
DRIVE�

Dynamic Routing of Independent VEhicles

Martin Savelsbergh

School of Industrial and Systems Engineering

Georgia Institute of Technology

Atlanta� GA ����������

U�S�A�

Marc Sol

Department of Mathematics and Computing Science

Eindhoven University of Technology

P�O� Box ���

�	�� MB Eindhoven

The Netherlands

Abstract

We present DRIVE �Dynamic Routing of Independent VEhicles�� a planning
module to be incorporated in a decision support system for the direct transporta�
tion at Van Gend � Loos BV� Van Gend � Loos BV is the largest company providing
road transportation in the Benelux with about ��		 vehicles transporting �
	�			
packages from thousands of senders to tens of thousands of addressees per day� The
heart of DRIVE is a branch�and�price algorithm� Approximation and incomplete
optimization techniques as well as a sophisticated column management scheme have
been employed to create the right balance between solution speed and solution qual�
ity� DRIVE has been tested by simulating a dynamic planning environment with
real�life data and has produced very encouraging results�

April ����
Revision July ����

� Introduction

Van Gend � Loos BV� is the largest company providing road transportation in the
Benelux� which is the region consisting of Belgium� The Netherlands� and Luxembourg�

�Van Gend � Loos BV is a member of the Nedlloyd group� a Dutch organization providing world

wide transportation services by land� air and sea�

�

with about ���� vehicles transporting ������� packages from thousands of senders to tens
of thousands of addressees per day� The service of Van Gend � Loos BV can be roughly
divided into two parts� the regular transportation system and the direct transportation

system� In the regular transportation system� shipments� ranging from small packages to
loads of up to four pallets� are picked up at the sender and then delivered at the closest
distribution center� During the night� the loads are transported from that distribution
center to the distribution center closest to the destination of the load� from where they
are delivered at their 	nal destination during the next day� In the direct transportation
system� shipments� ranging in size from four pallets to full truck loads� are picked up by
a vehicle at the sender and are delivered by that same vehicle at the destination
 there
is no transshipment at any distribution center�

Operating the direct transportation system of Van Gend � Loos BV is a complex task
and management at Van Gend � Loos BV has realized that to handle the anticipated
growth and to take advantage of the anticipated technological changes� such as global
positioning systems and direct communication with vehicles� their planning department
may bene	t from more advanced planning tools than they currently have�

This paper discusses such a planning tool� DRIVE� Dynamic Routing of Independent
VEhicles� DRIVE is to be incorporated in a decision support system for the direct
transportation system at Van Gend � Loos BV� The heart of DRIVE is a branch�and�
price algorithm for the general pickup and delivery problem GPDP��

In a GPDP a set of routes has to be constructed in order to satisfy transportation
requests� Each transportation request speci	es the size of the load to be transported� the
location where it is to be picked up the origin�� the location where it is to be delivered
the destination�� and time windows de	ning allowable pickup and delivery times� Each
load has to be transported by one vehicle from its origin to its destination without any
transshipment at other locations� A heterogeneous �eet of vehicles is available to operate
the routes� Each vehicle is characterized by a capacity� a depot where it is stationed�
and a time window specifying when the vehicle is available�

The GPDP can naturally be formulated as a set partitioning problem in which the
set of transportation requests has to be partitioned into a set of feasible routes� In recent
years� set partitioning formulations have become very popular for many combinatorial
optimization problems� There are two main reasons for this� First� for many problems
alternative formulations are not known� This is the case� for example� in crew pairing
problems �Anbil� Tanga� and Johnson ������ Second� for many problems where alterna�
tive formulations are known� the linear programming relaxation of the set partitioning
formulation often yields a stronger bound� This is the case� for example� in cutting stock
problems �Vance et al� ������

Many large�scale set partitioning problems have been solved successfully by branch�
and�price algorithms� Branch�and�price algorithms �Barnhart et al� ����� solve mixed

�

integer programming formulations with huge numbers of variables� In branch�and�price
algorithms� sets of columns are left out of the linear program because there are too
many columns to handle e�ciently and most of them have their associated variable
equal to zero in an optimal solution anyway� In order to check the optimality of a linear
programming solution� a subproblem� called the pricing problem� is then solved in order
to identify columns to enter the basis� If such columns are found� the linear program
is reoptimized� Branching occurs when no columns price out to enter the basis and
the linear programming solution is optimal and fractional� Branch�and�price� which is a
generalization of branch�and�bound with linear programming relaxations� allows column
generation to be applied throughout the branch�and�bound tree�

Our discussion of DRIVE can be broken down into three parts� First� we present
a branch�and�price algorithm for the GPDP� This algorithm is very �exible and is eas�
ily turned into an approximation algorithm that is capable of producing high quality
solutions for large instances in an acceptable amount of computation time� This is a
nontrivial task since the underlying solution paradigm is based on the enumeration of
the solution space� but essential because the algorithm is to be used in a real�life op�
erational planning environment� The proper balance between quality and speed has
been realized by using heuristics� whenever appropriate� within the overall optimization
framework� by using a sophisticated column management scheme� and by using problem
speci	c information� whenever possible� in the branching scheme� the primal heuristic�
and the column selection procedure� Secondly� we present the algorithmic adjustments
that had to be made to the branch�and�price algorithm for the GPDP to be able to
handle the speci	c characteristics of the direct transportation system of Van Gend �
Loos BV� Finally� we present the results of a case study� These results show the viability
of our approach and illustrate that sophisticated optimization based heuristics can be
used successfully in complex real�life situations� This is one of the contributions of our
work� since there seems to be a tendency to resort to relatively simple heuristics to solve
complex real�life decision situations�

As the results of the case study were very encouraging� the management at Van Gend
� Loos BV has put forward a proposal to the board of directors that asks for permission
and funds to build a decision support system for the direct transportation system with
DRIVE as the core planning tool�

This paper is organized as follows� In Section �� we discuss the problem characteristics
of the direct transportation system at Van Gend � Loos BV� their current planning
methodology� and the envisioned planning methodology� In Section �� we present the
branch�and�price algorithm we have developed for the GPDP� In Section �� we discuss
the algorithmic adjustments that had to be made to the branch�and�price algorithm to
be able to handle the speci	c characteristics of the direct transportation system of Van
Gend � Loos BV� In Section �� we present the computational experiments that have

�

been conducted� Finally� in Section �� we make some concluding remarks�

� The direct transportation system

In this section we take a closer look at the direct transportation system at Van Gend �
Loos BV� We discuss problem characteristics as well as current and envisioned solution
methodology�

��� Problem characteristics

����� Requests

All requests specify one pickup location and one or more delivery locations� which have to
be visited in a prede	ned order� A single origin�destination pair is called a shipment� A
request consisting of multiple delivery locations is said to consist of multiple shipments�
These shipments have to be picked up at the same time by a single vehicle� All requests
specify time windows for the pickup and all the deliveries�

Not all the transportation requests are known in advance
 some become available
in real time� This implies that at the time a new request becomes available� the set of
routes that is currently being executed has to be modi	ed� At the beginning of a day�
about ��� of all requests that have to be served during that day are known�

����� Vehicles

There is a heterogeneous �eet of vehicles� Vehicle capacities are speci	ed in pallets
 there
are vehicles with a capacity of ��� ��� �� and �� pallets� Capacity is not the only char�
acteristic that is used to di�erentiate between vehicles� Vehicles are also distinguished
based on their physical characteristics� because some clients have speci	c demands on
the properties of a vehicle that serves their request�

The �eet of vehicles is not stationed at a central depot
 each vehicle has its own home

location�
A working period of a vehicle is a period of consecutive days in which the vehicle is

in use� A vehicle starts and ends a working period at its home location with no load on
board� Each night of a working period a driver sleeps at one of a set of sleeping locations�
which includes his own home location� On Friday night a vehicle has to return home�
At this time the vehicle does not have to be empty� meaning that its working period
has not yet ended� On Monday morning the vehicles are again available at their home
location� A driver must have a �� minute lunch break between �� am and � pm each
day of a working period�

�

The vehicles are rented by Van Gend � Loos BV on a daily basis for working periods
of unknown length� When the number of transportation requests decreases� some vehicles
will be sent home in order to end their working period� A number of vehicles is rented
permanently� i�e� they cannot be returned� When the number of transportation requests
increases� new vehicles are rented� A new vehicle can only start its working period at
the beginning of the next working day� This implies that� at the end of a day� when only
part of the requests that have to be served the next day are known� the vehicles for the
next day have to be selected� Van Gend � Loos BV does not exchange one vehicle for
another� but only returns vehicles when the total number of vehicles that is currently in
use exceeds the number of vehicles that will be needed the next day�

����� Costs

The costs incurred by serving the requests are the drivers� pays� which include the
lease costs of the vehicles� Each day of a working period a driver gets paid an amount
proportional to the distance traveled that day unless this amount does not exceed some
speci	ed minimum� in which case this minimum is paid� Furthermore a driver gets a
compensation for each night of a working period that he does not spend at his home
location�

����� Problem size

The planning area� i�e�� the region in which all locations are situated� is the Benelux�
About ��� vehicles are used per day� of which �� vehicles are rented permanently� The
number of requests that has to be served per day is about ��� to ���� The total number
of shipments per day is about ����

��� Current methodology

A central dispatching o�ce collects new requests and assigns them to vehicles� At every
stop of a route the driver of a vehicle calls this central o�ce for new instructions� At
present� the o�ce cannot directly contact the drivers� although it is anticipated that a
more sophisticated communication system will be implemented in the future�

The planning is done by a team of 	ve people� Two of them do the actual planning�
the other three act as an interface between the planners and the drivers� All 	ve people
take turns on both jobs� The planning area is divided into two parts� each part covered
by one planner� The planners basically use two sources of information� a request list

with all transportation requests that have to be served within the next twenty hours�
and a vehicle list with information about where and when the vehicles that are in use
will become empty� On both lists� the items are geographically grouped� On the request

�

list� this grouping is done by considering the origins of the requests� Within a group� the
requests are listed in order of nondecreasing earliest pickup time� On the vehicle list�
vehicles within one group are listed in order of nondecreasing time when they become
empty�

The planners use a three�phase approach� First they try to 	nd combinations of
requests that should be served by one vehicle� Requests are combined� based on proximity
of origins and destinations in both space and time� and based on total load� In the second
phase� these combinations are tentatively assigned to vehicles� Only when a driver calls
for new instructions� these tentative assignments are made permanent�

During the 	rst part of a day the planners only focus on the work that has to be done
during that day� In the afternoon� the following day is also considered� At this time the
planners must also decide how many vehicles they need for the next day� Though only
a fraction of the requests of the next day is known at that time� usually there is some
knowledge about the total amount of work that has to be done during the next day�
Such knowledge is available as planner�s expertise� The number of vehicles that will be
used the next day is primarily based on the amount of work that has to be done during
the 	rst part of the morning� but is increased if the expected total amount of work for
the next day makes this necessary�

��� Envisioned methodology

Because the pickup and delivery problem at Van Gend � Loos BV is a dynamic problem�
we designed DRIVE to work in an iterative way� When DRIVE is invoked� it produces
a plan� based on the current set of routes� the current set of known requests and some
estimate on future workload� This plan should be seen as a base plan that a planner can
modify� While evaluating the base plan� a planner must focus primarily on the short�
term decisions proposed by DRIVE� i�e�� the assignments of loads to vehicles� and the
routing of the vehicles within� say� the next hour� As soon as the plan is accepted� these
short�term decisions are made permanent� This means that the 	rst parts of the routes
in the plan will be executed as planned� The remaining parts may be changed when new
requests become available� As soon as necessary� DRIVE is used again to produce a new
plan that respects all permanent decisions�

In this way� all routes are divided into a head� which is the part that will be executed
as planned� and a tail� which is the remaining part that may change in the future� In
this environment a planner is always busy preparing the tails of the routes� When a
driver calls for new instructions� no calculations have to be performed because these
instructions have been previously stored as the head of the driver�s route�

�

� A branch�and�price algorithm for the GPDP

The core structure of the direct transportation system at Van Gend � Loos BV is a
GPDP� For a survey of the GPDP see Savelsbergh and Sol ������� Although the GPDP
does not capture all the characteristics of the direct transportation systems at Van Gend
� Loos BV� we felt that an e�cient and e�ective algorithm for the general pickup and
delivery problem would provide an invaluable tool�

We decided to develop a set partitioning based algorithm for the GPDP� The primary
reasons for this decision were�

� A set partitioning approach focuses on the assignment of transportation requests
to vehicles� which is the most important and most di�cult aspect of multi�vehicle
routing problems with relatively few stops per trip�

� A set partitioning approach is very �exible in the sense that most restrictions
imposed on the routes can easily be incorporated�

� Set partitioning approaches have provided very promising results for various types
of vehicle routing problems �Dumas� Desrosiers� and Soumis ����� Desrochers�
Desrosiers� and Solomon ������

� Set partitioning approaches bene	t from the rapid advances in linear programming
technology�

Our e�orts have resulted in the branch�and�price algorithm for the GPDP described
below� This algorithm forms the basis of DRIVE�

��� A set partitioning formulation

Let N be the set of transportation requests� For each transportation request i � N �
a load of size qi � IIN has to be transported from origin i� to destination i�� De	ne
N� �� fi� j i � Ng as the set of origins and N� �� fi� j i � Ng as the set of
destinations� For each request i � N the pickup time window is denoted by �ei� � li��
and the delivery time window by �ei�� li��� Furthermore� let M be the set of vehicles�
Each vehicle k � M has a capacity Qk � IIN� is available in the interval �ek� � lk� ��
and is stationed at depot k�� De	ne M� �� fk�jk � Mg as the set of depots� Let
V �� N� �N� �M��

For all i� j � V� k � M let dij denote the travel distance� tkij the travel time� and

ckij the travel cost� Note that the dwell time at origins and destinations can be easily
incorporated in the travel time and therefore will not be considered explicitly�

�

De�nition � A pickup and delivery route Rk for a vehicle of type k is a directed cycle

through a subset Vk � N� �N� � fk�g such that�

�� Rk starts in k� not before ek� �

�� For all i � N � i� � Vk if and only if i� � Vk�

�� If fi�� i�g � Vk� then i� is visited before i��

�� Each location in Vk n fk
�g is visited exactly once�

�� Each location in Vk n fk�g is visited within its time window�

	� The vehicle load never exceeds Qk�

� Rk ends in k� not after lk��

To formulate the pickup and delivery problem as a set partitioning problem� we de	ne

�k �� the set of all feasible pickup and delivery routes for vehicle k�

�kir ��

�
� if i � N is served on route r � �k �

� otherwise�

ckr �� the cost of route r � �k�

and introduce binary variables xkr k � M� r � �k� equal to � if route r � �k is used
and � otherwise� The pickup and delivery problem can now be formulated as follows�

minimize
P
k�M

P
r��k

ckrx
k
r

subject to
P
k�M

P
r��k

�kirx
k
r � � for all i � N � partitioning constraints�P

r��k

xkr � � for all k �M � availability constraints�

xkr � f�� �g for all k �M� r � �k�

We denote this formulation by P and its linear programming relaxation by LP �
We will consider pickup and delivery problems where the primary objective is to

minimize the number of vehicles needed to serve all transportation requests and the
secondary objective is to minimize the total distance traveled� This is accomplished by
taking the objective functionX

k�M

X
r��k

F � Lkr�x
k
r �

where Lkr denotes the length of route r for vehicle k and where F � jN jmaxr��k�k�M Lkr
is a large constant� This cost structure can be achieved by de	ning the travel costs
ckij � dij i �� k��� and ck

k�j
� F � dk�j j �� k���

�

��� A branch�and�price algorithm

We have developed a branch�and�price algorithm for the GPDP based on the formulation
presented above� The lower bound provided by LP is usually excellent and often much
better than the lower bounds provided by more traditional formulations with variables
xkij indicating whether or not a vehicle of type k travels from location i � V to location
j � V �

A column generation scheme has been applied to solve LP in order to handle the
large number of variables that arises due to the size of the sets �k� Instead of explicitly
enumerating all feasible routes in order to 	nd a variable that prices out to enter the
basis� in a column generation approach the non�basic variable with the smallest negative
reduced cost is found by solving an optimization problem� called the pricing problem� In
this way the feasible routes are generated on the �y as needed and only a small fraction
of all feasible routes is used to solve LP �

Dumas� Desrosiers and Soumis ������ were the 	rst to develop and implement a
branch�and�price algorithm for the pickup and delivery problem with time windows�
Our branch�and�price algorithm di�ers from theirs in various aspects� Most of these
di�erences are prompted by the necessity to be able to solve large instances quickly�

The key features to accomplish a proper balance between solution speed and solution
quality are

� The use of heuristics� whenever possible� to solve the pricing problem�

� The use of a sophisticated column management scheme to keep the linear programs
as small as possible and to keep the number of linear programs that have to be
solved as small as possible�

� The use of a column selection procedure that increases the chances of 	nding or
constructing feasible solutions within the active set of columns�

� The use of a branching scheme that concentrates on high level decisions�

� The use of linear program based primal heuristics�

����� Solving the linear programming relaxation

Suppose that for each vehicle k �M a set ��
k � �k of feasible pickup and delivery routes

is explicitly known� The restricted master problem LP � is de	ned as follows�

minimize
P
k�M

P
r���

k

ckrx
k
r

�

subject to
P
k�M

P
r���

k

�kirx
k
r � � for all i � N �

P
r���

k

xkr � � for all k �M �

xkr � � for all k �M � r � ��
k

Suppose that LP � has a feasible solution x and let u� v� be the associated dual so�
lution� i�e�� the dual variables ui i � N� are associated with the partitioning constraints
and the dual variables vk k �M� are associated with the availability constraints� From
linear programming duality we know that x is optimal with respect to LP if and only if
for each k �M and for each r � �k the reduced cost dkr is nonnegative� i�e��

dkr � ckr 	
X
i�N

�kirui 	 vk � � for all k �M� r � �k�

Testing the optimality of x with respect to LP can thus be done by solving the pricing
problem

minfckr 	
X
i�N

�kirui 	 vk j k �M� r � �kg�

Let z denote the value of the solution to the pricing problem and let kz and rz denote
the corresponding vehicle type and route� If z � �� then x is also optimal with respect
to LP � otherwise rz de	nes a column that can enter the basis and has to be added to
��
kz
� This yields the following column generation scheme�

�� Find initial sets ��
k containing a feasible solution x�

�� Solve the restricted master problem LP ��

�� Solve the pricing problem� If z � � then stop� otherwise set ��
kz

�� ��
kz
� frzg and

go to Step ��

Due to the presence of the availability constraints� it is nontrivial to 	nd initial sets
��
k � �k containing a feasible solution to LP � However� if they exist� such sets can

always be found using a two�phase method similar in spirit to the two�phase method
incorporated in simplex algorithms to 	nd an initial basic feasible solution� De	ne LP�
as

minimize
P
k�M

P
r��k

ckrx
k
r �
P
i�N

pyi

subject to
P
k�M

P
r��k

�kirx
k
r � yi � � for all i � NP

r��k

xkr � � for all k �M

xkr � � for all k �M� r � �k

yi � � for all i � N

��

where yi i � N� is an arti	cial variable and p � maxk�M�r��k c
k
r is an appropriate

penalty cost� Problem LP� can be solved by the above column generation scheme by
initializing ��

k �
 for each k �M �
The arti	cial variables yi are not deleted when they have all become non�basic� i�e��

when a feasible solution to problem LP has been found� Because of their high cost�
these variables will stay non�basic and will not interfere in the optimization process�
However� during the branching process� the sets ��

k are restricted by the branching
scheme� possibly yielding an initial infeasible LP in a node� In that case� the arti	cial
variables will reappear in the basis� and the 	rst phase is automatically started in order
to 	nd sets ��

k that do contain a feasible solution for the linear program associated with
this node�

Because the route costs ckr � F�Lkr are constructed such that F � jN jmaxr��k�k�M Lkr �
we can improve the lower bound ZLP when the optimal LP solution x corresponds to
a non�integral number of vehicles� More precisely� if m � d

P
k�M

P
r��k

xkre� then the
constraintX

k�M

X
r��k

xkr � m

is a valid inequality that may be added to LP � see also Desrosiers et al� ������� Adding
this constraint does not change the pricing problems� because the dual value of this
constraint appears as a constant in their objective functions�

The column generation scheme presented above can be made more �exible based on
the two following observations�

� Any column with negative reduced cost is a candidate to enter the basis and can
be added to the restricted master

� If several columns with negative reduced cost exist� they can be added simultane�
ously to the restricted master�

This �exibility can be exploited e�ectively to improve the overall e�ciency of a col�
umn generation scheme� The basic idea is to solve the pricing problem approximately
as long as this produces columns with a negative reduced cost� and only solve the pric�
ing problem optimally when solving it approximately fails to produce columns with a
negative reduced cost� In this way� the number of times the pricing problem is solved
optimally� which is computationally prohibitive� is reduced considerably�

We have embedded approximation as well as optimization algorithms for the pricing
problem into an e�ective and e�cient column management system� The approximation
algorithms try to generate many routes with negative reduced cost very fast� Any route
with a negative reduced cost� whether generated by an approximation algorithm or an

��

optimization algorithm� is stored in a column pool� Rather than solving the pricing prob�
lem at every iteration� we 	rst search the column pool for columns with negative reduced
cost� If successful� one or more of these are selected and added to the restricted master
problem� If unsuccessful� we clean the column pool and invoke the pricing algorithms
in order to try to re	ll the pool� Note that each time the restricted master problem is
reoptimized the dual variables change� Therefore� the reduced costs of the columns in
the pool have to be updated after every reoptimization� Cleaning the pool consists of
removing all columns with reduced cost larger than some threshold Dmax � �� A positive
threshold value can be useful� because the reduced costs change after every reoptimiza�
tion� possibly to a negative value� If the pricing problem is solved approximately� LP
cannot be solved to optimality and so P cannot be solved to optimality� Therefore� as
soon as the approximation algorithms fail to produce columns with negative reduced
cost� an optimization algorithm is used to solve the pricing problem optimally to either
prove optimality of LP or to 	nd new columns with negative reduced costs� The column
generation scheme we propose now looks as follows�

�� Find initial sets ��
k containing a feasible solution x�

�� Set the column pool equal to
�

�� Solve the restricted master problem LP ��

�� If the column pool contains columns with negative reduced cost� select some of
these columns� add them to the restricted master problem and go to Step ��

�� Delete columns with reduced cost larger than Dmax from the column pool and start
the approximation algorithms for the pricing problem� If these are successful� add
the generated columns to the pool and go to Step ��

�� Solve the pricing problem to optimality� If z � �� then stop� otherwise add the
generated columns to the pool and go to Step ��

There are several ways to choose columns from the column pool to add to the re�
stricted master problem� The 	rst possibility is to select the column with the minimum
reduced cost� In this way� the linear program will not grow very rapidly� but a linear
program has to be solved for each added column� A second possibility is to select all
columns with negative reduced costs from the pool� This will reduce the number of
linear programs that have to be solved� but the linear programs will become very large�
We have chosen a more adaptive greedy selection scheme that selects partial solutions to
problem P � More precisely� we select a set of columns with negative reduced costs that
correspond to a set of routes satisfying the following requirements�

��

� Each transportation request is served on at most one route

� The number of vehicles of a certain type assigned to the routes does not exceed
the available number of vehicles of that type�

The set of columns is constructed by successively choosing a column with minimum
negative reduced cost such that the two requirements are still satis	ed� The selection
stops when no more such columns are available in the column pool�

The above column selection mechanism is motivated by two observations� First�
adding columns corresponding to partial solutions to P increases the chance of encoun�
tering integral solutions during the solution of the master problem� Second� it prevents
the addition of similar columns� which would happen if the columns would be selected
merely based on their reduced cost and the dual variables are far from being optimal�

����� The pricing problem

The pricing problem decomposes into several independent problems� one for each vehicle�
since

z � minfckr 	
X
i�N

�kirui 	 vk j k �M� r � �kg

is equal to

z � min
k�M

minfckr 	
X
i�N

�kirui 	 vk j r � �kg�

i�e�� the problem of 	nding a minimum cost route for vehicle k� using a modi	ed cost
structure� that serves a subset of the transportation requests� Denote these independent
problems by Sk for k �M � Problem Sk can be viewed as a shortest path problem with
precedence constraints� capacity constraints and time windows� on the perturbed cost
matrix c��

A dynamic programming algorithm using labeling techniques to handle the prece�
dence� capacity and time constraints� can be used to solve this shortest path problem
�Dumas� Desrosiers� and Soumis ������ However� for instances with many transporta�
tion requests and time and capacity constraints that are not very tight� solving Sk to
optimality becomes computationally prohibitive�

As pointed out in the previous section� the pricing problem may be solved approx�
imately as long as columns with negative reduced cost are found� Solving the pricing
problem approximately can be done in several ways�

One approach is to speed up the dynamic programming algorithm in earlier iterations
of the column generation process by working on a reduced network �Dumas� Desrosiers�

��

and Soumis ������ Network reduction is achieved by deleting nodes corresponding to
requests with a low dual value and by deleting arcs with relatively high cost� Obviously�
this reduces the state space of the dynamic program and thus the computation times� but
it no longer guarantees that the optimal solution is found� If no more pro	table routes can
be found in the reduced network� it is enlarged and the dynamic programming algorithm
is started again� Note that this approach guarantees that in the end the pricing problem
is solved to optimality�

Also note that the dynamic programming algorithm may encounter many columns
with negative reduced costs before it identi	es the one with the smallest reduced cost�
Obviously all these columns could be stored in the column pool� However� since the num�
ber of columns with negative reduced cost in the 	rst iterations of the column generation
process is huge� this would lead to an unmanageable column pool� Furthermore� only a
few of the columns generated in the 	rst iterations of the column generation scheme will
be actually added to the restricted master problem� Therefore� in our implementation�
we have put an upper bound on the number of columns that the algorithm can create in
one run for each vehicle� The algorithm will stop as soon as the upper bound is reached�
which reduces computation times drastically� Note that this approach still guarantees
that in the end the pricing problem is solved to optimality�

Another approach is to use fast approximation algorithms instead of the dynamic
programming algorithm� The fast approximation algorithms we have used are based on
construction and improvement algorithms for the single�vehicle GPDP� In their descrip�
tion� we use Ikr j� to denote the minimal cost of inserting transportation request j into
route r for vehicle k� If transportation request j cannot be inserted into route r� then
Ikr j� ���

Since computing the true insertion cost involves the solution of a single�vehicle pickup
and delivery problem with time windows� i�e�� a traveling salesman problem with time
windows� precedence constraints and capacity constraints� we have chosen to work with
an approximate insertion cost� namely the cheapest insertion cost� If r is a route con�
sisting of n stops� our insertion algorithm 	rst calculates �i � � i � n�� which is the
latest possible time the vehicle may arrive at stop i in order to ensure feasibility� with
respect to the time windows of the remaining part of the route i� i��� � � � � n�� Because a
request requires two stops to be inserted into a route� there are On�� possible insertions
for each request� By evaluating these insertions in the right order and using the values
�i� each possible insertion can be checked for feasibility and cost in constant time� The
cheapest insertion cost of request j into route r can therefore be computed in On��
time�

Construction algorithms

Construction algorithms build routes from scratch� De	ne the reduced insertion cost

��

Dk
r j� �� Ikr j�	 uj � The construction algorithms initialize a route r and then repeat�

edly try to decrease the reduced cost of the route by inserting a request with Dk
r j� � ��

If Dk
r j� � � for all requests not in the route� and dkr � �� then r is added to the column

pool� The route can be initialized as a loop from k� to k�� or as a route serving some
requests that are likely to be served by a vehicle of type k�

Improvement algorithms

Improvement algorithms modify existing routes� Note that the current LP solution pro�
vides us with a set of routes r with dkr � � at least all the routes associated with basic
variables�� When such a route is used as a starting point for a local search algorithm�
we expect to 	nd a route with negative reduced cost very fast� The following two algo�
rithms start with a route r with dkr � � and then try to decrease the reduced cost of the
route by deleting requests from the route and replacing them by other requests� The
	rst algorithm performs pro	table swaps until no such swap can be found� The second
algorithm performs a variable depth search� When i � N is served on route r� we denote
by r n fig the route obtained from r by deleting request i� When j � N is not served
on route r� we denote by r� fjg the route obtained from r by inserting request j in the
cheapest way�

The 	rst algorithm works as follows�

�� Let dk�rnfi�g��fj�g � minfdk�rnfig��fjg j i� j � N� �kir � �� �kjr � �g�

�� If dk�rnfi�g��fj�g � dkr � then set r � r n fi�g�� fj�g and go to Step ��

�� If dkr � �� then add r to the column pool�

At each iteration of the variable depth search algorithm the best swap is performed�
even if this increases the reduced cost� The algorithm maintains a set F � N of requests
that were deleted from the route in a previous iteration� These requests are not allowed
to reenter the route� The best route found over all iterations is added to the column
pool if it has negative reduced cost�

�� r �
� dkr ��� and F k �
�

�� Let dk�rnfi�g��fj�g � minfdk�rnfig��fjg j i� j � N� �kir � �� �kjr � �� j �� F kg�

�� If dk�rnfi�g��fj�g � �� then go to Step �� otherwise set r � r n fi�g� � fj�g and

F k � F k � fi�g�

�� If dkr � dkr � then set dkr � dkr and r � r�

�� Go to Step ��

��

�� If dkr � �� then add r to the column pool�

����� Solving the Integer Program

In order to obtain integral solutions� we need a branching scheme that excludes the
current fractional solution� validly partitions the solution space of the problem� and does
not complicate the pricing problem too much� The third requirement almost always
excludes the standard branching rules based on variable 	xing� Fixing a variable to �
does not complicate the pricing problem� because it just reduces the size of the problem�
However� 	xing a variable to � corresponds to forbidding a certain solution to the pricing
problem� Deeper down the search tree this implies that a set of solutions to the pricing
problem must be excluded� which is in general very complicated� if not impossible�

In order to develop branching schemes that satisfy the requirements given above� the
structure of the pickup and delivery problem has to be exploited� The pickup and delivery
problem can be roughly divided into two parts� First� the assignment of the requests
to the available vehicles� Second� the construction of pickup and delivery routes� This
suggests two types of branching schemes� one that partitions the solution space with
respect to assignment decisions� the other with respect to routing decisions�

Branching on routing decisions

Dumas� Desrosiers and Soumis ������ present a branching scheme that focuses on routing
decisions� The branching scheme is based on the one proposed for the asymmetric
traveling salesman problem by Carpaneto and Toth ������� Let xkr � � be a fractional
variable in the current LP solution� Suppose that the corresponding route r serves n
requests fi�� i�� ���� ing � N in such a way that ip is picked up before iq if p � q� Binary
order variables Oij i� j � N� �M�� are introduced� where Oij is equal to � if no
requests are picked up between locations i and j� and � otherwise� The current subset of
solutions is now divided into n � � subsets as follows� De	ne i�� � i�n�� � k�� The 	rst
subset is characterized by the constraints O

i
�

�
i
�

�

� O
i
�

�
i
�

�

� � � � � O
i
�
n i

�

n��
� �� For each

j � f�� �� ���� ng another subset is characterized by O
i
�

�
i
�

�

� O
i
�

�
i
�

�

� � � � � O
i
�

j��
i
�

j
� �

and O
i�
j
i�
j��

� �� The dynamic programming algorithm to solve the pricing problem can

be easily modi	ed such that the routes found by the algorithm satisfy the constraints on
the order variables�

Branching on assignment decisions

We present an alternative branching scheme that focuses on assignment decisions rather
than routing decisions� Assignment decisions constitute higher level decisions and have
a greater impact on the structure of the solution� Therefore� we feel that assignment

��

decisions are more important than routing decisions and should be made 	rst�
Let x be the current fractional solution to LP � Now de	ne for each i � N and k �M

the assignment value zki �
P

r��k
�kirx

k
r � indicating what fraction of request i is served

by vehicle k in the current LP solution�

Proposition � Let x be an optimal solution of LP � and let zki �
P

r��k
�kirx

k
r k �

M� i � N�� Then x is integral if and only if z is integral�

Proof If x is integral� then trivially z is integral� Now suppose z is integral� Let k �M
and i � N satisfy zki � �� Because

P
r��k

�kirx
k
r � � and

P
r��k

xkr � �� we have that

�kir � � for all r � �k with xkr � �� Therefore all routes r � �k with xkr � � serve the
same requests� Because x is an optimal solution to LP � these routes all have the same
cost and so they are identical� Since all routes in �k are distinct� this implies that x is
an integral solution� �

Based on the above Proposition� we propose the following branching scheme� When x

is fractional� �nd a request �� � N and a vehicle �k � M with � � z
�k
�� � � and create two

subsets characterized by z
�k
�� � � and z

�k
�� � � respectively�

This branching scheme can be viewed as a special case of the branching scheme
proposed by Ryan and Foster ������ and does not complicate the pricing problem in the

subsets� The restriction z
�k
�� � � is easily satis	ed by ignoring request �� when solving

pricing problem S�k � It is less obvious that the restriction z
�k
�� � �� i�e�� requiring that

request �� is served by vehicle �k� can also be satis	ed when solving pricing problem
S�k� In this case� it seems to depend on the speci	c algorithm used� For example� if a
construction heuristic is used it is easy and if a dynamic programming algorithm is used
it is doable� Sol ������ shows that� in fact� any algorithm for the pricing problem S�k can
be used with an appropriate choice of dual variables�

����� Primal solutions

In order to keep the search tree small� we need good lower and upper bounds� To obtain
good upper bounds� we have developed a primal heuristic that� in each node of the search
tree� tries to construct a feasible solution starting from the current fractional solution
and� if successful� tries to improve this solution�

The constructive algorithm is based on the assignment values de	ned in the previous
section� Let x be the fractional solution to the LP� Then we de	ne for each request i � N

and each vehicle k � M the fractional assignment value zki �
P

r��k �
k
irx

k
r � Note that if

this value is large� the LP solution indicates that it is likely that transportation request i
is served by vehicle k� The following algorithm now tries to construct a feasible solution�

��

�� N� � N �
Sort the pairs k� i� �M N such that zk�i� � zk�i� � zk�i� � � � �
t � ��
For each vehicle k �M set rk to be the empty route of k�

�� If it �� N� or it cannot be added to route rkt � then go to ��

�� Add it to route rkt �
Remove it from N��

�� t � t� ��
If N� ��
 and t � jM jjN j� then go to �� otherwise stop�

Checking whether it can be added to route rkt in Step �� is done with our cheapest
insertion algorithm�

If a solution is found in this way� it is subjected to three local search algorithms� The
	rst algorithm considers a single route and reinserts each request� Because the routes
were constructed by sequential insertion� the cheapest insertion of a request in its route
can di�er from its current positions� The other two algorithms consider two routes and
try to decrease the total cost by moving requests from one route to the other� or by
exchanging two requests between routes� The cost of both operations is approximated
by insertion and deletion algorithms�

The quality of the upper bound may be further improved by incorporating more
sophisticated iterative improvement algorithms� such as those described in Kindervater
and Savelsbergh �������

��� Computational experiments

The ultimate goal of our research is the development of a high quality approximation
algorithm for the GPDP that can solve moderate size instances in an acceptable amount
of computation time� We believe that� with the appropriate choices� the branch�and�price
algorithm described above satis	es these requirements� and the results of the various
computational experiments that we have conducted support that claim�

The computational experiments are designed to answer the following questions�

� Do we solve the linear relaxations faster when we use the column management
scheme described in Section ������

� If we never solve the pricing problem to optimality� i�e�� if we only use the heuristics
to solve the pricing problem� can we still get high quality solutions�

��

� Does generating columns at every node of the search tree� as opposed to only
generating columns in the root node� lead to higher quality solutions�

We have implemented several versions of our algorithm to be able to answer these
questions and start their description with a discussion of the implementation issues that
are common to all of them�

The cheapest insertion algorithm that we have developed for the pricing problem is
also used to construct a starting solution and an initial set of columns� The limit on
the number of columns that the dynamic programming algorithm can generate for each
vehicle in a single execution is set to ���� We have experimented with limits of ��� ��� and
���� columns per vehicle� but the computation times hardly varied� Because the limit
of ��� columns per vehicle produced slightly better results� this value has been chosen�
The threshold value used to decide when the column pool is cleaned up has been set to

��� The branching pair �k���� is chosen such that z
�k
�� � maxfzki j z

k
i � �� i � N� k � Mg�

The search tree is explored according to a best bound search�
We have implemented three approximation algorithms� A�� A� and A	� All of them

use the column generation scheme of Section ������ The algorithms di�er either in the way
they solve the LPs in the root node or in the way they solve the LPs in the other nodes
of the search tree� Algorithm A� always uses the heuristics to solve the pricing problem
and therefore never solves the pricing problem to optimality� In the root node� algorithm
A� uses the heuristics to solve the pricing problem as long as they produce pro	table
columns� but reverts to the dynamic programming algorithm when the heuristics fail
to produce pro	table columns� Consequently� in the root node A� solves the LP to
optimality and therefore produces a valid lower bound on the optimal solution value� In
all the other nodes A� only uses the heuristics to solve the pricing problem� In the root
node algorithm A	 is identical to algorithm A�� but algorithm A	 does not generate new
columns in any of the other nodes of the search tree� As a consequence� algorithm A	

circumvents the complications introduced by generating columns throughout the search
tree and can use standard branching rules based on variable dichotomy with the given
set of columns�

We have implemented two optimization algorithms� O� and O�� Both of them use the
column generation scheme of Section ������ but O� always uses the dynamic programming
algorithm for column generation� whereas O� uses the heuristics to solve the pricing
problem as long as they produce pro	table routes�

All versions have been implemented using MINTO� a Mixed INTeger Optimizer
�Nemhauser� Savelsbergh� and Sigismondi ������ MINTO is a software system that
solves mixed�integer linear programs by a branch�and�bound algorithm with linear pro�
gramming relaxations� It also provides automatic constraint classi	cation� preprocessing�
primal heuristics and constraint generation� Moreover� the user can enrich the basic al�

��

gorithm by providing a variety of specialized application routines that can customize
MINTO to achieve maximum e�ciency for a problem class� All our computational ex�
periments have been conducted with MINTO ��� CPLEX ��� and have been run on an
IBM RS���� model ����

����� Test problems

Because the ability to solve the pricing problem to optimality� and thus the ability to
solve an instance to optimality� strongly depends on the size of the set of all feasible
solutions� and this size strongly depends on the number of transportation requests that
can be in a vehicle at the same time and the width of the pickup and delivery time
windows� we have developed a random problem generator that allows us to vary these
instance characteristics�

Instances are constructed as follows� Generate a set of ��� points randomly within a
square of size ������� The distance between two points is the Euclidean distance� The
travel time between two points is equal to the distance between these points� Origins
i��� destinations i�� and vehicle home locations k�� are now chosen from this set
of points� The load of a request is selected from an interval �qmin� qmax�� The capacity
of all vehicles is equal to Q� The time windows of the requests are constructed in the
following way� The planning period has length L � ���� Each window has widthW � For
each request i choose ei� randomly within the interval ��� emax

i �� where emax
i � L	 ti�i� �

The time windows for request i are now calculated as �ei� � ei� �W � for the pickup and
�ei� � ti�i� � ei� � ti�i� �W � for the delivery� A time unit can be interpreted as a minute�
In this way the length of the diagonal of the square corresponds to approximately half a
planning period� We choose the number of available vehicles jM j � jN j���

As indicated earlier� the objective is to minimize the number of vehicles used and the
total distance traveled� We have taken the 	xed cost F to be F � ������

Table � lists the problem classes that we have used in our 	rst experiments in order of
anticipated increasing di�culty� We have randomly generated �� instances in each prob�
lem class� Although the number of transportation requests is not large� it is large enough
to enable us to analyze the characteristics of the di�erent versions of the algorithms we
have proposed�

We have also tried to obtain the problem instances used by Dumas� Desrosiers� and
Soumis ������� but unfortunately� these are no longer available�

����� Quality of the lower bound

We 	rst consider the quality of the lower bound ZLP obtained in the root of the branch
and bound tree� Note that this includes the addition of the constraint

P
k�M

P
r��k x

k
r �

��

Class jN j jM j qmin qmax Q W

A�� �� �� � �� �� ��
B�� �� �� � �� �� ��
C�� �� �� � �� �� ���
D�� �� �� � �� �� ���

Table �� Problem classes

m see Section ������� For all instances� the optimal number of vehicles equals m� We
therefore focus on the quality of the lower bound with respect to the total distance
traveled� Table � shows the linear programming bound at the root ZLP �� the value of
the optimal solution ZOPT �� and the integrality gap as a percentage of the optimal
value� with respect to distance traveled only� ���ZOPT 	 ZLP ��ZOPT 	mF �� For ��
out of �� instances this gap equals �� indicating that the problem was solved without
any branching� and only for � out of �� instances the gap exceeds ���

Based on this experiment� we conclude that the lower bound computed in the root
node provides a good indication of the value of an optimal solution�

����� The optimization algorithms

To analyze the e�ect of using heuristics in the column generation scheme on the time
required to solve the linear relaxations� we have solved the initial linear programming
relaxation by both algorithm O� and O� for all instances in the problem classes A���
B��� C�� and D��� Table � shows the CPU time� the number of columns generated� and
the number of columns added by O� and O�� The number of columns generated is the
total number of columns that have been stored in the column pool during the solution
process� The last column shows the quotient CPUO���CPUO���

Algorithm O� clearly outperforms O�� Over all �� instances� we have observed an
average decrease in computation time of ��� when using the approximation algorithms
for the pricing problem� For problem class D�� the average computation time was almost
halved� The number of columns in the optimal master problem never becomes very
large and this number does not di�er drastically for O� and O�� There is however a big
di�erence in the number of generated columns� This is due to the fact that the dynamic
programming algorithm stores all columns with negative reduced cost it encounters up
to ��� per vehicle per execution� in the column pool� Although this results in a larger
pool size for O� than for O�� the larger pool size does not cause the di�erences in
computation times� The di�erences in computation times can be fully attributed to the

��

Problem Zopt ZLP gap Problem Zopt ZLP gap
A�	�� �	��� �	��
��	 	�
� B�	�� ���
�� ���
���	 	
A�	�� ������ �������	 	 B�	�� ���� �����	 	���
A�	�� ������ �������	 	 B�	�� ������ �������	 	���
A�	�� ������ �������	 	 B�	�� �	���� �	�����	 	
A�	�� ������ �������	 	 B�	�� ���� ��	��	 	��	
A�	�
 ���
� ������ 	��� B�	�
 �	��
� �	��
��	 	
A�	�� �	���� �	�����	 	 B�	�� �	��
� �	��
��	 	�	�
A�	�� ������ �����
�	 	��
 B�	�� ������ �������	 	
A�	� ������ �������	 	 B�	� ����

 ����

�	 	
A�	��	 ����	� ����	��	 	 B�	��	 ���
�� ���
���	 	
C�	�� ��

� ��
	��	 ��� D�	�� ��
	 ���	�� 	���
C�	�� ��
�� ��
���	 	 D�	�� ����� ������	 	�
	
C�	�� ��	�� ��
��� ���� D�	�� ����� ������	 	
C�	�� ���	� ���
��� 	��
 D�	�� ���
� ���
��	 	
C�	�� ����
 ������ 	�� D�	�� ���� ������ ��	

C�	�
 ���� ��		�� ��	� D�	�
 ����� ������� 	���
C�	�� ����	 ������� ��� D�	�� ���	� ������� 	���
C�	�� ���� ��
��	 	��� D�	�� ���� ��	��	 ����
C�	� ����
 ������� 	��� D�	� ����	 ����	�	 	
C�	��	 ����	 ������� 	��	 D�	��	 ��� ���	��� ����

Table �� Optimal solutions and integrality gaps

fact that O� only uses optimization algorithms to solve the pricing problem whereas O�

also uses approximation algorithms�
Based on the above observations� we have chosen algorithm O� to solve all the prob�

lem instances to optimality� Table � shows the total CPU time and the number of nodes
evaluated in the search tree�

The results presented in Table � indicate that for loosely constrained instances the
time required to solve an instance may vary signi	cantly and in some cases may become
prohibitively large�

����� The approximation algorithms

The computational experiments with the optimization algorithm have demonstrated that
there can be signi	cant di�erences in solution times even for instances in the same prob�
lem class� This type of behavior is generally unacceptable in practical planning situ�
ations� An analysis of the distribution of the total computation time over the various
components of the branch�and�price algorithm revealed that most of the time was spent

��

on optimally solving the pricing problems� This suggests that we may be able to reduce
the computation times and improve the robustness by reducing the number of times the
pricing problem is solved to optimality� This observation motivated the three approxi�
mation algorithms�

Table � shows the CPU time� the number of evaluated nodes� and the relative error
ZBEST	ZOPT ��ZOPT	mF � for the approximation algorithms A�� A�� and A	� When
a problem is solved in the root� A� and A	 are equivalent to O�� This event is indicated
by an asterisk !� in the last column�

Algorithm A� clearly outperforms the others with respect to quality of the solutions�
It solves �� out of �� problems to optimality� For �� of these problems this is due
to the fact that no branching was required and for �� problems A� found the optimal
solution even though branching was required and the pricing problems were only solved
to optimality in the root node� For the four problems that were not solved to optimality�
the relative error was at most ���� �� By comparing the results of A� and A	� we
conclude that it pays to use column generation during branch and bound� However� as
the relative errors of A	 are still small� it is clear that creating a good set of columns in
the root is the most important issue in 	nding good approximate solutions�

Algorithm A�� which never solves the pricing problem to optimality� outperforms
the others with respect to speed� For all problems the optimal number of vehicles was
obtained� and though only � out of �� problems are solved to optimality� the average
relative error over all �� problems is only ������ These observations indicate that A�

might be a good algorithm for practical situations where problem sizes are bigger and
time and capacity constraints are less restrictive� In fact� in such situations it may not
be possible to use the other algorithms because of the computation times of the dynamic
programming algorithm�

Larger instances

To determine whether the conclusions drawn based on the experiments with instances
with �� transportation requests remain valid when larger instances are solved� we have
generated several sets of larger instances and tested algorithms A� and A� on these
sets� We did not include algorithm A	 since its computational requirements do not
di�er substantially from those of algorithm A� and A� generally produces higher quality
solutions� The characteristics of these problem classes are shown in Table ��

The set DAR�� is a set of instances of the dial�a�ride problem� which is a well�known
special case of the pickup and delivery problem in which loads represent people� In
dial�a�ride problems the capacity restrictions are fairly loose�

As our ultimate goal is the development of a high quality approximation algorithm
for the GPDP that can solve moderate size instances in an acceptable amount of com�

��

putation time� we have imposed an upper bound of �� minutes of cpu time� When this
bound causes the algorithm to stop� we report the best solution found so far� We have
done this to mimic practical situations in which there exists a limit on the time available
to construct a set of routes�

The results for classes A�� and B�� are shown in Table �� The results for classes C��
and D�� are shown in Table �� For these more loosely constrained problem classes� we
can clearly observe the computational disadvantages associated with solving the pricing
problem to optimality� since algorithm A� terminated prematurely for all but � instances�
i�e�� it ran into the time limit of �� minutes� In fact� for all these instances� the algorithm
has not been able to completely evaluate the root node" On the other hand� algorithm
A� terminated normally for most instances and produces signi	cantly better solutions�
To determine the a�ect of the time limit on the quality of the solutions� we have run both
algorithms on the same set of instances with a time limit of �� instead of �� minutes�
The results can also be found in Table � and indicate that allowing more time does result
in better solutions�

The results presented in Tables � and � indicate that algorithm A� performs well on
tightly constrained instances� but that computational requirements become a bottleneck
for loosely constrained instances� Algorithm A� on the other hand produces high quality
solutions in an acceptable amount of computation time regardless of the problem class�

The results presented in Table � indicate that both algorithms are capable of pro�
ducing high quality solutions for instances of the dial�a�ride problem�

� DRIVE

Since the general pickup and delivery problem does not capture all the characteristics
of the direct transportation system at Van Gend � Loos BV� the branch�and�price al�
gorithm cannot be applied directly� In this section� we discuss the modeling tricks and
the algorithmic adjustments that had to be made to be able to handle the speci	c char�
acteristics of the direct transportation system at Van Gend � Loos BV�

��� Handling the dynamics

DRIVE uses an iterative approach to handle the dynamics of the direct transportation
system� At each iteration� a static general pickup and delivery problem� which we call the
reoptimization problem� is solved� Each reoptimization problem� which is characterized
by a set of vehicles� a set of transportation requests� and a set of initial routes� depends on
the solution obtained in the previous iteration� In the following subsections� we describe
how the reoptimization problem is constructed when DRIVE is invoked at time � �

��

����� Planning horizon

Sometimes� requests are known long before they can be served� It is not necessary to
include such requests into the planning process as soon as they become available� We
therefore introduce a planning horizon H � �� and we only consider those requests that
can be picked up before time � �H � The parameter H also provides a means to control
the size of the problem instance�

����� Requests

Let the active set of requests consist of all requests that are known at time � � that have
not yet been completed� and that can be picked up before time � � H � We distinguish
two types of active requests� permanently assigned requests and non�assigned requests�
An active request that is served on an existing route and that has been picked up before
� is labeled as a permanently assigned request� since it has to be assigned to the vehicle
associated with the route�

For each existing route� we introduce a virtual request representing all permanently
assigned but not yet completed� requests� i�e�� representing the loads that are on board
the vehicle at � � The origin of the virtual request is the 	rst location on the existing
route visited after time � and the destinations of the virtual request are the locations
where the loads that are on board the vehicle must be delivered� The set of virtual
requests replaces the set of permanently assigned requests� For the virtual requests we
relax the constraint that deliveries have to be made in a prede	ned order� because the
virtual request may contain destinations of various di�erent requests�

We now de	ne the set of requests for the reoptimization problem to be the set of
virtual requests and the set of non�assigned requests� and we enforce each that vehicle
associated with an existing route starts its new route by picking up the virtual request�

����� Route costs

The cost of a vehicle on a given day depends on the distance traveled and on the sleeping
location of the driver on that day recall that routes typically extend over several days��
Let Lkr t� be the distance traveled by vehicle k on route r on day t� and let skr t� indicate
whether the driver sleeps at his home location k� at the end of day t skt� � �� or
somewhere else skt� � ��� The amount that has to be paid to the driver is then equal
to X

t

	kmaxfLkt�� Lkming�
skt���

where 	k is the price per unit of distance traveled� Lkmin is the guaranteed minimum
traveling distance that has to be paid� and
 is the compensation that has to be paid

��

when a driver does not sleep at his home location� Note that a driver�s pay includes the
lease price of the vehicle�

These route costs cannot be used directly for the following reasons�

� The last part of a route may change in the future and therefore does not provide
a reliable cost estimate�

� For a vehicle that is currently in use� the distance Lkr�� will not exceed L
k
min during

a signi	cant part of the day� since initially only a subset of the requests is known�
Similarly� for all vehicles� Lkrt� will hardly ever exceed Lkmin for t � �� Therefore�
the route costs do not di�erentiate the various routes�

We use the following route costs� For a vehicle currently in use

ckr � 	k
X

��t�Tr

�maxfLkrt�� L
k
ming� �	 ��Lkr t�� �
skr ��

and for all other vehicles

ckr � 	k
X

��t�Tr

�maxfLkrt�� L
k
ming� �	 ��Lkr t�� � F�

for some F � � and � � � � �� and where Tr denotes the last day that the vehicle is in
use� Note that we do not take the sleeping locations of days t � � into account�

When we choose � � �� we obtain a cost structure that� during most of the current
day� satis	es ckr � Tr � ��	kL

k
min �
skr �� if the vehicle is currently in use� and ckr �

Tr	kL
k
min � F for all the other vehicles� which are almost independent of r� When we

choose � � � � �� we re�ect that we want to make good short�term decisions� but still
use some of the real cost structure in the model�

In practice� the values of Lkmin are much smaller than the average distance traveled
per day per vehicle� If L is this average� then we have L�Lkmin � ���� The part of
the objective function that deals with the costs associated with travel distance does not
distinguish between a solution in which four vehicles each travel a distance Lkmin and a
solution in which three vehicles each travel a distance L� The 	rst solution� however� is
unacceptable for Van Gend � Loos BV� because it would decrease the average income
of the drivers� which would lead to an increase of the values 	k � Therefore� we have
included the constant F in the cost for a vehicle currently in use� By taking the constant
F � 	k�L

k
min� we discourage using a new vehicle� A new vehicle is introduced only when

a new request becomes available that cannot be served by a vehicle currently in use�

��

����� The reoptimization problem

As indicated before� we can distinguish two phases in the planning process of each day�
In the morning� the planners focus on the work that has to be done during that day�
In the afternoon� the planners also consider the work that has to be done the next day
and decide how many vehicles will be required to satisfy the anticipated� transportation
request for the next day�

We can easily accomplish that the known requests for the next day are being consid�
ered in the afternoon� by properly selecting the planning horizon H � However� since the
objective function minimizes the number of vehicles and only a fraction of the requests
that have to be served the next day is known� we must force a solution to use enough
vehicles for the next day� so that new requests can be added when they become available�

We accomplish this by adding the following constraint to the set partitioning formu�
lationX

k�M

X
r��k

Qkx
k
r � Q�

where �k is the set of feasible routes for vehicle k� Qk is the capacity of vehicle k� xkr the
variable that indicates whether route r for vehicle k is selected xkr � �� or not xkr � ���
and Q an estimate of the total vehicle capacity that will be needed during the next day�

In the morning Q is set to a small value� say Q � �� e�ectively making the constraint
redundant� At this time� the emphasis will be on short�term decisions�

��� Route generation

The branch�and�price algorithm uses construction and improvement algorithms to gener�
ate additional routes� In this section� we discuss the modi	cations that had to be made
to these algorithms to handle the speci	c characteristics of the direct transportation
system� lunch breaks and night breaks�

A driver must have two breaks every day of a working period� a night break and a
lunch break� Let # be the day length� So day t is the time interval t#� t � ��#�� A
break on day t for vehicle k is characterized by a time window �e� l� � t#� t� ��#� in
which it must start� a duration �� and a set V k of locations at which the break can take
place�

A night break has to be either at the vehicle�s home location k� or at one of a set
of common sleeping locations V�� On Friday the night break has to be at the vehicle�s
home location� On Monday through Thursday the night break location depends on the
predecessor and the successor in the route� Suppose we want a night break to take place
between locations u and v� and suppose that vehicle k departs from u at time Du� The

��

night break takes place at a location w � V k for which Du� tuw � l and that minimizes
the d�tour duw � dwv �

A lunch break takes place immediately after arriving at a location on the vehicle�s
route� immediately before leaving a location on the vehicle�s route� or at some location
j � V� � fk�g when traveling between two locations on the vehicle�s route� The lunch
location depends on the predecessor and the successor in the route� Suppose we want
the lunch break to take place between location u and v� and suppose that vehicle k

departs from u at time Du � l� If Du � e� lunch takes place at u� Otherwise� let
Av � Du � tuv � If Av � l� then lunch takes place at v� Otherwise lunch takes place at a
location w � V��fk�g for which Du� tuw � l and that minimizes the detour duw�dwv�
If Du � tuw � l for all w � V� � fk

�g� then lunch takes place in u�
The locations of the break stops are not a priori determined� They depend on the

predecessor and the successor stops in the route� This implies that the insertion of
a request into route r may lead to the relocation of some of these break stops� This
obviously complicates computing the feasibility and cost associated with inserting a new
request�

Suppose that route r for vehicle k ends at the end of day j� Inserting a new request
into route r may require that the vehicle is also in use on day j � �� When we add a
day at the end of a route� we must also introduce a lunch break and a night break for
that day� This complicates the insertion algorithm� We therefore assume that� for some
T � �� all required breaks on days �� �� � � � � T � are already present in the route� regardless
of whether the vehicle will be used on those days or not� We do not allow inserting a
request after the last night break� T should be chosen large enough to ensure that this is
not restrictive� In this way� for example� a route for a new vehicle that serves no requests
consists of �T stops� T lunch breaks and T night breaks�

��� Feasible solutions

In a dynamic environment� a planning tool must be able to provide a good solution within
a short amount of computation time� With an LP based branch�and�bound algorithm�
we cannot guarantee that a good integral solution is found fast� if we only rely on the
branching phase to produce these integral solutions� Therefore DRIVE frequently applies
its primal heuristics� In fact� the primal heuristics are not only invoked when an LP has
been solved to optimality� but each time a set of new routes is about to be generated�
i�e�� immediately before the pricing heuristics are activated�

Furthermore� DRIVE uses a heuristic construction algorithm in order to produce a
starting solution very fast� This algorithm takes the solution of the previous reoptimiza�
tion process as a starting point� and then sequentially assigns each new request j to the
vehicle for which the marginal insertion cost is minimal� If it is infeasible to insert the

��

new request in an existing route� then a new vehicle is introduced� After all new requests
have been inserted into a route� we try to improve the solution by applying three types
of improvement algorithms� The 	rst algorithm reinserts each request into its route�
When� after request j has been inserted� new requests have been inserted into the same
route� the current positions of the pickup and deliveries may no longer be optimal� Rein�
serting request j may therefore decrease the route cost� The other two algorithms take
two routes r� and r�� and try to 	nd r�� and r�� such that ck�

r�
�

� ck�
r�
�

� ck�r� � ck�r� � either by

moving requests from r� to r�� or by exchanging requests between r� and r��
An advantage of using a set partitioning model in a dynamic environment is the fact

that many of the routes that have been generated during the solution of the previous
reoptimization problem are useful for the current reoptimization problem� Suppose that
r is some route for vehicle k that has been generated in the previous reoptimization
process� and suppose that r serves requests j � Nr� We now create a new route for
vehicle k as follows� Let r� be the route for vehicle k that only serves the virtual request
ik� Now sequentially insert all requests j � Nr that have not been permanently assigned
to another vehicle� i�e�� all requests j � Nr � N�� into route r�� The resulting routes
provided a good set of initial routes for the branch�and�price algorithm�

� Case Study

We have tested DRIVE by simulating a dynamic planning environment with real�life
data� These data contained all requests that had been served by Van Gend � Loos
BV in a given period� These simulations were based on a stand�alone methodology�
Solutions presented by DRIVE were not modi	ed by a planner� but were considered as
being executed as proposed�

During the development of DRIVE� we repeatedly compared the results of the sim�
ulations to the results of the planners at Van Gend � Loos BV over the same period�
These comparisons were needed for various reasons� First� we had to make sure that
the data was complete and that we were aware of all constraints that a route should
satisfy� Second� we had to compare global solution characteristics� such as the number
of vehicles used and the average distance traveled per vehicle per day� in order to assure
that these were acceptable to Van Gend � Loos BV� Finally� we compared the total
distance traveled and the total cost over the entire planning period� in order to show
that DRIVE is capable of providing good solutions�

��� Organization of the tests

The test data covered a period of �� working days� starting with a Thursday and ending
with a Tuesday� The actual evaluation period covered �� working days� starting with

��

a Monday� and ending with a Friday� The two additional days at the beginning of
the simulation were introduced in order to make sure that the vehicles are not empty
on Monday morning� because that would not be realistic� The two additional days at
the end of the simulation prevented DRIVE from deferring requests in order to obtain
better results for the last days of the evaluation period� We only present results for the
evaluation period�

Besides the usual request information� such as addresses of origins and destinations�
time windows and load sizes� the test data also contained the times at which the requests
became available� i�e�� the times at which the requests were called in by the client� We
used this data to simulate the process of clients calling in new requests�

The tests have been organized such that we have simulated the invocation of DRIVE
once every hour� from ���� to ������ and once at midnight� for each day of the planning
period� We assumed that the solution presented by DRIVE is then executed until DRIVE
is invoked again� At ����� we let DRIVE select the vehicles for the next day�

In practice� DRIVE must be able to produce a solution within a reasonable amount of
time� such that a planner has enough time to evaluate the proposed solution� Therefore
we have put an upper bound on CPU time of � minutes for each time we invoked DRIVE�
with an exception for the run at ������ where the upper bound was �� minutes�

��� Characteristics of the reoptimization problems

Table �� shows the sizes of the reoptimization problems at times ����� ����� ������ �����
and ����� for each day of the two planning weeks� For each reoptimization problem� we
list the number of active requests jN j� the number of non�assigned requests jN�j� and the
number of vehicles jM�j currently in use� The set of active requests N has been de	ned
by taking the planning horizon H equal to �� hours� In this way we consider requests
with an earliest pickup time of ���� the next day� in the planning process starting at �����
this day� When we take H much larger� DRIVE spends much CPU time in calculating
assignments that will almost certainly have to be changed when new requests become
available�

��� The contribution of column generation

From our test results we observed that it is sometimes di�cult to construct a feasible
solution to a reoptimization problem� i�e�� a solution in which all requests j � N� are
served� Note that we cannot always serve a new request by introducing a new vehicle� A
new vehicle can only start working at the beginning of the next working day� so it cannot
serve a new request that has to be picked up during the current day� The construction
algorithm that we used to produce a starting solution could not always insert all new

��

requests� At the beginning of the column generation algorithm� all requests that could
not be inserted in any route during the creation of the starting solution� get a very high
dual value� Therefore the pricing heuristics will automatically try to construct routes
that serve these requests�

��� Quality of solutions

Tables �� and �� show the results of DRIVE compared to the results of the planners at
Van Gend � Loos BV VGL�� For each day of the planning period we show the number
of vehicles used� the total distance traveled� and the total cost of the solutions� The
travel distances and the costs have been scaled� such that the total travel distance and
the total cost per week equal ����� for the solution of Van Gend � Loos BV�

We observe that for the 	rst planning week� DRIVE obtained an improvement of
���� of the total cost compared to the planners at Van Gend � Loos BV� For the
second week� this improvement was ����� The number of vehicles used by DRIVE is
not substantially smaller than the number used by the planners at Van Gend � Loos
BV� For the second week� it is even ���� higher� Apparently� DRIVE obtains the cost
decrease by constructing better assignments of requests to vehicles�

The characteristics in Table �� indicate that the 	rst planning week is much busier
than the second week� This is re�ected in the di�erence between the solutions of DRIVE
and the solutions of the planners� In a busy period� there are so many active requests that
the planners must reduce the planning horizon in order to keep the problem manageable�
At this time� DRIVE provides much better solutions� because it is able to look further
into the future� In a quiet period� a planner has more time to make decisions� so he can
better evaluate the e�ect of various assignments� In such a period� the cost decrease that
DRIVE obtains is smaller but can still be signi	cant�

� Concluding remarks

Although we tested DRIVE only in a simulated environment� the results indicate that
DRIVE will provide a good basis for developing a decision support system at Van Gend �
Loos BV� Clearly� the simulated environment in which we tested DRIVE was not entirely
realistic� In practice� it sometimes happens that a vehicle breaks down� or that a load
is not yet available at an origin at its indicated earliest pickup time� Such situations�
which increase total cost� did not occur in our simulations� On the other hand� our tests
have indicated that DRIVE� when implemented as a stand�alone system� is capable of
providing solutions that are better than those provided by the planners at Van Gend �
Loos BV� When DRIVE is embedded in a DSS� its solutions serve as a starting point for
these planners� We may therefore expect that the cost decrease that we observed when

��

DRIVE is used as a stand�alone system� will be even more signi	cant when DRIVE is
embedded in a DSS� Furthermore� the quality of the solutions produced by DRIVE may
be increased by allowing more running time� switching to a faster computer� and using
improved linear programming optimizers�

During the development of DRIVE� we have identi	ed several research topics related
to dynamic pickup and delivery problems that deserve more attention in the future�
First� we believe that there is not yet a good insight in objective functions for dynamic
routing problems� Usually it is possible to de	ne a cost structure that can be used to
evaluation the cost of a route after it has been executed� but that cost structure does
not always provide a good objective function for a reoptimization problem� A second
research topic is the development of techniques for predicting requests that are not yet
available� If we have some idea about the origin and load of future requests before they
are actually called in� this might help in producing better plans�

Acknowledgment

We thank P� Maier� B� Muusers� and T� Steysiger of Van Gend � Loos BV and J�
Hendriks of Logion BV for their help and support throughout the project� We also
thank the Dutch Technology Foundation for their 	nancial support�

References

R� Anbil� R� Tanga and E�L� Johnson ������ A global approach to crew�pairing
optimization� IBM Systems Journal ��� ������

C� Barnhart� E�L� Johnson� G�L� Nemhauser� M�W�P� Savelsbergh� and P�H�

Vance ������ Branch�and�Price� Column Generation for Solving Integer Programs�
Operations Research� to appear�

G� Carpaneto and P� Toth ������ Some new branching and bounding criteria for
the asymmetric travelling salesman problem� Management Science �	� ��������

M� Desrochers� J� Desrosiers� and M� Solomon ������ A new optimization al�
gorithm for the vehicle routing problem with time windows� Operations Research ���
��������

J� Desrosiers� Y� Dumas� M�M� Solomon� and F� Soumis ������ Time con�
strained routing and scheduling� M�O� Ball� T�L� Magnanti� C�L� Monma� and

G�L� Nemhauser eds��� Network Routing� North�Holland� �������

Y� Dumas� J� Desrosiers� and F� Soumis ������ The pickup and delivery problem

��

with time windows� European Journal of Operations Research ��� �����

G�A�P� Kindervater and M�W�P� Savelsbergh ������ Local search in physical
distribution management� Memorandum COSOR ������ Eindhoven University of Tech�
nology�

G�L� Nemhauser� M�W�P� Savelsbergh and G�C� Sigismondi ������ MINTO� a
Mixed INTeger Optimizer� Operations Research Letters ��� ������

D�M� Ryan and B�A� Foster ������ An integer programming approach to schedul�
ing� A� Wren ed�� Computer Scheduling of Public Transport Urban Passenger Vehicle

and Crew Scheduling� North�Holland� Amsterdam� ��������

M�W�P� Savelsbergh ������ A Branch�and�Price Algorithm for the Generalized As�
signment Problem� Operations Research� to appear�

M�W�P� Savelsbergh and M� Sol ������ The General Pickup and Delivery Prob�
lem� Transportation Science �� ������

M� Sol ������ Column generation techniques for pickup and delivery problems� Ph�D�
Thesis� Eindhoven University of Technology�

P�H� Vance� C� Barnhart� E�L� Johnson and G�L� Nemhauser ������ Solving
binary cutting stock problems by column generation and branch and bound� Computa�

tional Optimization and Applications �� ��������

��

O� O�

Problem CPU generated added CPU generated added
A
	�
� �	
� ��	� ��� ��
�� ���� �� �
��
A
	�
� ��
		 ��	� ��� ��
�� ��� ��� �
��
A
	�
	 �
�� ��� ��	
�	 �� ��� �
��
A
	�
� ��
	� 	�� �� ��
� �� ��� �
	
A
	�
� ��
�� ��	 ��� ��
�� ��� ��� �
��
A
	�
 ��
�	 	�	 ��� �
�� ��� ��� �
��
A
	�
� ��
�� ��� �� ��
� ��� ��� �
	
A
	�
� �
� 	��� ��� �
�� ��� ��� �
�	
A
	�
� �
�� 	��� �� �
� ��� ��� �
��
A
	�
�� ��
	� ���	 ��� �
�� �	� �� �
��
avg
 ��
� ���	
� ���
� �	
�� ���
	 ���
� �
��
B
	�
� ��
� 	�� ��� �
� ��	 �� �
��
B
	�
� 	�
� ��� ��� ��
�� ���	 �	� �
��
B
	�
	 ��
� 	�� � ��
	 �� ��� �
�
B
	�
� ��
�	 �	�� ��� �	
�� ��� �� �
��
B
	�
� 	�
� ��� �� 	�
�� �	� ��� �
��
B
	�
 ��
�� ��� ��� ��
�� ��� �		 �
	
B
	�
� 	�
�� ��	� �	� ��
�� ��� ��� �
��
B
	�
� �
�� ���� ��� �
�� ��� ��	 �
��
B
	�
� �	
�� ���� �� ��
�� �� ��� �
��
B
	�
�� ��
		 	�� ��� ��
�� �	� ��	 �
��
avg
 ��
�� ����
� ���
� ��
�	 ���
� ��	
 �
�
C
	�
� �
	� ���� ��� ��
�� ���� ��� �
��
C
	�
� ���
	� ����	 ��� ���
� ���� ��� �
�
C
	�
	 ���
� ����� 	�� ��	
�� ���� ��� �
	
C
	�
� 		
�� �	��� 	� ���
�� ���� 	�� �
��
C
	�
� ���
�� ���� ��� ���
�� ��� �� �
�
C
	�
 ��
� �		� �	� ��
�� ���� �	� �
��
C
	�
� 	��
�� ����� ��	 ���
�� ���� ��� �
��
C
	�
� ��
� ���� �� �	
� �	�� ��� �

C
	�
� ���
�� ����� 	�� ���
� ���� ��� �
�
C
	�
�� 	��
�� �	�	� ��� ���
� ���� 	�	 �
��
avg
 ���
	 ���	
� ���
� �	�
�� ���	
	 ���
 �
	
D
	�
� ���
�� ��� �� ���
	� ��	� ��� �
��
D
	�
� �
�� ����� ��� 	��
�� �	�� ��� �
�
D
	�
	 ���
� �� �	� ��
�� ���� ��� �
��
D
	�
� �	�
�� ���� ��� ��
�� �	�� ��� �
��
D
	�
� ���
� ���� ��� �
�� ���	 ��� �
��
D
	�
 ��
�� ���� ��� �	
�	 �		� �	 �
��
D
	�
� ��
�� ��	 ��� ��	
�� ���� ��� �
�
D
	�
� 	��
�� ����� ��� ���
�	 ���� ��� �
�
D
	�
� ���
�� ����� 		 ���
�� ��� 	� �
��
D
	�
�� ���
 ���� ��� �
�� ���� ��� �
��
avg
 ���
�� ����
	 ���
� �	�
�� �	�
� ���
� �
��

Table �� Performance of optimization algorithms for ZLP

��

Class A�	 B�	 C�	 D�	
Nr CPU �N CPU �N CPU �N CPU �N
� �	
�� �� ��
� �
	��� � ���� �
� ���	� � ��	� � ��	��� � ������
 ��
�
��� � ����� �
���� �� ���� �
� ����� � ����� � ������� �� ����� �
� ����� � ���
� �	���
� ��
�	���� ���

 ����� �� ���	� � ��	��� � ������ ��
� �	��� � ��
� � ������ �� �	����
� ���� � ���� � ������ ���

�� ����
 ��
� � �	�� � ����� �� �����	 �
�	 ��� � ���	 � �	���	
 �� ����� ��

avg� ����� ��� ����
 ��
 ������ ���

����� �����

Table �� Performance of optimization algorithm O�

��

A� A� A�

Problem CPU �N error CPU �N Err CPU �N error
A
	�
� ��
� 	� �
�� ��
� �	 �
� ��
	� �� �
��
A
	�
� ��
� �� �
�� ��
�� � �
�� ��
�� � �
�� �
A
	�
	 �
�	 � �
��
�� � �
��
�� � �
�� �
A
	�
� �
� � �
�� ��
�� � �
�� ��
�� � �
�� �
A
	�
� �
�� � �
�� ��
�� � �
�� ��
�� � �
�� �
A
	�
 �	
�� �� �
�� ��
�� �� �
�� �
	� �� �
�
A
	�
� �
�� � �
�� ��
�� � �
�� ��
� � �
�� �
A
	�
� 	
�� � �
�� ��
�� 	 �
�� ��
�� �� �
�
A
	�
� �
�� � �
		 �
� � �
�� �
� � �
�� �
A
	�
�� �
�� � �
	� �
�� � �
�� �
�� � �
�� �
avg
 �
�	
� �
� ��
�� �
� �
�	 �	
�� �
� �
��
B
	�
� �
�� � �
�� �
� � �
�� �
�� � �
�� �
B
	�
� �
�� � �
�� �
�� � �
�� ��
�� � �
��
B
	�
	 �
�� � �
�	 ��
�� 	 �
�� ��
� � �
��
B
	�
� �
� � �
�� �	
	� � �
�� �	
� � �
�� �
B
	�
� �
�� �� �
�� 	�
�� � �
�� 	�
	� �	 �
��
B
	�

	� � �
�� ��
�� � �
�� ��
		 � �
�� �
B
	�
� �
�� � �
�� ��
� 	 �
�� ��
 	 �
��
B
	�
� 	
�� � �
�� �
�� � �
�� �
�� � �
�� �
B
	�
� �
	� 	 �
�	 ��
�� � �
�� ��
�� � �
�� �
B
	�
�� 	
�� � �
�� ��
�� � �
�� ��
� � �
�� �
avg

	� �
 �
�� �
	� �
 �
�� �
�� �
� �
��
C
	�
� ��
�� �� �
�� ��
� 	 �
�� ��
�� �	 �
�	
C
	�
� ��
� � �
�� ���
�� � �
�� ���
�� � �
�� �
C
	�
	 ��
�� � �
�� ��	
�� �� �
�� ���
�� �� �
	�
C
	�
� �
�� �� �
�� ���
�� �� �
�� ���
�� �� �
��
C
	�
� 	�
�� �� �
� ��	
�� 		 �
	� ��	
�� �� �
��
C
	�
 ��
	� �� �
		 �
� �	 �
�� ��
�� �� �
��
C
	�
� ��	
�� �� �
�� ���
� �� �
�� ���
�� �� �
��
C
	�
� �
�� � �
�� ��
�� 	 �
� �
�� �� �
��
C
	�
� ��
�� 	 �
	� �	�
�� �	 �
�� ���
�� � �
��
C
	�
�� �
	� �� �
�� ���
�� �	 �
�� ���
	� �� �
��
avg
 	�
�� ��
�� �
�� ���
�� ��
� �
�� �	�
�� ��
 �
�
D
	�
� ��
�� 	 �
� ���
	� � �
�� ���
�� 	 �
��
D
	�
� �
	� �� �
�� 	��
�� � �
�� 	�
� � �
��
D
	�
	
�� � 	
	� ��
� � �
�� �
�� � �
�� �
D
	�
� ��
�� � 	
�� ��
		 � �
�� ��
�� � �
�� �
D
	�
� 	��
�� �� �
�� �	�
	� 	�� �
�� ��
� ��	 �
��
D
	�
 �
� � �
	� ��
	� �	 �
�� ��
�� �� �
	
D
	�
� ��
� � �
�	 ���
�� � �
�� ��	
�� � �
��
D
	�
� ��
�� 	� �
�� ���
�� � �
� ���
�� �� �
��
D
	�
� �
� � �
�� ���
�� � �
�� ��
�� � �
�� �
D
	�
�� �
�� � 	
�	 ���
� �	 �
�� �
� � �
��
avg
 �
�� ��
� �
� ��
�� ��
� �
�� ���
� ��
� �
��

Table �� Performance of approximation algorithms

��

Class jN j jM j qmin qmax Q W

A�� �� �� � �� �� ��
B�� �� �� � �� �� ��
C�� �� �� � �� �� ���
D�� �� �� � �� �� ���

DAR�� �� �� � � � ��

Table �� Larger and less restricted problem classes

A� A�

Problem ZBEST �N CPU ZBEST �N CPU
A��	�� ����� �� ��	��
 ������ � �	����
A��	�� �����
 � ����� ������ � ������
A��	�� �
��	 �� ��� �
��� � �	���
A��	�� ������ �� ���
� �����	 � ������
A��	�� ������ � ����� ������ � ����
A��	�
 ������ � ����� ����	� � ������
A��	�� �
��� � ����� �
��� � �����
A��	�� �����
 �� ���
� ������ ���
		�		
A��	� �
�� �� �
��� �
���	 � ��	���
A��	��	 ���	� �� �	��
� ���	� �� ������
avg� �
�
���� ���� �	��
� �
��
�� ���	 ������
B��	�� �����	 � ����� ������ � ����
B��	�� ���
�� ���
� ���
�� �� �����	
B��	�� �
�
� � �
��� �
��
� �
����
B��	�� ���		� � ����� �����
 � ������
B��	�� �	���� � ����� �	���
 � �����
B��	�
 ��
��� � ��� ��
��	 � ����
�
B��	�� �����
 �	��� ���	
� � ������
B��	�� ���		� � ����
 ��
��� � ������
B��	� ��
�	� � �	��� ��
��� � �	��	�
B��	��	 �����
 � ����� ������ � �	�
�
avg� �
���
�� ��� �	�� �
���
�� ���� �
����

Table �� Performance of algorithms A� and A� for the problem classes A�� and B��

��

A� ����� A� ������� A� ����� A� �������
Problem ZBEST �N CPU ZBEST �N CPU ZBEST �N CPU ZBEST �N CPU
C
��
� ����� �� ���
�� ����� �� ���
�	 ����	 �� ���
� ����	 �� ���
��
C
��
� ����� ��	 	�	
� ����� ��	 	��
�� ���	�� � ��
�� ���	�� � ����
��
C
��
	 �	���� � ��
�� �	���� � ��
�	 �	���� �� ���
�� �	���� �� ���

C
��
� ���	�� �� 	��
� ���	�� �� 	��
� ����� � ��
�� ���		� �� ����
��
C
��
� ��	�� ��� ��
�� ����� ��� ����
�� ��� � ��
�� ��� � ����
��
C
��
 ��	�� �� ���
�� ��	�� �� ���
�� ������ � ��
�� ����	� � ����
��
C
��
� ����� �� ���
 ����� �� ���
�� ���	�� � ��
�� ���	�� � ����
��
C
��
� ���� �� ���
�� ���� �� ���
�� ����� � ��
�� ����� � ����
��
C
��
� ���� ��
�� ��	�� ��� ���
� ����� � ��
�� ����� � ����
��
C
��
�� ����� 		 ���
�� ����� 		 ���
�� ����� � ��
�� ����� � ���
��
avg
 �	����
�
� 	��
�� ����	�
� ���
 ��	
�� �����
� �
� ���
�� ��	��
	 �
� ��	�
��
D
��
� ����� �� ��
�� ���� ��� ���
�� ���� � ��
�� ���� � ����
��
D
��
� ������ ��� ��
�� ����� � ����
�� ����� � ��
�� ���� �	 ����
��
D
��
	 ������ ��� ��
�� ������ ���	 ���	
�� ����	� � ��
�� ����	� � ����
��
D
��
� ����	� ��� ���
�� ����	� ��� ��
�� ���� � ��
�� ���� � ����
��
D
��
� ���� ��	 ���
� ���� ��	 ��
�� ����� � ��
�� ����� � ����
��
D
��
 �	��	� � �	
�� �	��	� � ��
�� ����	� � ��
�� �	��� �� ���
��
D
��
� ����	 �� ��
�� ��	�� ��� ���
�	 ���� � ��
�� ��� � ����
��
D
��
� �	��� ��� 		�
�� �	��� ��� 		�
�� ���	 � ��
�� ���	 � ����
��
D
��
� ��	�	 	� ���
� ��	�	 	� ���
	� ����� � ��
�� ����� � ����
��
D
��
�� ���	� ��� �
�	 ���	� ��� ���
	� ����� � ��
�� ����� � ����
��
avg
 �	����
	 ���
� ��	
�� ��	�	
� 		
� ���
�� ����
� �
� ��
�� ������
� ��
� ��
�	

Table �� Performance of algorithms A� and A� for the problem classes C�� and D��

��

A� ����� A� �������
Problem ZLP ZBEST �N CPU ZBEST �N CPU
DAR
� ����	�
�� ������ 	 ��
�� ������ 	 ��
	�
DAR
� �	��	
�� �	��� �� ��
�� �	��� �	 ����
�
DAR
	 �����
�� ��	�� � ��
	� ��	�� � ��
��
DAR
� ����
�� ����� ��� ��
�� ���� �	� ��
��
DAR
� �	����
�� �	��� ��� ��
�� �	��� 	�� �		
��
DAR
 �����
�� ����� � 	�
�� ����� � 	�
��
DAR
� �	���
�� �	��� � ���
�� �	��� � ���
�	
DAR
� ������
�� ����� ��	 ��
	� ������ ���	 ����
��
DAR
� �����
�� ������ � 	�
�� ������ � 	�
�
DAR
�� �	���
�� �	�	 � ���
�� �	�	 � ��
��
avg
 �	��
� �		��
� ���
	 ���
� �		�
 ��
� ���
��

A� ����� A� �������
Problem ZLP ZBEST �N CPU ZBEST �N CPU
DAR
� ����	�
�� ���� � �
�� ����	� � ���
��
DAR
� �	��	
�� �	��� �	 ���
� �	��� �	 ���
��
DAR
	 �����
�� ����� � ���
�� ����� � ���
		
DAR
� ����
�� ����� ��� 			
�� ����� ��� 	��
��
DAR
� �	����
�� �	��� �� ��
�� �	��� ���� ����
�
DAR
 �����
�� ����� �� ���
�� ����� �� ���
��
DAR
� �	���
�� �	��� ��� 	�
�� �	��� ��� 	�
��
DAR
� ������
�� ����� ��� ��
� ����� �	�	 ����
��
DAR
� �����
�� ���� 	� ��
� ���� �� �	
��
DAR
�� �	���
�� �	���� �� 		
�	 �	���� �� 	�	
��
avg
 �	��
� �	����
� �
	 ���
�� �	���
	 ���
� ��	
�

Table �� Performance of algorithms A� and A� for the problem class DAR��

��

Week �

day time jN j jN�j jM�j
Mon ���� ��� ��� ��

���� ��� ��� ��
����� ��� ��� ��
����� ��� ��� ��
����� ��� ��� ��

Tue ���� ��� ��� ��
���� ��� ��� ��

����� ��� ��� ��
����� ��� ��� ��
����� ��� ��� ���

Wed ���� ��� ��� ���
���� ��� ��� ���

����� ��� ��� ���
����� ��� ��� ���
����� ��� ��� ���

Thu ���� ��� ��� ���
���� ��� ��� ���

����� ��� ��� ���
����� ��� ��� ��
����� ��� ��� ��

Fri ���� ��� ��� ��
���� ��� ��� ��

����� ��� �� ��
����� ��� ��� ��
����� ��� ��� ��

Week �

day time jN j jN�j jM�j
Mon ���� ��� ��� ��

���� ��� ��� ��
����� ��� �� ��
����� ��� ��� ��
����� ��� ��� ��

Tue ���� ��� ��� ��
���� ��� ��� ��
����� ��� ��� ��
����� ��� ��� ��
����� ��� ��� ��

Wed ���� ��� ��� ��
���� ��� ��� ��
����� ��� �� ��
����� ��� ��� ��
����� ��� ��� ��

Thu ���� ��� ��� ��
���� ��� ��� ��
����� ��� �� ��
����� ��� ��� ��
����� ��� ��� ��

Fri ���� ��� ��� ��
���� ��� ��� ��
����� ��� ��� ��
����� ��� ��� ��
����� ��� ��� ��

Table ��� Characteristics of the reoptimization problems for the test set

��

Nr� of vehicles Travel distance Cost
VGL DRIVE VGL DRIVE VGL DRIVE

Mon �� �� ���� ���� ���� ����
Tue �� �� ���� ���� ���� ����
Wed ��� ��� ���� ���� ���� ����
Thu ��� ��� ���� ���� ���� ����
Fri �� �� ���� ���� ���� ����

Total ��� ��� ����� ���� ����� ����

Table ��� Results for the 	rst planning week

Nr� of vehicles Travel distance Cost
VGL DRIVE VGL DRIVE VGL DRIVE

Mon �� �� ���� ���� ���� ����
Tue �� �� ���� ���� ���� ����
Wed �� �� ���� ���� ���� ����
Thu �� �� ���� ���� ���� ����
Fri �� �� ���� ���� ���� ����

Total ��� ��� ����� ���� ����� ����

Table ��� Results for the second planning week

��

