75 87.32 90.74 81.58 81.30
8.03M

24,36,48,64 test 94.27 90.16 88.82 91.51 94.19 89.53 87.83 95.68 92.45 90.53

DRINet val 86.45 80.08 89.68 84.72 89.86 80.96 82.10 94.58 86.43 87.22
13.70M

36,48,64,80 test 93.76 90.27 88.82 91.46 92.44 89.38 88.59 96.64 92.79 89.76

growth rate 24 is comparable to the FCN and the U-Net in

terms of the size of parameter space. It performs better than

the FCN and the U-Net in terms of the CSF in ventricles

and around brainstem. If the growth rate increases to 48,

the DRINet performs best in all three parts of the CSF

segmentation, as well as the whole CSF segmentation. When

the growth rate becomes very large (e.g. 64), the DRINet

is likely to overfit and the performance decreases. In the

following experiments, a growth rate of 48 is used.

Huang et al. [8] noted that a larger growth rate in the higher

layers is beneficial for the performance of network. In our

experiments, we evaluate this strategy using growth rates like

12, 24, 36, 48 in each dense connection block. Comparing

DRINets using identical growth rate and increasing growth

rates, which have similar number of parameters, the DRINets

using increasing growth rates do not perform significantly

better in any part of CSF segmentations.

Run time: Pre-processing was performed on a desktop

PC with an Core i7-3770 processor and 32GB RAM. CNNs

were trained and tested on an NVIDIA TITAN XP GPU

processor except for the DRINets with large growth rates

(e.g. 48, 64), which were trained on two GPUs to keep the

batch size sufficiently large. On average it took 44.46s for the

DRINet to segment the CSF in one image. The training time

of the DRINet with the best performance was 21.37 hours. In

contrast, the U-Net is faster with 11.44 hours for training and

23.56s per image for testing. Although the DRINet is slower,

its run time is acceptable.

B. Multi-organ segmentation

Overview: Segmenting abdominal organs is important for

clinical diagnosis and surgery planning [33]. There are two

major challenges in the multi-organ segmentation problem:

1) Abdominal organs are highly deformable and mobile and

therefore can have various shapes and sizes; 2) the contrast

between organs is often poor making it difficult to identify

boundaries between organs.

Abdominal organ segmentation is a popular topic for which

many solutions have been proposed. Many methods were

based on statistical shape models [34] or multi-atlas segmen-

tation [34]–[38]. Using recent deep learning approaches, the

segmentation accuracy has significantly improved, particularly

for smaller organs (e.g. pancreas). Furthermore, deep learning

approaches are much faster than conventional methods [4],

[39], [40].

Dataset: 3D abdominal CT scans were used in this exper-

iment to evaluate the performance of the DRINet. Image ac-

quisition parameters and patient demographics for the dataset

used here can be found in [37].

Pre-processing and augmentation were carried out in similar

manner to those for CSF segmentation. The only difference is

that in the CSF segmentation, the image intensity normaliza-

tion is performed per slice while in this multi-organ segmen-

tation task, the image intensity is normalized per volume. The

128 × 128 image patches were randomly cropped to develop

the training set.

We used the same the experimental settings and CNN con-

figurations as in the previous experiments, so no parameters

tuning is performed in this experiment. The purpose is to

validate the flexibility of the DRINet. Therefore, we only

split the whole dataset into a training set (75 subjects) and

a separate testing set (75 subjects).

Baseline: Again, the U-Net and the Res-U-Net are used

as baselines. Table III displays the segmentation results. The
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Fig. 6. The visual examples of multi-class CSF segmentations. The first column displays the original images. The second column shows the manual references.
The following columns demonstrate the segmentations of the U-Net, the Res-U-Net, and the DRINet.

performance of the U-Net and the Res-U-Net is comparable.

The Res-U-Net provides better PR but worse SE than the U-

Net in segmenting the pancreas and kidneys. As mentioned

above, the pancreas is the most challenging organ to segment

because of its thin and various structure. The strength of the

proposed DRINet is demonstrated by the fact that it is able

to segment the challenging organs significantly better than the

baseline CNNs approaches.

Comparison with existing methods: We compare the

DRINet with existing methods evaluated on the same dataset.

[36] and [37] proposed methods based on conventional ma-

chine learning approaches. According to the results (displayed

in Table IV) they have achieved fairly good segmentations in

terms of kidneys, liver, and spleen. The method proposed by

Tong et al. [37] is much faster than the one proposed by Wolz

et al. [36]. The 3D FCN proposed by Roth et al. [4] is the

state-of-the-art method based on deep CNNs. It is clear that the

3D FCN achieves significantly better results in the pancreas

segmentation. Furthermore the inference time is significantly

reduced. However, in terms of the other organs, namely the

kidneys, liver, and spleen, the 3D FCN did not offer significant

improvements.

The DRINet outperforms the 3D FCN achieving the state-

of-the-art based on this dataset. Specifically, it improves the

pancreas segmentation further from the 3D FCN. In addition,

the DRINet promotes the segmentation on other organs as

well. Note that the DRINet is only based on 2D image

slices without using 3D contextual information. Therefore, this

experiments verifies the DRINet is powerful and robust in the

multi-organ segmentation problem.

C. Brain Tumour Segmentation

Overview: Brain tumours are routinely diagnosed using

multi-modal MRI, including native T1-weighted (T1), post-

contrast T1-weighted (T1-Gd), T2-weighted (T2), and T2 fluid

attenuated inversion recovery (FLAIR) image sequences [41].

Quantification of the tumours based on the multi-modal MRI

benefits the diagnosis and treatment [42]. Segmenting tumours

into necrotic and non-enhancing tumours, the peritumoral

edema, and gadolinium enhancing tumours has been a popular

research topic [43].

Dataset: We propose to use the training dataset of the

BraTS 2017 challenge. There are 285 subjects in total and we

randomly select 50 for training and the remaining 235 ones

for testing. The segmentation is based on 2D patches of size

of 64×64. Since the training patch size is smaller compared to
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TABLE III
PERFORMANCE COMPARISON AMONG THE U-NET, THE RES-U-NET AND THE DRINET. THE DRINET OUTPERFORMED THE BASELINE CNNS,

PARTICULARLY IN TERMS OF THE PANCREAS.

Dice (%) SE (%) PR (%)
Pancreas Kidneys Liver Spleen Pancreas Kidneys Liver Spleen Pancreas Kidneys Liver Spleen

U-Net [5] 80.09 95.80 94.70 94.72 74.89 95.86 92.79 93.13 87.98 95.85 96.65 95.98

Res-U-Net 79.09 95.41 96.20 94.71 72.41 93.72 96.15 92.92 89.49 97.28 96.26 95.94

DRINet 83.42 95.96 96.57 95.64 80.29 95.84 96.69 95.63 87.95 96.20 96.47 96.13

Fig. 7. The visual examples of abdominal multi-organ segmentations. The first column displays the original images. The second column shows the manual
references. The following columns demonstrate the segmentations of the U-Net, the Res-U-Net, and the DRINet.

TABLE IV
PERFORMANCE COMPARISON AMONG DIFFERENT ALGORITHMS. IT IS

CLEAR THAT THE DRINET IS SUPERIOR TO THE EXISTING METHODS.

Dice (%)
Time (h)

Pancreas Kidneys Liver Spleen

Wolz et al. [36] 69.60 92.50 94.00 92.00 51

Tong et al. [37] 69.80 93.40 94.90 91.90 0.5

Roth et al. [4] 82.20 - 95.40 92.80 0.07

DRINet 83.42 95.96 96.57 95.64 0.02

that in the previous experiments, all CNNs in this experiments

have two downsampling and upsampling process and all the

other network configurations are fixed. According to [43], the

images have been preprocessed: images were co-registered

into the same anatomical template; skulls were stripped; voxels

were resampled to isotropic resolution (1mm3). We normalise

the image intensities into zero mean and unit deviation. No

post-processing trick is used in any case. The evaluation is

based on the whole tumour region, the tumour core region,

and the enhancing tumour core region, instead of individual

tumour structures.

Results: On this benchmark dataset, we evaluate the three

key components of the DRINet: the dense connection block,

the residual Inception block, and the unpooling block. We set

the FCN as the baseline CNN and separately add one of the

proposed blocks to verify its contribution. We also compare

their performance with the U-Net and the DRINet.

Table V shows the results: In terms of the whole tumour

structure, the added blocks do not affect the Dice scores signif-

icantly. The dense connection block and the residual Inception

block increase the sensitivity and the Hausdorff distances and

decrease the specificity, which means they increase the number

of false positives (FPs). In contrast, the unpooling block

decreases the sensitivity and Hausdorff distance and increases

the specificity, which means it reduces FPs but introduces FNs.

Combining them together results in a trade-off between FNs

and FPs. Therefore, the overall performance increases.

In terms of the tumour core and enhanced core, the three

blocks increase the Dice scores and specificity while decreas-

ing their sensitivity and Hausdorff distances. This means the

overall performance for the segmentation of the tumour core
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and the enhanced core is improved. However, since their sizes

are fairly small, some FNs occur.

The DRINet with three powerful blocks achieves better

segmentation results than the U-Net in terms of the dice scores,

the sensitivity, and the Hausdorff distances. Regarding the Res-

U-Net, since the parameter space is small, it cannot perform

as well as the U-Net in this case. Fig. 8 shows that the training

error of the Res-U-Net is larger than that of the U-Net and

the DRINet. Therefore, the Dice coefficients given by the

Res-U-Net on tumours are the worst among all the CNNs.

According to the low sensitivity, the high specificity, and the

low Hausdorff distance, it is clear that the segmentation results

by the Res-U-Net have many FNs but few FPs.

Fig. 8. The training error comparisons among different CNNs.

V. DISCUSSION AND CONCLUSION

In this paper, a novel CNN architecture, DRINet, is pro-

posed. The DRINet has three key features, namely the use

of dense connection blocks, residual inception blocks, and the

unpooling blocks. These blocks deepen and widen the network

significantly and the parameter space can be controlled via

the growth rate. The gradient propagation is improved due

to the dense connections and residual connections. As a

result, the performance of the DRINet is significantly im-

proved when compared to the standard U-Net. In addition,

the DRINet architecture is highly flexible: Within a block, the

convolution/deconvolution layers can be changed adaptively.

It is therefore easy to integrate the blocks into other CNN

architectures.

In this paper, we focus on evaluating the performance

of the proposed DRINet and each of its components. The

segmentation results of each problem can be improved using

some domain knowledge and post-processing. For instance, in

the brain CSF segmentation problem, a brain mask could be

added. In the abdominal organ segmentation task, 3D contex-

tual information could be included. In the BraTS problem, the

CRF model could be used to remove FPs.

Among the three experiments, the multi-class CSF segmen-

tation on CT images is novel. To the best of our knowledge,

we are the first to attempt on this problem and the proposed

DRINet results in good segmentation. In the future, we plan

extend the proposed approach to segment lesions as well as

CSF using a single DRINet. This is useful in clinical settings

for prognostication after stroke [44] or estimating cerebral

haemorrhage risk [45], [46].

In the context of abdominal multi-organ segmentation, the

DRINet achieves very good results although the segmentation

is based on 2D CT image slices. Our results show that the

DRINet improves the segmentation on small and various

organs like pancreas as well as big organs like liver. It is

of interest to extend its ability to segment more challenging

organs such as arteries and veins, which could make the

DRINet more useful in clinics.

A limitation of the DRINet approach is that the increase

of the growth rate results in many more parameters, which

may lead the training more difficult and testing slower. In the

future, the research could focus on simplifying the network

structure while maintaining its ability.
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