
DriveGAN: Towards a Controllable High-Quality Neural Simulation

Seung Wook Kim1,2,3 Jonah Philion1,2,3 Antonio Torralba4 Sanja Fidler1,2,3

1NVIDIA 2University of Toronto 3Vector Institute 4 MIT

{seungwookk,jphilion,sfidler}@nvidia.com torralba@mit.edu

Abstract

Realistic simulators are critical for training and verify-

ing robotics systems. While most of the contemporary simu-

lators are hand-crafted, a scaleable way to build simulators

is to use machine learning to learn how the environment be-

haves in response to an action, directly from data. In this

work, we aim to learn to simulate a dynamic environment

directly in pixel-space, by watching unannotated sequences

of frames and their associated actions. We introduce a novel

high-quality neural simulator referred to as DriveGAN that

achieves controllability by disentangling different compo-

nents without supervision. In addition to steering controls,

it also includes controls for sampling features of a scene,

such as the weather as well as the location of non-player

objects. Since DriveGAN is a fully differentiable simulator,

it further allows for re-simulation of a given video sequence,

offering an agent to drive through a recorded scene again,

possibly taking different actions. We train DriveGAN on

multiple datasets, including 160 hours of real-world driv-

ing data. We showcase that our approach greatly surpasses

the performance of previous data-driven simulators, and al-

lows for new key features not explored before.

1. Introduction

The ability to simulate is a key component of intelli-

gence. Consider how animals make thousands of decisions

each day. Some of the decisions are critical for survival,

such as deciding to step away from an approaching car.

Mentally simulating the future given the current situation

is key in planning successfully. In robotic applications such

as autonomous driving, simulation is also a scaleable, ro-

bust and safe way of testing self-driving vehicles in safety-

critical scenarios before deploying them in the real world.

Simulation further allows for a fair comparison of different

autonomous driving systems since one has control over the

repeatability of the scenarios.

Desired properties of a good robotic simulator include

accepting an action from an agent and generating a plausi-

ble next world state, allowing for user control over the scene

elements, and the ability to re-simulate an observed scenario

Weather 

Control

Content 

Control

Driving Control

DriveGAN

Neural 

Simulator

Synthesize!

Figure 1: We aim to learn a controllable neural simulator that

can generate high-fidelity real-world scenes. DriveGAN takes user

controls (e.g. steering weel, speed) as input and renders the next

screen. It allows users to control different aspects of the scene,

such as weather and objects.

with plausible variations. This is no easy feat as the world

is incredibly rich in situations one can encounter. Most of

the existing simulators [9, 41, 30, 46] are hand-designed in

a game engine, which involves significant effort in content

creation, and designing complex behavior models to control

non-player objects. Grand Theft Auto, one of the most re-

alistic driving games to date, set in a virtual replica of Los

Angeles, took several years to create and involved hundreds

of artists and engineers. In this paper, we advocate for data-

driven simulation as a way to achieve scaleability.

Data-driven simulation has recently gained attention. Li-

darSim [36] used a catalog of annotated 3D scenes to sam-

ple layouts into which reconstructed objects obtained from

a large number of recorded drives are placed, in the quest

to achieve diversity for training and testing a LIDAR-based

perception system. [24, 8, 43], on the other hand, learn

to synthesize road-scene 3D layouts directly from images

without supervision. These works do not model the dynam-

ics of the environment and object behaviors.

As a more daring alternative, recent works attempted to

create neural simulators [27, 14] that learn to simulate the

environment in response to the agent’s actions directly in

pixel-space by digesting large amounts of video data along

with actions. This line of work provides a scaleable way to

simulation, as we do not rely on any human-provided an-

notations, except for the agent’s actions which are cheap

to obtain from odometry sensors. It is also a more chal-

15820



lenging way, since the complexity of the world and the dy-

namic agents acting inside it, needs to be learned in a high-

resolution camera view. In this paper, we follow this route.

We introduce DriveGAN, a neural simulator that learns

from sequences of video footage and associated actions

taken by an ego-agent in an environment. DriveGAN lever-

ages Variational-Auto Encoder [29] and Generative Adver-

sarial Networks [13] to learn a latent space for images on

which a dynamics engine learns the transitions within the

latent space. The key aspects of DriveGAN are its disen-

tangled latent space and high-resolution and high-fidelity

frame synthesis conditioned on the agent’s actions. The

disentanglement property of DriveGAN gives users addi-

tional control over the environment, such as changing the

weather and locations of non-player objects. Furthermore,

since DriveGAN is an end-to-end differentiable simulator,

we are able to re-create the scenarios observed from real

video footage allowing the agent to drive again through the

recorded scene but taking different actions. This property

makes DriveGAN the first neural driving simulator of its

kind. By learning on 160 hours of real driving data, we

showcase DriveGAN to learn high-fidelity simulation, sur-

passing all existing neural simulators by a significant mar-

gin, and allowing for the control over the environment not

possible previously.

2. Related Work

2.1. Video Generation and Prediction

As in image generation, the standard architectures for

video generation are VAEs [6, 19], auto-regressive mod-

els [42, 48, 23, 55], flow-based models [31], and GANs

[37, 53, 44, 45, 4, 51]. For a generator to sample videos, it

must be able to generate realistic looking frames as well as

realistic transitions between frames. Video prediction mod-

els [39, 34, 11, 38, 1, 33, 57] learn to produce future frames

given a reference frame, and they share many similarities to

video generation models. Similar architectures can be ap-

plied to the task of conditional video generation in which

information such as semantic segmentation is given as in-

put to the model [54, 35]. In this work, we use a VAE-GAN

[32] based on StyleGAN [25] to learn a latent space of nat-

ural images, then train a dynamics model within the space.

2.2. Data­driven Simulation and Model­based RL

The goal of data-driven simulation is to learn simula-

tors given observations from the environment to be simu-

lated. Meta-Sim [24, 8] learns to produce scene parameters

in a synthetic scene. LiDARSim [36] leverages deep learn-

ing and physics engine to produce LiDAR point clouds.

In this work, we focus on data-driven simulators that pro-

duce future frames given controls. World Model [14] use

a VAE [29] and LSTM [18] to model transition dynamics

xt

<latexit sha1_base64="zZvcJV7GrAbBIOix3gNM+qpYswg=">AAAB6nicbVBNS8NAEJ34WetX1aOXxSJ4KkkV9Fj04rGi/YA2lM120y7dbMLuRCyhP8GLB0W8+ou8+W/ctjlo64OBx3szzMwLEikMuu63s7K6tr6xWdgqbu/s7u2XDg6bJk414w0Wy1i3A2q4FIo3UKDk7URzGgWSt4LRzdRvPXJtRKwecJxwP6IDJULBKFrp/qmHvVLZrbgzkGXi5aQMOeq90le3H7M04gqZpMZ0PDdBP6MaBZN8UuymhieUjeiAdyxVNOLGz2anTsipVfokjLUthWSm/p7IaGTMOApsZ0RxaBa9qfif10kxvPIzoZIUuWLzRWEqCcZk+jfpC80ZyrEllGlhbyVsSDVlaNMp2hC8xZeXSbNa8c4r1buLcu06j6MAx3ACZ+DBJdTgFurQAAYDeIZXeHOk8+K8Ox/z1hUnnzmCP3A+fwByio3n</latexit>

at

<latexit sha1_base64="NEPo5GzEtMMd5WnjyyEdwkQ2q8k=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0mqoMeiF48V7Qe0oWy2m3bpZhN2J0IJ/QlePCji1V/kzX/jts1BWx8MPN6bYWZekEhh0HW/ncLa+sbmVnG7tLO7t39QPjxqmTjVjDdZLGPdCajhUijeRIGSdxLNaRRI3g7GtzO//cS1EbF6xEnC/YgOlQgFo2ilB9rHfrniVt05yCrxclKBHI1++as3iFkacYVMUmO6npugn1GNgkk+LfVSwxPKxnTIu5YqGnHjZ/NTp+TMKgMSxtqWQjJXf09kNDJmEgW2M6I4MsveTPzP66YYXvuZUEmKXLHFojCVBGMy+5sMhOYM5cQSyrSwtxI2opoytOmUbAje8surpFWrehfV2v1lpX6Tx1GEEziFc/DgCupwBw1oAoMhPMMrvDnSeXHenY9Fa8HJZ47hD5zPH0+AjdA=</latexit>

ztheme
t

<latexit sha1_base64="WbmUUeEfmp7rsl1gCbe+I0LiOAM=">AAAB+3icbVBNS8NAEN3Ur1q/Yj16CRbBU0mqoMeiF48V7Ae0MWy203bp5oPdibSG/BUvHhTx6h/x5r9x2+agrQ8GHu/NMDPPjwVXaNvfRmFtfWNzq7hd2tnd2z8wD8stFSWSQZNFIpIdnyoQPIQmchTQiSXQwBfQ9sc3M7/9CFLxKLzHaQxuQIchH3BGUUueWX7y8CHtIUwwxREEkGWeWbGr9hzWKnFyUiE5Gp751etHLAkgRCaoUl3HjtFNqUTOBGSlXqIgpmxMh9DVNKQBKDed355Zp1rpW4NI6grRmqu/J1IaKDUNfN0ZUBypZW8m/ud1ExxcuSkP4wQhZItFg0RYGFmzIKw+l8BQTDWhTHJ9q8VGVFKGOq6SDsFZfnmVtGpV57xau7uo1K/zOIrkmJyQM+KQS1Int6RBmoSRCXkmr+TNyIwX4934WLQWjHzmiPyB8fkDNhiVMg==</latexit>

zcontentt

<latexit sha1_base64="81cZQ/Qc/sxgzEFpEh3972ogfjA=">AAAB/XicbVDLSsNAFJ34rPUVHzs3wSK4KkkVdFl047KCfUAbw2Q6bYdOZsLMjdiG4K+4caGIW//DnX/jtM1CWw8MHM65h7n3hDFnGlz321paXlldWy9sFDe3tnd27b39hpaJIrROJJeqFWJNORO0Dgw4bcWK4ijktBkOryd+84EqzaS4g1FM/Qj3BesxgsFIgX04DuA+7QB9hJRIAVRAlgV2yS27UziLxMtJCeWoBfZXpytJEpk04VjrtufG4KdYASOcZsVOommMyRD3adtQgSOq/XS6feacGKXr9KQyT4AzVX8nUhxpPYpCMxlhGOh5byL+57UT6F36KRNxYs4is496CXdAOpMqnC5TlAAfGYKJYmZXhwywwgRMYUVTgjd/8iJpVMreWblye16qXuV1FNAROkanyEMXqIpuUA3VEUFj9Ixe0Zv1ZL1Y79bHbHTJyjMH6A+szx/v8ZYu</latexit>

zcontentt+1

<latexit sha1_base64="cLDC+g245l9cSWNj8CARJcYMye8=">AAACAXicbVDLSsNAFJ3UV62vqBvBTbAIglCSKuiy6MZlBfuANobJdNIOnUzCzI1YQ9z4K25cKOLWv3Dn3zhts9DWAwOHc+7hzj1+zJkC2/42CguLS8srxdXS2vrG5pa5vdNUUSIJbZCIR7LtY0U5E7QBDDhtx5Li0Oe05Q8vx37rjkrFInEDo5i6Ie4LFjCCQUueuffgpXDsZLdpF+g9pCQSQAVkmWeW7Yo9gTVPnJyUUY66Z351exFJQp0mHCvVcewY3BRLYITTrNRNFI0xGeI+7WgqcEiVm04uyKxDrfSsIJL6CbAm6u9EikOlRqGvJ0MMAzXrjcX/vE4CwbmbMhEn+iwyXRQk3ILIGtdh9ZikBPhIE0wk03+1yABLTECXVtIlOLMnz5NmteKcVKrXp+XaRV5HEe2jA3SEHHSGaugK1VEDEfSIntErejOejBfj3fiYjhaMPLOL/sD4/AGl5Zeq</latexit>

ztheme
t+1

<latexit sha1_base64="f0IkTg9ShQJGzTIWPHM2jQ/n3TQ=">AAAB/3icbVDJSgNBEO2JW4zbqODFy2AQBCHMREGPQS8eI5gFknHo6VSSJj0L3TViHOfgr3jxoIhXf8Obf2NnOWjig4LHe1VU1fNjwRXa9reRW1hcWl7JrxbW1jc2t8ztnbqKEsmgxiIRyaZPFQgeQg05CmjGEmjgC2j4g8uR37gDqXgU3uAwBjegvZB3OaOoJc/ce/BSPHay27SNcI8p9iGALPPMol2yx7DmiTMlRTJF1TO/2p2IJQGEyARVquXYMboplciZgKzQThTElA1oD1qahjQA5abj+zPrUCsdqxtJXSFaY/X3REoDpYaBrzsDin01643E/7xWgt1zN+VhnCCEbLKomwgLI2sUhtXhEhiKoSaUSa5vtVifSspQR1bQITizL8+TernknJTK16fFysU0jjzZJwfkiDjkjFTIFamSGmHkkTyTV/JmPBkvxrvxMWnNGdOZXfIHxucP6UWWrg==</latexit>

xt+1

<latexit sha1_base64="5vn+ZtyAJqX+OLfGq6E3xjNYDGA=">AAAB7nicbVBNS8NAEJ34WetX1aOXxSIIQkmqoMeiF48V7Ae0oWy2m3bpZhN2J2IJ/RFePCji1d/jzX/jts1BWx8MPN6bYWZekEhh0HW/nZXVtfWNzcJWcXtnd2+/dHDYNHGqGW+wWMa6HVDDpVC8gQIlbyea0yiQvBWMbqd+65FrI2L1gOOE+xEdKBEKRtFKradehufepFcquxV3BrJMvJyUIUe9V/rq9mOWRlwhk9SYjucm6GdUo2CST4rd1PCEshEd8I6likbc+Nns3Ak5tUqfhLG2pZDM1N8TGY2MGUeB7YwoDs2iNxX/8zophtd+JlSSIldsvihMJcGYTH8nfaE5Qzm2hDIt7K2EDammDG1CRRuCt/jyMmlWK95FpXp/Wa7d5HEU4BhO4Aw8uIIa3EEdGsBgBM/wCm9O4rw4787HvHXFyWeO4A+czx8Q3o9j</latexit>

ξ

<latexit sha1_base64="Y9AsMRvmdxTQqcE8JuUntKKm/5U=">AAAB6nicbVBNS8NAEJ34WetX1aOXxSJ4KkkV9Fj04rGi/YA2lM120i7dbMLuRiyhP8GLB0W8+ou8+W/ctjlo64OBx3szzMwLEsG1cd1vZ2V1bX1js7BV3N7Z3dsvHRw2dZwqhg0Wi1i1A6pRcIkNw43AdqKQRoHAVjC6mfqtR1Sax/LBjBP0IzqQPOSMGivdd594r1R2K+4MZJl4OSlDjnqv9NXtxyyNUBomqNYdz02Mn1FlOBM4KXZTjQllIzrAjqWSRqj9bHbqhJxapU/CWNmShszU3xMZjbQeR4HtjKgZ6kVvKv7ndVITXvkZl0lqULL5ojAVxMRk+jfpc4XMiLEllClubyVsSBVlxqZTtCF4iy8vk2a14p1XqncX5dp1HkcBjuEEzsCDS6jBLdShAQwG8Ayv8OYI58V5dz7mrStOPnMEf+B8/gBdM43Z</latexit>

Dynamics 
Engine

Image 
Generator

Image

Image

Action

Figure 2: DriveGAN takes an image xt and action at as input

at time t. With encoder ξ, xt is encoded into disentangled latent

codes ztheme
t and zcontent

t . Dynamics Engine learns the transition

function for the latent codes given at. Image Generator produces

xt+1, which is fed to the next time step, autoregressively.

and rendering functionality. In GameGAN [27], a GAN

and a memory module are used to mimic the engine be-

hind games such as Pacman and VizDoom. Model-based

RL [49, 5, 15, 22, 14] also aims at learning a dynamics

model of some environment which agents can utilize to plan

their actions. While prior work has applied neural simula-

tion to simple environments [2, 50] in which a ground-truth

simulator is already known, we also apply our model to real-

world driving data and focus on improving the quality of

simulations. Furthermore, we show how users can intera-

tively edit scenes to create diverse simulation environments.

3. Methodology

Our objective is to learn a high-quality controllable neu-

ral simulator by watching sequences of video frames and

their associated actions. We aim to achieve controllability

in two aspects: 1) We assume there is an egocentric agent

that can be controlled by a given action. 2) We want to con-

trol different aspects of the current scene, for example, by

modifying an object or changing the background color.

Let us denote the video frame at time t as xt and the

continuous action as at. We learn to produce the next frame

xt+1 given the previous frames x1:t and actions a1:t. Fig 2

provides an overview of our model. Image encoder ξ pro-

duces the disentangled latent codes ztheme and zcontent for x

in an unsupervised manner. We define theme as information

that does not depend on pixel locations such as the back-

ground color or weather of the scene, and content as spatial

content (Fig 4). Dynamics Engine, a recurrent neural net-

work, learns to produce the next latent codes ztheme
t+1 , zcontent

t+1

given ztheme
t , zcontent

t , and at. ztheme
t+1 and zcontent

t+1 go through

an image decoder that generates the output image.

Generating high-quality temporally-consistent image se-

quences is a challenging problem [31, 37, 4, 51, 54, 35].

Rather than generating a sequence of frames directly, we

split the learning process into two steps, motivated by World

Model [14]. Sec 3.1 introduces our encoder-decoder archi-

tecture that is pre-trained to produce the latent space for

images. We propose a novel architecture that disentangles

themes and content while achieving high-quality generation

by leveraging a Variational Auto-Encoder (VAE) and Gen-

25821



Image 
Generator

zcontent

<latexit sha1_base64="pcTT47OE8nxTyasiaoeKPmCxE6Q=">AAAB+3icbVDLSsNAFJ3UV62vWJduBovgqiRV0GXRjcsK9gFtLJPppB06mYSZG2kN+RU3LhRx64+482+ctllo64GBwzn3MPcePxZcg+N8W4W19Y3NreJ2aWd3b//APiy3dJQoypo0EpHq+EQzwSVrAgfBOrFiJPQFa/vjm5nffmRK80jewzRmXkiGkgecEjBS3y4/PaQ9YBNIaSSBSciyvl1xqs4ceJW4OamgHI2+/dUbRDQJTZoKonXXdWLwUqKAU8GyUi/RLCZ0TIasa6gkIdNeOt89w6dGGeAgUuZJwHP1dyIlodbT0DeTIYGRXvZm4n9eN4Hgyku5jBNzFl18FCQCQ4RnReABV4yCmBpCqOJmV0xHRBEKpq6SKcFdPnmVtGpV97xau7uo1K/zOoroGJ2gM+SiS1RHt6iBmoiiCXpGr+jNyqwX6936WIwWrDxzhP7A+vwBVnSVRw==</latexit>

ztheme

<latexit sha1_base64="br1x40yIMC6z11kfS1UemlvZS5c=">AAAB+XicbVDLSgNBEJz1GeNr1aOXwSB4CrtR0GPQi8cI5gHJGmYnnWTI7IOZ3mBc9k+8eFDEq3/izb9xkuxBEwsaiqpuurv8WAqNjvNtrayurW9sFraK2zu7e/v2wWFDR4niUOeRjFTLZxqkCKGOAiW0YgUs8CU0/dHN1G+OQWkRhfc4icEL2CAUfcEZGqlr208PaQfhEVMcQgBZ1rVLTtmZgS4TNyclkqPWtb86vYgnAYTIJdO67ToxeilTKLiErNhJNMSMj9gA2oaGLADtpbPLM3pqlB7tR8pUiHSm/p5IWaD1JPBNZ8BwqBe9qfif106wf+WlIowThJDPF/UTSTGi0xhoTyjgKCeGMK6EuZXyIVOMowmraEJwF19eJo1K2T0vV+4uStXrPI4COSYn5Iy45JJUyS2pkTrhZEyeySt5s1LrxXq3PuatK1Y+c0T+wPr8AZ46lEs=</latexit>

N ×N ×D1

<latexit sha1_base64="itEqz0zh/Yd5LedsvhwKC4y+eG8=">AAAB/nicbVDLSsNAFJ3UV62vqLhyM1gEVyWpgi6LunAlFewD2hAm00k7dDIJMzdCCQV/xY0LRdz6He78G6dtBG09MMzhnHu5954gEVyD43xZhaXlldW14nppY3Nre8fe3WvqOFWUNWgsYtUOiGaCS9YADoK1E8VIFAjWCoZXE7/1wJTmsbyHUcK8iPQlDzklYCTfPshuu8AjpvHPf+27Y98uOxVnCrxI3JyUUY66b392ezFNIyaBCqJ1x3US8DKigFPBxqVuqllC6JD0WcdQScwkL5uuP8bHRunhMFbmScBT9XdHRiKtR1FgKiMCAz3vTcT/vE4K4YWXcZmkwCSdDQpTgSHGkyxwjytGQYwMIVRxsyumA6IIBZNYyYTgzp+8SJrVintaqd6dlWuXeRxFdIiO0Aly0TmqoRtURw1EUYae0At6tR6tZ+vNep+VFqy8Zx/9gfXxDXJWlSU=</latexit>

D2 × 1

<latexit sha1_base64="Jt1+g9USD4aqAJ8acHwgVdUFnrs=">AAAB8nicbVBNS8NAEJ3Ur1q/qh69LBbBU0mqoMeiHjxWsB+QhrLZbtqlm2zYnQil9Gd48aCIV3+NN/+N2zYHbX0w8Hhvhpl5YSqFQdf9dgpr6xubW8Xt0s7u3v5B+fCoZVSmGW8yJZXuhNRwKRLeRIGSd1LNaRxK3g5HtzO//cS1ESp5xHHKg5gOEhEJRtFK/l2v1kURc0O8XrniVt05yCrxclKBHI1e+avbVyyLeYJMUmN8z00xmFCNgkk+LXUzw1PKRnTAfUsTatcEk/nJU3JmlT6JlLaVIJmrvycmNDZmHIe2M6Y4NMveTPzP8zOMroOJSNIMecIWi6JMElRk9j/pC80ZyrEllGlhbyVsSDVlaFMq2RC85ZdXSatW9S6qtYfLSv0mj6MIJ3AK5+DBFdThHhrQBAYKnuEV3hx0Xpx352PRWnDymWP4A+fzBzqjkJA=</latexit>

Figure 3: Pretraining stage learns the encoder and decoder for

images. The encoder ξ produces zcontent and ztheme which comprise

the disentangled latent space that the dynamics engine trains on.

The gaussian blocks represent reparameterization steps [29].

erative Adversarial Networks (GAN). Sec 3.2 describes the

Dynamics Engine that learns the latent space dynamics. We

also show how the Dynamics Engine further disentangles

action-dependent and action-independent content.

3.1. Pre­trained Latent Space

We build our image decoder on top of the popular Style-

GAN [25, 26], but make several modifications that allow

for theme-content disentanglement. Since extracting the

GAN’s latent code that corresponds to an input image is

not trivial, we introduce an encoder ξ that maps an image

x into its latent code z. We utilize the VAE formulation,

particularly the β-VAE [17] to control the KL term better.

Therefore, on top of the adversarial losses from StyleGAN,

we add the following loss at each step of generator training:

LV AE = Ez∼q(z|x)[log(p(x|z))] + βKL(q(z|x)||p(z))

where p(z) is the standard normal prior distribution, q(z|x)
is the approximate posterior from the encoder ξ, and KL

is the Kullback-Leibler divergence. For the reconstruction

term, we reduce the perceptual distance [58] between the

input and output images rather than the pixel-wise distance.

This form of combining VAE and GAN has been ex-

plored before [32]. To achieve our goal of controllable sim-

ulation, we introduce several novel modifications to the en-

coder and decoder. Firstly, we disentangle the theme and

content of the input image. Our encoder ξ is composed of

a feature extractor ξfeat and two encoding heads ξcontent and

ξtheme (Figure 3). ξfeat takes an image x as input and con-

sists of several convolution layers whose output is passed

to the two heads. ξcontent produces zcontent ∈ R
N×N×D1

which has N × N spatial dimension. On the other hand,

ξtheme produces ztheme ∈ R
D2 , a single vector, which con-

trols the theme of the output image. Let us denote z =
{zcontent, ztheme}. Note that zcontent and ztheme are matched to

be from the standard normal prior by the reparametrization

and training of VAE. We feed z into the StyleGAN decoder.

StyleGAN controls the appearance of generated images

with adaptive instance normalization (AdaIN ) [10, 20, 12]

layers after each convolution layer of its generator. AdaIN

applies the same scaling and bias to each spatial location of

a normalized feature map:

AdaIN(m, α, γ) = A(m, α, γ) = α
m− µ(m)

σ(m)
+ γ (1)

Randomly Generated + Random ztheme

<latexit sha1_base64="br1x40yIMC6z11kfS1UemlvZS5c=">AAAB+XicbVDLSgNBEJz1GeNr1aOXwSB4CrtR0GPQi8cI5gHJGmYnnWTI7IOZ3mBc9k+8eFDEq3/izb9xkuxBEwsaiqpuurv8WAqNjvNtrayurW9sFraK2zu7e/v2wWFDR4niUOeRjFTLZxqkCKGOAiW0YgUs8CU0/dHN1G+OQWkRhfc4icEL2CAUfcEZGqlr208PaQfhEVMcQgBZ1rVLTtmZgS4TNyclkqPWtb86vYgnAYTIJdO67ToxeilTKLiErNhJNMSMj9gA2oaGLADtpbPLM3pqlB7tR8pUiHSm/p5IWaD1JPBNZ8BwqBe9qfif106wf+WlIowThJDPF/UTSTGi0xhoTyjgKCeGMK6EuZXyIVOMowmraEJwF19eJo1K2T0vV+4uStXrPI4COSYn5Iy45JJUyS2pkTrhZEyeySt5s1LrxXq3PuatK1Y+c0T+wPr8AZ46lEs=</latexit>

+ Random ztheme

<latexit sha1_base64="br1x40yIMC6z11kfS1UemlvZS5c=">AAAB+XicbVDLSgNBEJz1GeNr1aOXwSB4CrtR0GPQi8cI5gHJGmYnnWTI7IOZ3mBc9k+8eFDEq3/izb9xkuxBEwsaiqpuurv8WAqNjvNtrayurW9sFraK2zu7e/v2wWFDR4niUOeRjFTLZxqkCKGOAiW0YgUs8CU0/dHN1G+OQWkRhfc4icEL2CAUfcEZGqlr208PaQfhEVMcQgBZ1rVLTtmZgS4TNyclkqPWtb86vYgnAYTIJdO67ToxeilTKLiErNhJNMSMj9gA2oaGLADtpbPLM3pqlB7tR8pUiHSm/p5IWaD1JPBNZ8BwqBe9qfif106wf+WlIowThJDPF/UTSTGi0xhoTyjgKCeGMK6EuZXyIVOMowmraEJwF19eJo1K2T0vV+4uStXrPI4COSYn5Iy45JJUyS2pkTrhZEyeySt5s1LrxXq3PuatK1Y+c0T+wPr8AZ46lEs=</latexit>

+ Random ztheme

<latexit sha1_base64="br1x40yIMC6z11kfS1UemlvZS5c=">AAAB+XicbVDLSgNBEJz1GeNr1aOXwSB4CrtR0GPQi8cI5gHJGmYnnWTI7IOZ3mBc9k+8eFDEq3/izb9xkuxBEwsaiqpuurv8WAqNjvNtrayurW9sFraK2zu7e/v2wWFDR4niUOeRjFTLZxqkCKGOAiW0YgUs8CU0/dHN1G+OQWkRhfc4icEL2CAUfcEZGqlr208PaQfhEVMcQgBZ1rVLTtmZgS4TNyclkqPWtb86vYgnAYTIJdO67ToxeilTKLiErNhJNMSMj9gA2oaGLADtpbPLM3pqlB7tR8pUiHSm/p5IWaD1JPBNZ8BwqBe9qfif106wf+WlIowThJDPF/UTSTGi0xhoTyjgKCeGMK6EuZXyIVOMowmraEJwF19eJo1K2T0vV+4uStXrPI4COSYn5Iy45JJUyS2pkTrhZEyeySt5s1LrxXq3PuatK1Y+c0T+wPr8AZ46lEs=</latexit>

Figure 4: Left column shows randomly generated images from

different environments. By sampling ztheme, we can change theme

information such as weather while keeping the content consistent.

where m ∈ R
N×N×1 is a feature map with N ×N spatial

dimension and α, γ are scalars for scaling and bias. Thus,

AdaIN layers are perfect candidates for inserting theme

information. We pass ztheme through an MLP to get the

scaling and bias values for each AdaIN layer. Now, be-

cause of the shape of zcontent, it naturally encodes the con-

tent information from the corresponding N ×N grid loca-

tions. Rather than having a constant block as the input to

the first layer as in StyleGAN, we pass zcontent as the input.

Furthermore, we can sample a new vector v ∈ R
1×1×D1

from the normal prior distribution to swap out the content

of some grid location. Preliminary experiments showed that

encoding information only using the plain StyleGAN de-

coder is not adequate for capturing the details of scenes with

multiple objects because the generator must recover spa-

tial information from the inputs to AdaIN layers, which

apply the same scaling and bias to all spatial locations.

We use the multi-scale multi-patch discriminator architec-

ture [54, 21, 47], which results in higher quality images for

complex scenes. We use the same adversarial losses LGAN

from StyleGAN, and the final loss function is Lpretrain =
LV AE + LGAN .

We observe that balancing the KL loss with suitable β

in LV AE is essential. Smaller β gives better reconstruction

quality, but the learned latent space could be far away from

the prior, in which case the dynamics model (Sec.3.2) had

a harder time learning the dynamics. This causes z to be

overfit to x, and it becomes more challenging to learn the

transitions between frames in the overfitted latent space.

3.2. Dynamics Engine

With the pre-trained encoder and decoder, the Dynamics

Engine learns the transition between latent codes from one

time step to the next given an action at. We fix the parame-

ters of the encoder and decoder, and only learn the parame-

ters of the engine. This allows us to pre-extract latent codes

for a dataset before training. The training process becomes

faster and significantly easier than directly working with

images, as latent codes typically have dimensionality much

smaller than the input. In addition, we further disentangle

35822



ConvLSTM

LSTM

Conv

Linear

ConvLSTM

LSTM

Conv

AdaIN+Conv

zcontentt+1

<latexit sha1_base64="cLDC+g245l9cSWNj8CARJcYMye8=">AAACAXicbVDLSsNAFJ3UV62vqBvBTbAIglCSKuiy6MZlBfuANobJdNIOnUzCzI1YQ9z4K25cKOLWv3Dn3zhts9DWAwOHc+7hzj1+zJkC2/42CguLS8srxdXS2vrG5pa5vdNUUSIJbZCIR7LtY0U5E7QBDDhtx5Li0Oe05Q8vx37rjkrFInEDo5i6Ie4LFjCCQUueuffgpXDsZLdpF+g9pCQSQAVkmWeW7Yo9gTVPnJyUUY66Z351exFJQp0mHCvVcewY3BRLYITTrNRNFI0xGeI+7WgqcEiVm04uyKxDrfSsIJL6CbAm6u9EikOlRqGvJ0MMAzXrjcX/vE4CwbmbMhEn+iwyXRQk3ILIGtdh9ZikBPhIE0wk03+1yABLTECXVtIlOLMnz5NmteKcVKrXp+XaRV5HEe2jA3SEHHSGaugK1VEDEfSIntErejOejBfj3fiYjhaMPLOL/sD4/AGl5Zeq</latexit>

ztheme
t+1

<latexit sha1_base64="f0IkTg9ShQJGzTIWPHM2jQ/n3TQ=">AAAB/3icbVDJSgNBEO2JW4zbqODFy2AQBCHMREGPQS8eI5gFknHo6VSSJj0L3TViHOfgr3jxoIhXf8Obf2NnOWjig4LHe1VU1fNjwRXa9reRW1hcWl7JrxbW1jc2t8ztnbqKEsmgxiIRyaZPFQgeQg05CmjGEmjgC2j4g8uR37gDqXgU3uAwBjegvZB3OaOoJc/ce/BSPHay27SNcI8p9iGALPPMol2yx7DmiTMlRTJF1TO/2p2IJQGEyARVquXYMboplciZgKzQThTElA1oD1qahjQA5abj+zPrUCsdqxtJXSFaY/X3REoDpYaBrzsDin01643E/7xWgt1zN+VhnCCEbLKomwgLI2sUhtXhEhiKoSaUSa5vtVifSspQR1bQITizL8+TernknJTK16fFysU0jjzZJwfkiDjkjFTIFamSGmHkkTyTV/JmPBkvxrvxMWnNGdOZXfIHxucP6UWWrg==</latexit>

ztheme
t

<latexit sha1_base64="WbmUUeEfmp7rsl1gCbe+I0LiOAM=">AAAB+3icbVBNS8NAEN3Ur1q/Yj16CRbBU0mqoMeiF48V7Ae0MWy203bp5oPdibSG/BUvHhTx6h/x5r9x2+agrQ8GHu/NMDPPjwVXaNvfRmFtfWNzq7hd2tnd2z8wD8stFSWSQZNFIpIdnyoQPIQmchTQiSXQwBfQ9sc3M7/9CFLxKLzHaQxuQIchH3BGUUueWX7y8CHtIUwwxREEkGWeWbGr9hzWKnFyUiE5Gp751etHLAkgRCaoUl3HjtFNqUTOBGSlXqIgpmxMh9DVNKQBKDed355Zp1rpW4NI6grRmqu/J1IaKDUNfN0ZUBypZW8m/ud1ExxcuSkP4wQhZItFg0RYGFmzIKw+l8BQTDWhTHJ9q8VGVFKGOq6SDsFZfnmVtGpV57xau7uo1K/zOIrkmJyQM+KQS1Int6RBmoSRCXkmr+TNyIwX4934WLQWjHzmiPyB8fkDNhiVMg==</latexit>

zcontentt

<latexit sha1_base64="81cZQ/Qc/sxgzEFpEh3972ogfjA=">AAAB/XicbVDLSsNAFJ34rPUVHzs3wSK4KkkVdFl047KCfUAbw2Q6bYdOZsLMjdiG4K+4caGIW//DnX/jtM1CWw8MHM65h7n3hDFnGlz321paXlldWy9sFDe3tnd27b39hpaJIrROJJeqFWJNORO0Dgw4bcWK4ijktBkOryd+84EqzaS4g1FM/Qj3BesxgsFIgX04DuA+7QB9hJRIAVRAlgV2yS27UziLxMtJCeWoBfZXpytJEpk04VjrtufG4KdYASOcZsVOommMyRD3adtQgSOq/XS6feacGKXr9KQyT4AzVX8nUhxpPYpCMxlhGOh5byL+57UT6F36KRNxYs4is496CXdAOpMqnC5TlAAfGYKJYmZXhwywwgRMYUVTgjd/8iJpVMreWblye16qXuV1FNAROkanyEMXqIpuUA3VEUFj9Ixe0Zv1ZL1Y79bHbHTJyjMH6A+szx/v8ZYu</latexit>

zcontentt+1

<latexit sha1_base64="cLDC+g245l9cSWNj8CARJcYMye8=">AAACAXicbVDLSsNAFJ3UV62vqBvBTbAIglCSKuiy6MZlBfuANobJdNIOnUzCzI1YQ9z4K25cKOLWv3Dn3zhts9DWAwOHc+7hzj1+zJkC2/42CguLS8srxdXS2vrG5pa5vdNUUSIJbZCIR7LtY0U5E7QBDDhtx5Li0Oe05Q8vx37rjkrFInEDo5i6Ie4LFjCCQUueuffgpXDsZLdpF+g9pCQSQAVkmWeW7Yo9gTVPnJyUUY66Z351exFJQp0mHCvVcewY3BRLYITTrNRNFI0xGeI+7WgqcEiVm04uyKxDrfSsIJL6CbAm6u9EikOlRqGvJ0MMAzXrjcX/vE4CwbmbMhEn+iwyXRQk3ILIGtdh9ZikBPhIE0wk03+1yABLTECXVtIlOLMnz5NmteKcVKrXp+XaRV5HEe2jA3SEHHSGaugK1VEDEfSIntErejOejBfj3fiYjhaMPLOL/sD4/AGl5Zeq</latexit>

ztheme
t+1

<latexit sha1_base64="f0IkTg9ShQJGzTIWPHM2jQ/n3TQ=">AAAB/3icbVDJSgNBEO2JW4zbqODFy2AQBCHMREGPQS8eI5gFknHo6VSSJj0L3TViHOfgr3jxoIhXf8Obf2NnOWjig4LHe1VU1fNjwRXa9reRW1hcWl7JrxbW1jc2t8ztnbqKEsmgxiIRyaZPFQgeQg05CmjGEmjgC2j4g8uR37gDqXgU3uAwBjegvZB3OaOoJc/ce/BSPHay27SNcI8p9iGALPPMol2yx7DmiTMlRTJF1TO/2p2IJQGEyARVquXYMboplciZgKzQThTElA1oD1qahjQA5abj+zPrUCsdqxtJXSFaY/X3REoDpYaBrzsDin01643E/7xWgt1zN+VhnCCEbLKomwgLI2sUhtXhEhiKoSaUSa5vtVifSspQR1bQITizL8+TernknJTK16fFysU0jjzZJwfkiDjkjFTIFamSGmHkkTyTV/JmPBkvxrvxMWnNGdOZXfIHxucP6UWWrg==</latexit>

D
y
n

a
m

ic
s 

E
n

g
in

e

Linear

AdaIN+Conv

D
y
n

a
m

ic
s 

E
n

g
in

e

z
aindep

t+1

<latexit sha1_base64="liabEBAt8xjYqUbJSUbXpj4R3cI=">AAACA3icbVDLSsNAFJ3UV62vqDvdBIsgCCWpgi6LblxWsA9oY5hMb9uhkwczN2INATf+ihsXirj1J9z5N04fC209MHA4517unOPHgiu07W8jt7C4tLySXy2srW9sbpnbO3UVJZJBjUUikk2fKhA8hBpyFNCMJdDAF9DwB5cjv3EHUvEovMFhDG5AeyHvckZRS5659+CleOxktyn10jbCPaY87ECcZZlnFu2SPYY1T5wpKZIpqp751e5ELAkgRCaoUi3HjtFNqUTOBGSFdqIgpmxAe9DSNKQBKDcdZ8isQ610rG4k9QvRGqu/N1IaKDUMfD0ZUOyrWW8k/ue1EuyeuzpUnCCEbHKomwgLI2tUiNXhEhiKoSaUSa7/arE+lZShrq2gS3BmI8+TernknJTK16fFysW0jjzZJwfkiDjkjFTIFamSGmHkkTyTV/JmPBkvxrvxMRnNGdOdXfIHxucPOlSYiw==</latexit>

z
adep

t+1

<latexit sha1_base64="pbCds0Psy1n4FwrYYed5l9Ccj3o=">AAACAXicbVDJSgNBEO2JW4zbqBfBy2AQBCHMREGPQS8eI5gFknHo6VSSJj0L3TViHMaLv+LFgyJe/Qtv/o2d5aCJDwoe71VRVc+PBVdo299GbmFxaXklv1pYW9/Y3DK3d+oqSiSDGotEJJs+VSB4CDXkKKAZS6CBL6DhDy5HfuMOpOJReIPDGNyA9kLe5Yyiljxz78FL8djJblPqpW2Ee0w7EGdZ5plFu2SPYc0TZ0qKZIqqZ361OxFLAgiRCapUy7FjdFMqkTMBWaGdKIgpG9AetDQNaQDKTccfZNahVjpWN5K6QrTG6u+JlAZKDQNfdwYU+2rWG4n/ea0Eu+duysM4QQjZZFE3ERZG1igOq8MlMBRDTSiTXN9qsT6VlKEOraBDcGZfnif1csk5KZWvT4uVi2kcebJPDsgRccgZqZArUiU1wsgjeSav5M14Ml6Md+Nj0pozpjO75A+Mzx+V4Zeg</latexit>

z
adep

t+2

<latexit sha1_base64="BxkfozDA+RViyFLaVBTT7d3kypg=">AAACAXicbVDJSgNBEO2JW4zbqBfBy2AQBCHMREGPQS8eI5gFknHo6VSSJj0L3TViHMaLv+LFgyJe/Qtv/o2d5aCJDwoe71VRVc+PBVdo299GbmFxaXklv1pYW9/Y3DK3d+oqSiSDGotEJJs+VSB4CDXkKKAZS6CBL6DhDy5HfuMOpOJReIPDGNyA9kLe5Yyiljxz78FL8bic3abUS9sI95h2IM6yzDOLdskew5onzpQUyRRVz/xqdyKWBBAiE1SplmPH6KZUImcCskI7URBTNqA9aGka0gCUm44/yKxDrXSsbiR1hWiN1d8TKQ2UGga+7gwo9tWsNxL/81oJds/dlIdxghCyyaJuIiyMrFEcVodLYCiGmlAmub7VYn0qKUMdWkGH4My+PE/q5ZJzUipfnxYrF9M48mSfHJAj4pAzUiFXpEpqhJFH8kxeyZvxZLwY78bHpDVnTGd2yR8Ynz+Xd5eh</latexit>

z
aindep

t+2

<latexit sha1_base64="O7HXHllkbFBmq5I6Ltagz3uQlZg=">AAACA3icbVDLSsNAFJ3UV62vqDvdBIsgCCWpgi6LblxWsA9oY5hMb9uhkwczN2INATf+ihsXirj1J9z5N04fC209MHA4517unOPHgiu07W8jt7C4tLySXy2srW9sbpnbO3UVJZJBjUUikk2fKhA8hBpyFNCMJdDAF9DwB5cjv3EHUvEovMFhDG5AeyHvckZRS5659+CleFzOblPqpW2Ee0x52IE4yzLPLNolewxrnjhTUiRTVD3zq92JWBJAiExQpVqOHaObUomcCcgK7URBTNmA9qClaUgDUG46zpBZh1rpWN1I6heiNVZ/b6Q0UGoY+HoyoNhXs95I/M9rJdg9d3WoOEEI2eRQNxEWRtaoEKvDJTAUQ00ok1z/1WJ9KilDXVtBl+DMRp4n9XLJOSmVr0+LlYtpHXmyTw7IEXHIGamQK1IlNcLII3kmr+TNeDJejHfjYzKaM6Y7u+QPjM8fO+yYjA==</latexit>

ztheme
t+2

<latexit sha1_base64="CU87RvCDqKqrv0ikfr0K/1bp/nI=">AAAB/3icbVDJSgNBEO2JW4zbqODFy2AQBCHMREGPQS8eI5gFknHo6VSSJj0L3TViHOfgr3jxoIhXf8Obf2NnOWjig4LHe1VU1fNjwRXa9reRW1hcWl7JrxbW1jc2t8ztnbqKEsmgxiIRyaZPFQgeQg05CmjGEmjgC2j4g8uR37gDqXgU3uAwBjegvZB3OaOoJc/ce/BSPC5nt2kb4R5T7EMAWeaZRbtkj2HNE2dKimSKqmd+tTsRSwIIkQmqVMuxY3RTKpEzAVmhnSiIKRvQHrQ0DWkAyk3H92fWoVY6VjeSukK0xurviZQGSg0DX3cGFPtq1huJ/3mtBLvnbsrDOEEI2WRRNxEWRtYoDKvDJTAUQ00ok1zfarE+lZShjqygQ3BmX54n9XLJOSmVr0+LlYtpHHmyTw7IEXHIGamQK1IlNcLII3kmr+TNeDJejHfjY9KaM6Yzu+QPjM8f6tmWrw==</latexit>

zcontentt+2

<latexit sha1_base64="nM9wUkqqv/yg7QvGq8Wzvxk01N4=">AAACAXicbVDLSsNAFJ3UV62vqBvBTbAIglCSKuiy6MZlBfuANobJdNIOnUzCzI1YQ9z4K25cKOLWv3Dn3zhts9DWAwOHc+7hzj1+zJkC2/42CguLS8srxdXS2vrG5pa5vdNUUSIJbZCIR7LtY0U5E7QBDDhtx5Li0Oe05Q8vx37rjkrFInEDo5i6Ie4LFjCCQUueuffgpXBczW7TLtB7SEkkgArIMs8s2xV7AmueODkpoxx1z/zq9iKShDpNOFaq49gxuCmWwAinWambKBpjMsR92tFU4JAqN51ckFmHWulZQST1E2BN1N+JFIdKjUJfT4YYBmrWG4v/eZ0EgnM3ZSJO9FlkuihIuAWRNa7D6jFJCfCRJphIpv9qkQGWmIAuraRLcGZPnifNasU5qVSvT8u1i7yOItpHB+gIOegM1dAVqqMGIugRPaNX9GY8GS/Gu/ExHS0YeWYX/YHx+QOne5er</latexit>

at

<latexit sha1_base64="NEPo5GzEtMMd5WnjyyEdwkQ2q8k=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0mqoMeiF48V7Qe0oWy2m3bpZhN2J0IJ/QlePCji1V/kzX/jts1BWx8MPN6bYWZekEhh0HW/ncLa+sbmVnG7tLO7t39QPjxqmTjVjDdZLGPdCajhUijeRIGSdxLNaRRI3g7GtzO//cS1EbF6xEnC/YgOlQgFo2ilB9rHfrniVt05yCrxclKBHI1++as3iFkacYVMUmO6npugn1GNgkk+LfVSwxPKxnTIu5YqGnHjZ/NTp+TMKgMSxtqWQjJXf09kNDJmEgW2M6I4MsveTPzP66YYXvuZUEmKXLHFojCVBGMy+5sMhOYM5cQSyrSwtxI2opoytOmUbAje8surpFWrehfV2v1lpX6Tx1GEEziFc/DgCupwBw1oAoMhPMMrvDnSeXHenY9Fa8HJZ47hD5zPH0+AjdA=</latexit>

at+1

<latexit sha1_base64="oGnwLT1UKbU5kPL24Jb88ys+J+M=">AAAB7nicbVBNS8NAEJ3Ur1q/qh69LBZBEEpSBT0WvXisYD+gDWWz3bRLN5uwOxFK6I/w4kERr/4eb/4bt20O2vpg4PHeDDPzgkQKg6777RTW1jc2t4rbpZ3dvf2D8uFRy8SpZrzJYhnrTkANl0LxJgqUvJNoTqNA8nYwvpv57SeujYjVI04S7kd0qEQoGEUrtWk/wwtv2i9X3Ko7B1klXk4qkKPRL3/1BjFLI66QSWpM13MT9DOqUTDJp6VeanhC2ZgOeddSRSNu/Gx+7pScWWVAwljbUkjm6u+JjEbGTKLAdkYUR2bZm4n/ed0Uwxs/EypJkSu2WBSmkmBMZr+TgdCcoZxYQpkW9lbCRlRThjahkg3BW355lbRqVe+yWnu4qtRv8ziKcAKncA4eXEMd7qEBTWAwhmd4hTcncV6cd+dj0Vpw8plj+APn8wftaY9M</latexit>

Figure 5: Dynamics Engine produces the next latent codes, given

an action and previous latent codes. It disentangles content in-

formation into action-dependent and action-independent features

with its two separate LSTMs. Dashed lines correspond to temporal

connections. Gaussian blocks indicate reparameterization steps.

content information from zcontent into action-dependent and

action-independent features without supervision.

In a 3D environment, the view-point shifts as the ego

agent moves. This shifting naturally happens spatially, so

we employ a convolutional LSTM module (Figure 5) to

learn the spatial transition between each time step:

vt = F(H(hconv
t−1, at, z

content
t , ztheme

t )) (2)

it, ft, ot = σ(vit), σ(v
f
t ), σ(v

o
t ) (3)

cconv
t = ft ⊙ cconv

t−1 + it ⊙ tanh(vgt ) (4)

hconv
t = ot ⊙ tanh(cconv

t ) (5)

where hconv
t , cconv

t are the hidden and cell state of the con-

vLSTM module, and it, ft, ot are the input, forget, output

gates, respectively. H replicates at and ztheme
t spatially to

match the N × N spatial dimension of zcontent
t . It fuses all

inputs by concatenating and running through a 1×1 convo-

lution layer. F is composed of two 3×3 convolution layers.

vt is split into intermediate variables vit, v
f
t , v

o
t , v

g
t . All state

and intermediate variables have the same size RN×N×Dconv .

The hidden state hconv
t goes through two separate convolu-

tion layers to produce ztheme
t+1 and z

adep

t+1. The action dependent

feature z
adep

t+1 is used to produce zcontent
t+1 , along with z

aindep

t+1 .

We also add a plain LSTM [18] module that only takes

zt as input. Therefore, this module is responsible for infor-

mation that does not depend on the action at. The input zt
is flattened into a vector, and all variables inside this mod-

ule have size RDlinear . The hidden state goes through a linear

layer that outputs z
aindep

t+1 . Finally, z
adep

t+1 and z
aindep

t+1 are used as

inputs to two AdaIN + Conv blocks.

α,β = MLP (z
aindep

t+1 ) (6)

zcontent
t+1 = C(A(C(A(z

adep

t+1,α,β)),α,β)) (7)

where we denote convolution and AdaIN layers as C and

A, respectively. An MLP is used to produce α and β. We

reparameterize zadep ,zaindep , ztheme into the standard normal

distribution N(0, I) which allows sampling at test time:

z = µ+ ǫσ, ǫ ∼ N(0, I) (8)

where µ and σ are the intermediate variables for the mean

and standard deviation for each reparameterization step.

Intuitively, zaindep is used as style for the spatial tensor

zadep through AdaIN layers. zaindep does not get action in-

formation, so it alone cannot learn to generate plausible

next frames. This architecture thus allows disentangling

action-dependent features such as the layout of a scene from

action-independent features such as object types. Note that

the engine could ignore zaindep and only use zadep to learn dy-

namics. If we keep the model size small and use a high KL

penalty on the reparameterized variables, it will utilize full

model capacity and make use of zaindep . We can also enforce

disentanglement between zaindep and zadep using an adversar-

ial loss [7]. In practice, we found that our model was able

to disentangle information well without such a loss.

Training: We extend the training procedure of

GameGAN [27] in latent space to train our model with

adversarial and VAE losses. Our adversarial losses Ladv

come from two networks: 1) single latent discriminator,

and 2) temporal action-conditioned discriminator. We first

flatten zt into a vector with size R
N2D1+D2 . The sin-

gle latent discriminator is an MLP that tries to discrimi-

nate produced zt from the real latent codes. The temporal

action-conditioned discriminator is implemented as a tem-

poral convolution network such that we apply filters in the

temporal dimension [28] where the actions at are fused to

the temporal dimension. We also sample negative actions

āt, and the job of the discriminator is to figure out if the

given sequence of latent codes is realistic and faithful to the

given action sequences. We use the temporal discriminator

features to reconstruct the input action sequence and reduce

the action reconstruction loss Laction to help the dynamics

engine to be faithful to the given actions. Finally, we add

latent code reconstruction loss Llatent so that the generated

zt matches the ground truth latent codes, and reduce the KL

penalty LKL for z
adep

t ,z
aindep

t , ztheme
t . The final loss function

is LDE = Ladv + Llatent + Laction + LKL. Our model is

trained with 32 time-steps with a warm-up phase similar to

GameGAN. Further details are provided in the Appendix.

3.3. Differentiable Simulation

One compelling aspect of DriveGAN is that it can create

an editable simulation environment from a real video. As

DriveGAN is fully differentiable, it allows for recovering

the scene and scenario by discovering the underlying fac-

tors of variations that comprise a video, while also recover-

ing the actions that the agent took, if these are not provided.

We refer to this as differentiable simulation. Once these

parameters are discovered, the agent can use DriveGAN to

45823



Real Video

Optimized 
Sequence

Optimized 
Sequence  

+ tree

Optimized 
Sequence  

+ building

Optimized 
Sequence  

+ building
+ foggy

Optimized 
Actions

t = 1

<latexit sha1_base64="JSHUmzwPY/87ek1Z4nAk8VIIvqI=">AAAB6nicbVBNS8NAEJ34WetX1aOXxSJ4KkkV9CIUvXisaD+gDWWz3bRLN5uwOxFK6E/w4kERr/4ib/4bt20O2vpg4PHeDDPzgkQKg6777aysrq1vbBa2its7u3v7pYPDpolTzXiDxTLW7YAaLoXiDRQoeTvRnEaB5K1gdDv1W09cGxGrRxwn3I/oQIlQMIpWesBrr1cquxV3BrJMvJyUIUe9V/rq9mOWRlwhk9SYjucm6GdUo2CST4rd1PCEshEd8I6likbc+Nns1Ak5tUqfhLG2pZDM1N8TGY2MGUeB7YwoDs2iNxX/8zophld+JlSSIldsvihMJcGYTP8mfaE5Qzm2hDIt7K2EDammDG06RRuCt/jyMmlWK955pXp/Ua7d5HEU4BhO4Aw8uIQa3EEdGsBgAM/wCm+OdF6cd+dj3rri5DNH8AfO5w/TLY1+</latexit>

t = 5

<latexit sha1_base64="/TcUxpWf6m40eNOfxRITotinmHM=">AAAB6nicbVDLSgNBEOyNrxhfUY9eBoPgKexGRS9C0IvHiOYByRJmJ5NkyOzsMtMrhCWf4MWDIl79Im/+jZNkD5pY0FBUddPdFcRSGHTdbye3srq2vpHfLGxt7+zuFfcPGiZKNON1FslItwJquBSK11Gg5K1YcxoGkjeD0e3Ubz5xbUSkHnEccz+kAyX6glG00gNeX3SLJbfszkCWiZeREmSodYtfnV7EkpArZJIa0/bcGP2UahRM8kmhkxgeUzaiA962VNGQGz+dnTohJ1bpkX6kbSkkM/X3REpDY8ZhYDtDikOz6E3F/7x2gv0rPxUqTpArNl/UTyTBiEz/Jj2hOUM5toQyLeythA2ppgxtOgUbgrf48jJpVMreWblyf16q3mRx5OEIjuEUPLiEKtxBDerAYADP8ApvjnRenHfnY96ac7KZQ/gD5/MH2T2Ngg==</latexit>

t = 9

<latexit sha1_base64="HIV3FzYSGFiIAZF4WeEd7wPiehg=">AAAB6nicbVDLSgNBEOyNrxhfUY9eBoPgKexGQT0IQS8eI5oHJEuYnUySIbOzy0yvEJZ8ghcPinj1i7z5N06SPWhiQUNR1U13VxBLYdB1v53cyura+kZ+s7C1vbO7V9w/aJgo0YzXWSQj3Qqo4VIoXkeBkrdizWkYSN4MRrdTv/nEtRGResRxzP2QDpToC0bRSg94fdUtltyyOwNZJl5GSpCh1i1+dXoRS0KukElqTNtzY/RTqlEwySeFTmJ4TNmIDnjbUkVDbvx0duqEnFilR/qRtqWQzNTfEykNjRmHge0MKQ7NojcV//PaCfYv/VSoOEGu2HxRP5EEIzL9m/SE5gzl2BLKtLC3EjakmjK06RRsCN7iy8ukUSl7Z+XK/XmpepPFkYcjOIZT8OACqnAHNagDgwE8wyu8OdJ5cd6dj3lrzslmDuEPnM8f302Nhg==</latexit>

t = 13

<latexit sha1_base64="xNgaXyIKAzGshxe0rBuDBi2bXFE=">AAAB63icbVBNSwMxEJ2tX7V+VT16CRbBU9ltC3oRil48VrAf0C4lm2bb0CS7JFmhLP0LXjwo4tU/5M1/Y7rdg7Y+GHi8N8PMvCDmTBvX/XYKG5tb2zvF3dLe/sHhUfn4pKOjRBHaJhGPVC/AmnImadsww2kvVhSLgNNuML1b+N0nqjSL5KOZxdQXeCxZyAg2mXTj1Yflilt1M6B14uWkAjlaw/LXYBSRRFBpCMda9z03Nn6KlWGE03lpkGgaYzLFY9q3VGJBtZ9mt87RhVVGKIyULWlQpv6eSLHQeiYC2ymwmehVbyH+5/UTE177KZNxYqgky0VhwpGJ0OJxNGKKEsNnlmCimL0VkQlWmBgbT8mG4K2+vE46tapXr9YeGpXmbR5HEc7gHC7Bgytowj20oA0EJvAMr/DmCOfFeXc+lq0FJ585hT9wPn8ARlKNuw==</latexit>

Figure 6: Differentiable simulation: We can first optimize

for the underlying sequence of inputs that can reproduce a real

video. With its controllability, we can replay the same scenario

with modified content or scene condition.

re-simulate the scene and take different actions. DriveGAN

further allows sampling and modification of various compo-

nents of a scene, thus testing the agent in the same scenario

under different weather conditions or objects.

First, note that reparametrization steps (Eq. 8) involve a

stochastic variable ǫ which gives stochasticity in a simula-

tion to produce diverse future scenarios. Given a sequence

of frames from a real video x0, ..., xT , our model can be

used to find the underlying a0, ..., aT−1, ǫ0, ...ǫT−1:

minimize
a0..T−1,ǫ0..T−1

T∑

t=1

||zt− ẑt||+λ1||at−at−1||+λ2||ǫt|| (9)

where zt is the output of our model, ẑt is the encoding of xt

with the encoder, and λ1, λ2 are hyperparameters for regu-

larizers. We add action regularization assuming the action

space is continuous and at does not differ significantly from

at−1. To prevent the model from utilizing ǫt to explain all

differences between frames, we also add the ǫ regularizer.

4. Experiments

We perform thorough quantitative (Sec 4.1) and qualita-

tive (Sec 4.2) experiments on the following datasets.

Carla [9] simulator is an open-source simulator for au-

tonomous driving research. We use five towns in Carla to

RWD

Gibson

Carla Figure 7: Image

samples from three

datasets studied in this

work, for simulated

and real-world driving,

and indoor navigation.

generate the dataset. The ego-agent and other vehicles are

randomly placed and use random policy to drive in the en-

vironment. Each sequence has a randomly sampled weather

condition and consists of 80 frames sampled at 4Hz. 48K

sequences are extracted, and 43K are used for training.

Gibson environment [56] virtualizes real-world indoor

buildings and has an integrated physics engine with which

virtual agents can be controlled. We first train a reinforce-

ment learning agent that can navigate towards a given des-

tination coordinate. In each sequence, we randomly place

the agent in a building and sample a destination. 85K se-

quences each with 30 frames are extracted from 100 indoor

environments, and 76K sequences are used for training.

Real World Driving (RWD) data consists of real-world

recordings of human driving on multiple different highways

and cities. It was collected in a variety of different weather

and times. RWD is composed of 128K sequences each with

36 frames extracted at 8Hz. It corresponds to ∼ 160 hours

of driving, and we use 125K sequences for training.

Figure 7 illustrates scenes from the datasets. Each se-

quence consists of the extracted frames (256×256) and the

actions the ego agent takes at each time step. The 2-dim

actions consist of the agent’s speed and angular velocity.

4.1. Quantitative Results

The quality of simulators needs to be evaluated in two

aspects. The generated videos from simulators have to look

realistic, and their distribution should match the distribution

of the real videos. They also need to be faithful to the action

sequences used to produce them. This is essential to be use-

ful for downstream tasks, such as training a robot. There-

fore, we use two automatic metrics to measure the perfor-

mance of models. The experiments are carried out by using

the first frames and action sequences of the test set. The

remaining frames are generated autoregressively.

We compare with four baseline models: Action-RNN [3]

is a simple action-conditioned RNN model trained with re-

construction loss on the pixel space, Stochastic Adversar-

ial Video Prediction (SAVP) [33] and GameGAN [27] are

trained with adversarial loss along with reconstruction loss

on the pixel space, World Model [14] trains a vision model

based on VAE and an RNN based on mixture density net-

works (MDN-RNN). World Model is similar to our model

as they first extract latent codes and learn MDN-RNN on

top of the learned latent space. However, their VAE is not

powerful enough to model the complexities of the datasets

studied in this work. Fig 9 shows how a simple VAE cannot

reconstruct the inputs; thus, the plain World Model cannot

produce realistic video sequences by default. Therefore, we

include a variant, denoted as World Model*, that uses our

proposed latent space to train the MDN-RNN component.

We also conduct human evaluations with Amazon Me-

chanical Turk. For 300 generated sequences from each

55824



Stochastic

Adversarial

Video

Prediction

World Model*

GameGAN

DriveGAN

Given Actions

t = 1

<latexit sha1_base64="JSHUmzwPY/87ek1Z4nAk8VIIvqI=">AAAB6nicbVBNS8NAEJ34WetX1aOXxSJ4KkkV9CIUvXisaD+gDWWz3bRLN5uwOxFK6E/w4kERr/4ib/4bt20O2vpg4PHeDDPzgkQKg6777aysrq1vbBa2its7u3v7pYPDpolTzXiDxTLW7YAaLoXiDRQoeTvRnEaB5K1gdDv1W09cGxGrRxwn3I/oQIlQMIpWesBrr1cquxV3BrJMvJyUIUe9V/rq9mOWRlwhk9SYjucm6GdUo2CST4rd1PCEshEd8I6likbc+Nns1Ak5tUqfhLG2pZDM1N8TGY2MGUeB7YwoDs2iNxX/8zophld+JlSSIldsvihMJcGYTP8mfaE5Qzm2hDIt7K2EDammDG06RRuCt/jyMmlWK955pXp/Ua7d5HEU4BhO4Aw8uIQa3EEdGsBgAM/wCm+OdF6cd+dj3rri5DNH8AfO5w/TLY1+</latexit>

t = 13

<latexit sha1_base64="xNgaXyIKAzGshxe0rBuDBi2bXFE=">AAAB63icbVBNSwMxEJ2tX7V+VT16CRbBU9ltC3oRil48VrAf0C4lm2bb0CS7JFmhLP0LXjwo4tU/5M1/Y7rdg7Y+GHi8N8PMvCDmTBvX/XYKG5tb2zvF3dLe/sHhUfn4pKOjRBHaJhGPVC/AmnImadsww2kvVhSLgNNuML1b+N0nqjSL5KOZxdQXeCxZyAg2mXTj1Yflilt1M6B14uWkAjlaw/LXYBSRRFBpCMda9z03Nn6KlWGE03lpkGgaYzLFY9q3VGJBtZ9mt87RhVVGKIyULWlQpv6eSLHQeiYC2ymwmehVbyH+5/UTE177KZNxYqgky0VhwpGJ0OJxNGKKEsNnlmCimL0VkQlWmBgbT8mG4K2+vE46tapXr9YeGpXmbR5HEc7gHC7Bgytowj20oA0EJvAMr/DmCOfFeXc+lq0FJ585hT9wPn8ARlKNuw==</latexit>

t = 3

<latexit sha1_base64="ABqDb1QBa+cMJmVncH7meEez8Mc=">AAAB6nicbVDLSgNBEOyNrxhfUY9eBoPgKewmgl6EoBePEc0DkiXMTmaTIbOzy0yvEEI+wYsHRbz6Rd78GyfJHjSxoKGo6qa7K0ikMOi6305ubX1jcyu/XdjZ3ds/KB4eNU2casYbLJaxbgfUcCkUb6BAyduJ5jQKJG8Fo9uZ33ri2ohYPeI44X5EB0qEglG00gNeV3vFklt25yCrxMtICTLUe8Wvbj9macQVMkmN6Xhugv6EahRM8mmhmxqeUDaiA96xVNGIG38yP3VKzqzSJ2GsbSkkc/X3xIRGxoyjwHZGFIdm2ZuJ/3mdFMMrfyJUkiJXbLEoTCXBmMz+Jn2hOUM5toQyLeythA2ppgxtOgUbgrf88ippVspetVy5vyjVbrI48nACp3AOHlxCDe6gDg1gMIBneIU3RzovzrvzsWjNOdnMMfyB8/kD1jWNgA==</latexit>

t = 7

<latexit sha1_base64="Pz7Nd8CwOD81fX4VVXHbULx7gQI=">AAAB6nicbVDLSgNBEOyNrxhfUY9eBoPgKexGIV6EoBePEc0DkiXMTmaTIbOzy0yvEEI+wYsHRbz6Rd78GyfJHjSxoKGo6qa7K0ikMOi6305ubX1jcyu/XdjZ3ds/KB4eNU2casYbLJaxbgfUcCkUb6BAyduJ5jQKJG8Fo9uZ33ri2ohYPeI44X5EB0qEglG00gNeV3vFklt25yCrxMtICTLUe8Wvbj9macQVMkmN6Xhugv6EahRM8mmhmxqeUDaiA96xVNGIG38yP3VKzqzSJ2GsbSkkc/X3xIRGxoyjwHZGFIdm2ZuJ/3mdFMMrfyJUkiJXbLEoTCXBmMz+Jn2hOUM5toQyLeythA2ppgxtOgUbgrf88ippVsreRblyf1mq3WRx5OEETuEcPKhCDe6gDg1gMIBneIU3RzovzrvzsWjNOdnMMfyB8/kD3EWNhA==</latexit>

t = 21

<latexit sha1_base64="zib8GtrObCSYiyUSFSBdFuY7KxY=">AAAB63icbVBNS8NAEJ3Ur1q/qh69LBbBU0mqoBeh6MVjBfsBbSib7aZdursJuxshhP4FLx4U8eof8ua/cZvmoK0PBh7vzTAzL4g508Z1v53S2vrG5lZ5u7Kzu7d/UD086ugoUYS2ScQj1QuwppxJ2jbMcNqLFcUi4LQbTO/mfveJKs0i+WjSmPoCjyULGcEml24a3rBac+tuDrRKvILUoEBrWP0ajCKSCCoN4VjrvufGxs+wMoxwOqsMEk1jTKZ4TPuWSiyo9rP81hk6s8oIhZGyJQ3K1d8TGRZapyKwnQKbiV725uJ/Xj8x4bWfMRknhkqyWBQmHJkIzR9HI6YoMTy1BBPF7K2ITLDCxNh4KjYEb/nlVdJp1L2LeuPhsta8LeIowwmcwjl4cAVNuIcWtIHABJ7hFd4c4bw4787HorXkFDPH8AfO5w9Ez426</latexit>

t = 53

<latexit sha1_base64="OEdHAVjU8tUCHV57e3PIIRz2HlM=">AAAB63icbVBNSwMxEJ2tX7V+VT16CRbBU9ltFb0IRS8eK9gPaJeSTbNtaJJdkqxQlv4FLx4U8eof8ua/Md3uQVsfDDzem2FmXhBzpo3rfjuFtfWNza3idmlnd2//oHx41NZRoghtkYhHqhtgTTmTtGWY4bQbK4pFwGknmNzN/c4TVZpF8tFMY+oLPJIsZASbTLq5rA/KFbfqZkCrxMtJBXI0B+Wv/jAiiaDSEI617nlubPwUK8MIp7NSP9E0xmSCR7RnqcSCaj/Nbp2hM6sMURgpW9KgTP09kWKh9VQEtlNgM9bL3lz8z+slJrz2UybjxFBJFovChCMTofnjaMgUJYZPLcFEMXsrImOsMDE2npINwVt+eZW0a1WvXq09XFQat3kcRTiBUzgHD66gAffQhBYQGMMzvMKbI5wX5935WLQWnHzmGP7A+fwBTGaNvw==</latexit>

Figure 8: Comparison of baseline models. All models are given the same initial screen and sequence of actions. Our model can produce

a high-quality temporally consistent simulation that conforms to the action sequence.

Figure 9: Left: original images, Middle: reconstructed images from

VAE, Right: reconstructed images from our encoder-decoder model.

dataset, we show one video from our model and one video

from a baseline model for the same test data. The workers

are asked to mark their preferences on ours versus the base-

line model on visual qulity and action consistency (Fig 10).

Video Quality: Tab 1 shows the result on Fréchet Video

Distance (FVD) [52]. FVD measures the distance between

the distributions of the ground truth and generated video se-

quences. FVD is an extension of FID [16] for videos and is

suitable for measuring the quality of generated videos. Our

model achieves lower FVD than all baseline models except

for GameGAN on Gibson. The primary reason we suspect

is that our model on Gibson sometimes slightly changes the

brightness. In contrast, GameGAN, being a model directly

learned on pixel space, produced more consistent bright-

ness. Human evaluation of visual quality (Fig 10) shows

that subjects strongly prefer our model, even for Gibson.

Action Consistency: We measure if generated se-

quences conform to the input action sequences. We train a

CNN model that takes two images from real videos as input

and predicts the action that caused the transition between

them. The model is trained by reducing the mean-squared

error loss between the predicted and input actions. The

trained model can be applied to the generated sequences

from simulator models to evaluate action consistency. Ta-

Frechet Video Distance ↓
Model Carla Gibson RWD

Action-RNN 1523.3 1109.2 2560.7

World Model 1663.0 1212.0 2795.6

World Model* 1138.6 561.1 591.7

SAVP 1018.2 470.7 977.9

GameGAN 739.5 311.4 801.0

Ours 281.9 360.0 518.0

Table 1: Results on FVD [52]. Lower is better.

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

SAVP -

Carla

SAVP -

Gibson

SAVP -

Pilotnet

World Model*

- Carla

World Model*

- Gibson

World Model*

- Pilotnet

GameGAN -

Carla

GameGAN -

Gibson

GameGAN -

Pilotnet

Human Evaluation – Visual Quality

Prefer Other Model Prefer Our Model

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

SAVP -

Carla

SAVP -

Gibson

SAVP -

Pilotnet

World Model*

- Carla

World Model*

- Gibson

World Model*

- Pilotnet

GameGAN -

Carla

GameGAN -

Gibson

GameGAN -

Pilotnet

Human Evaluation – Action Consistency

Prefer Other Model Prefer Our Model

Figure 10: Human evaluation: Our model outperforms baseline

models on both criteria.

ble 2 and human evaluation (Fig 10) show that our model

achieves the best performance on all datasets.

4.2. Controllability and Differentiable Simulation

DriveGAN learns to disentangle factors comprising a

scene without supervision, and it naturally allows controlla-

bility on all zs as zadep , zaindep , zcontent and ztheme can be sam-

pled from the prior distribution. Fig 4 demonstrates how

we can change the background color or weather condition

by sampling and swapping ztheme. Fig 12 shows how sam-

pling different zaindep modifies the interior parts, such as ob-

65825



Action Prediction Loss ↓
Model Carla Gibson RWD

Action-RNN 4.850 0.062 0.586

World Model 5.310 0.167 0.721

World Model* 17.384 0.082 0.885

SAVP 3.178 0.070 0.645

GameGAN 2.341 0.065 0.638

Ours 1.686 0.045 0.412

Real Data 0.370 0.005 0.159

Table 2: Results on Action Prediction. Lower is better.

Randomly Generated + Random + Random + Random

Figure 11: Users can randomly sample a vector for a grid cell in

ztheme to change the cell’s content. The white figner corresponds

to the locations a user clicked to modify.

Randomly Generated + Random

!

+ Random + Random

Figure 12: Swapping zaindep modifies objects in a scene while

keeping layout, such as the shape of the road, consistent. Top:

right turn, Middle: road for slight left, Bottom: straight road.

ject shapes, while keeping the layout and theme consistent.

This allows users to sample various scenarios for specific

layout shapes. As zcontent is a spatial tensor, we can sample

each grid cell to change the content of the cell. In the bot-

tom row of Fig 11, a user clicks specific locations to erase a

tree, add a tree, and add a building.

We also record the sampled zs corresponding to specific

content and build an editable neural simulator, as in Fig 1.

This editing procedure lets users create unique simulation

scenarios and selectively focus on the ones they want. Note

that we can even sample the first screen, unlike some previ-

ous works such as GameGAN [27].

Differentiable Simulation: Sec 3.3 introduces how we

can create an editable simulation environment from a real

video by recovering the underlying actions a and stochastic

Real Video B

Replayed w/ 
optimized
𝑎 from B

𝜖 from A

Real Video A

Replayed w/
optimized

𝑎 from A
𝜖 from B

Replayed w/ 
optimized

𝑎 from A 

𝜖 from A

t = 1

<latexit sha1_base64="JSHUmzwPY/87ek1Z4nAk8VIIvqI=">AAAB6nicbVBNS8NAEJ34WetX1aOXxSJ4KkkV9CIUvXisaD+gDWWz3bRLN5uwOxFK6E/w4kERr/4ib/4bt20O2vpg4PHeDDPzgkQKg6777aysrq1vbBa2its7u3v7pYPDpolTzXiDxTLW7YAaLoXiDRQoeTvRnEaB5K1gdDv1W09cGxGrRxwn3I/oQIlQMIpWesBrr1cquxV3BrJMvJyUIUe9V/rq9mOWRlwhk9SYjucm6GdUo2CST4rd1PCEshEd8I6likbc+Nns1Ak5tUqfhLG2pZDM1N8TGY2MGUeB7YwoDs2iNxX/8zophld+JlSSIldsvihMJcGYTP8mfaE5Qzm2hDIt7K2EDammDG06RRuCt/jyMmlWK955pXp/Ua7d5HEU4BhO4Aw8uIQa3EEdGsBgAM/wCm+OdF6cd+dj3rri5DNH8AfO5w/TLY1+</latexit>

t = 5

<latexit sha1_base64="/TcUxpWf6m40eNOfxRITotinmHM=">AAAB6nicbVDLSgNBEOyNrxhfUY9eBoPgKexGRS9C0IvHiOYByRJmJ5NkyOzsMtMrhCWf4MWDIl79Im/+jZNkD5pY0FBUddPdFcRSGHTdbye3srq2vpHfLGxt7+zuFfcPGiZKNON1FslItwJquBSK11Gg5K1YcxoGkjeD0e3Ubz5xbUSkHnEccz+kAyX6glG00gNeX3SLJbfszkCWiZeREmSodYtfnV7EkpArZJIa0/bcGP2UahRM8kmhkxgeUzaiA962VNGQGz+dnTohJ1bpkX6kbSkkM/X3REpDY8ZhYDtDikOz6E3F/7x2gv0rPxUqTpArNl/UTyTBiEz/Jj2hOUM5toQyLeythA2ppgxtOgUbgrf48jJpVMreWblyf16q3mRx5OEIjuEUPLiEKtxBDerAYADP8ApvjnRenHfnY96ac7KZQ/gD5/MH2T2Ngg==</latexit>

t = 3

<latexit sha1_base64="ABqDb1QBa+cMJmVncH7meEez8Mc=">AAAB6nicbVDLSgNBEOyNrxhfUY9eBoPgKewmgl6EoBePEc0DkiXMTmaTIbOzy0yvEEI+wYsHRbz6Rd78GyfJHjSxoKGo6qa7K0ikMOi6305ubX1jcyu/XdjZ3ds/KB4eNU2casYbLJaxbgfUcCkUb6BAyduJ5jQKJG8Fo9uZ33ri2ohYPeI44X5EB0qEglG00gNeV3vFklt25yCrxMtICTLUe8Wvbj9macQVMkmN6Xhugv6EahRM8mmhmxqeUDaiA96xVNGIG38yP3VKzqzSJ2GsbSkkc/X3xIRGxoyjwHZGFIdm2ZuJ/3mdFMMrfyJUkiJXbLEoTCXBmMz+Jn2hOUM5toQyLeythA2ppgxtOgUbgrf88ippVspetVy5vyjVbrI48nACp3AOHlxCDe6gDg1gMIBneIU3RzovzrvzsWjNOdnMMfyB8/kD1jWNgA==</latexit>

t = 7

<latexit sha1_base64="Pz7Nd8CwOD81fX4VVXHbULx7gQI=">AAAB6nicbVDLSgNBEOyNrxhfUY9eBoPgKexGIV6EoBePEc0DkiXMTmaTIbOzy0yvEEI+wYsHRbz6Rd78GyfJHjSxoKGo6qa7K0ikMOi6305ubX1jcyu/XdjZ3ds/KB4eNU2casYbLJaxbgfUcCkUb6BAyduJ5jQKJG8Fo9uZ33ri2ohYPeI44X5EB0qEglG00gNeV3vFklt25yCrxMtICTLUe8Wvbj9macQVMkmN6Xhugv6EahRM8mmhmxqeUDaiA96xVNGIG38yP3VKzqzSJ2GsbSkkc/X3xIRGxoyjwHZGFIdm2ZuJ/3mdFMMrfyJUkiJXbLEoTCXBmMz+Jn2hOUM5toQyLeythA2ppgxtOgUbgrf88ippVsreRblyf1mq3WRx5OEETuEcPKhCDe6gDg1gMIBneIU3RzovzrvzsWjNOdnMMfyB8/kD3EWNhA==</latexit>

Figure 13: We optimize action (aA

0..T−1, a
B

0..T−1) and stochastic

variable sequences (ǫA0..T−1, ǫ
B

0..T−1) for real videos A and B. Let

zA0 be the latent code of A’s initial frame. We show re-played

sequences using (zA0 , aA, ǫA), (zA0 , aB , ǫA) and (zA0 , aA, ǫB).

variables ǫ with Eq.(9). Fig 13 illustrates the result of dif-

ferentiable simulation. The third row exhibits how we can

recover the original video A by running DriveGAN with

optimized a and ǫ. To verify we have recovered a success-

fully and not just overfitted using ǫ, we evaluate the quality

of optimized a from test data using the Action Prediction

loss from Tab 2. Optimized a results in a loss of 1.91 and

0.57 for Carla and RWD, respectively. These numbers are

comparable to Tab 2 and much lower than the baseline per-

formances of 3.64 and 1.01, calculated with the mean of ac-

tions from the training data, demonstrating that DriveGAN

can recover unobserved actions successfully. We can even

recover a and ǫ for non-existing intermediate frames. That

is, we can do frame interpolation to discover in-between

frames given a reference and a future frame. If the time be-

tween the two frames is small, even a naive linear interpo-

lation could work. However, for a large gap (≥ 1 second), it

is necessary to reason about the environment’s dynamics to

properly interpolate objects in a scene. We modify Eq.(9) to

minimize the reconstruction term for the last frame zT only,

and add a regularization ||zt − zt−1|| on the intermediate

zs. Fig 14 shows the result. Top row, which shows interpo-

lation in the latent space, produces reasonable in-between

frames, but if inspected closely, we can see the transition

is unnatural (e.g. a tree appears out of nowhere). On the

contrary, with differentiable simulation, we can see how

it learns to utilize the dynamics of DriveGAN to produce

plausible transitions between frames. In Fig 15, we calcu-

late the action prediction loss with optimized actions from

frame interpolation. We discover optimized actions that fol-

low the ground-truth actions closely when we interpolate

frames one second apart. As the interpolation interval be-

comes larger, the loss increases since many possible action

75826



Frame 1 Frame 2

Frame 1 Frame 2

Top: linear interpolation with latent codes Bottom: interpolation with differentiable simulation

Figure 14: Frame Interpolation We run differentiable simulation to produce Frame 2 given Frame 1. Top: Linear interpolation in latent

space does not account for transition dynamics correctly. Bottom: DriveGAN keeps dynamics consistent with respect to the environment.

1.2

1.7

2.2

2.7

3.2

3.7

4.2

1 second 2 seconds 3 seconds

Interpolated Mean action

Interpolation Interval

0.7

0.75

0.8

0.85

0.9

0.95

1

1.05

1 second 2 seconds 3 seconds

Interpolated Mean action

Interpolation with Differentiable Simulation - Action Prediction Loss

Interpolation Interval

Carla RWD

Figure 15: Optimized actions from frame interpolation discovers

in-between actions. Mean action measures action prediction loss

when the mean of actions from the training dataset is used as input.

sequences lead to the same resulting frame. This shows the

possibility of using differentiable simulation for video com-

pression as it can decode missing intermediate frames.

Differentiable simulation also allows replaying the same

scenario with different inputs. In Fig 13, we get optimized

aA, ǫA and aB , ǫB for two driving videos, A and B. We re-

play starting with the encoded first frame zA0 of A. On the

fourth row, ran with (aB ,ǫA), we see that a vehicle is placed

at the same location as A, but since we use the slightly-

left action sequence aB , the ego agent changes the lane

and slides toward the vehicle. The fifth row, replayed with

(aA,ǫB), shows the same ego-agent’s trajectory as A, but it

puts a vehicle at the same location as B due to ǫB . This ef-

fectively shows that we can blend-in two different scenarios

together. Furthermore, we can modify the content and run

a simulation with the environment inferred from a video. In

Fig 6, we create a simulation environment from a RWD test

data, and replay with modified objects and weather.

4.3. Additional Experiments

LiftSplat [40] proposed a model for producing the

Bird’s-Eye-View (BEV) representation of a scene from

camera images. We use LiftSplat to get BEV lane predic-

tions from a simulated sequence from DriveGAN (Fig 16).

Simulated scenes are realistic enough for LiftSplat to pro-

duce accurate predictions. This shows the potential of

DriveGAN being used with other perception models to be

useful for downstream tasks such as training an autonomous

Simulated BEV BEV𝑡 = 1 𝑡 = 5

BEV BEV𝑡 = 9 𝑡 = 13

Figure 16: Bird’s-Eve-View (BEV) lane prediction with Lift-

Splat [40] model on generated scenes.

driving agent. Furthermore, in real-time driving, LiftSplat

can potentially employ DriveGAN’s simulated frames as a

safety measure to be robust to sudden camera drop-outs.

Plain StyleGAN latent space: StyleGAN [26] proposes

an optimization scheme to project images into their latent

codes without an encoder. The projection process opti-

mizes each image and requires significant time (∼19200

GPU hours for Gibson). Therefore, we use 25% of Gibson

data to compare with the projection approach. We train the

same dynamics model on top of the projected and proposed

latent spaces. The projection approach resulted in FVD of

636.8 with the action prediction loss of 0.225, whereas ours

achieved 411.9 (FVD) and 0.050 (action prediction loss).

5. Conclusion

We proposed DriveGAN for a controllable high-quality

simulation. DriveGAN leverages a novel encoder and

an image GAN to produce a latent space on which the

proposed dynamics engine learns the transitions between

frames. DriveGAN allows sampling and disentangling of

different components of a scene without supervision. This

lets users interactively edit scenes during a simulation and

produce unique scenarios. We showcased differentiable

simulation which opens up promising ways for utilizing

real-world videos to discover the underlying factors of vari-

ations and train robots in the re-created environments.

85827



References

[1] Mohammad Babaeizadeh, Chelsea Finn, Dumitru Erhan,

Roy H. Campbell, and Sergey Levine. Stochastic variational

video prediction. CoRR, abs/1710.11252, 2017. 2

[2] Marc G Bellemare, Yavar Naddaf, Joel Veness, and Michael

Bowling. The arcade learning environment: An evaluation

platform for general agents. Journal of Artificial Intelligence

Research, 47:253–279, 2013. 2

[3] Silvia Chiappa, Sébastien Racaniere, Daan Wierstra, and

Shakir Mohamed. Recurrent environment simulators. arXiv

preprint arXiv:1704.02254, 2017. 5

[4] Aidan Clark, Jeff Donahue, and Karen Simonyan. Ef-

ficient video generation on complex datasets. CoRR,

abs/1907.06571, 2019. 2

[5] Marc Deisenroth and Carl E Rasmussen. Pilco: A model-

based and data-efficient approach to policy search. In Pro-

ceedings of the 28th International Conference on machine

learning (ICML-11), pages 465–472, 2011. 2

[6] Emily Denton and Rob Fergus. Stochastic video generation

with a learned prior. CoRR, abs/1802.07687, 2018. 2

[7] Emily L Denton et al. Unsupervised learning of disentangled

representations from video. In Advances in neural informa-

tion processing systems, pages 4414–4423, 2017. 4

[8] Jeevan Devaranjan, Amlan Kar, and Sanja Fidler. Meta-

sim2: Unsupervised learning of scene structure for synthetic

data generation. arXiv preprint arXiv:2008.09092, 2020. 1,

2

[9] Alexey Dosovitskiy, German Ros, Felipe Codevilla, Antonio

Lopez, and Vladlen Koltun. CARLA: An open urban driving

simulator. In Proceedings of the 1st Annual Conference on

Robot Learning, pages 1–16, 2017. 1, 5

[10] Vincent Dumoulin, Jonathon Shlens, and Manjunath Kud-

lur. A learned representation for artistic style. arXiv preprint

arXiv:1610.07629, 2016. 3

[11] Chelsea Finn, Ian Goodfellow, and Sergey Levine. Unsuper-

vised learning for physical interaction through video predic-

tion. In Advances in neural information processing systems,

pages 64–72, 2016. 2

[12] Golnaz Ghiasi, Honglak Lee, Manjunath Kudlur, Vincent

Dumoulin, and Jonathon Shlens. Exploring the structure of a

real-time, arbitrary neural artistic stylization network. arXiv

preprint arXiv:1705.06830, 2017. 3

[13] Ian J. Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing

Xu, David Warde-Farley, Sherjil Ozair, Aaron Courville, and

Yoshua Bengio. Generative adversarial networks, 2014. 2

[14] David Ha and Jürgen Schmidhuber. Recurrent world models

facilitate policy evolution. In Advances in Neural Informa-

tion Processing Systems, pages 2450–2462, 2018. 1, 2, 5

[15] Danijar Hafner, Timothy Lillicrap, Ian Fischer, Ruben Ville-

gas, David Ha, Honglak Lee, and James Davidson. Learning

latent dynamics for planning from pixels. In International

Conference on Machine Learning, pages 2555–2565. PMLR,

2019. 2

[16] Martin Heusel, Hubert Ramsauer, Thomas Unterthiner,

Bernhard Nessler, and Sepp Hochreiter. Gans trained by a

two time-scale update rule converge to a local nash equilib-

rium. In Advances in neural information processing systems,

pages 6626–6637, 2017. 6

[17] Irina Higgins, Loic Matthey, Arka Pal, Christopher Burgess,

Xavier Glorot, Matthew Botvinick, Shakir Mohamed, and

Alexander Lerchner. beta-vae: Learning basic visual con-

cepts with a constrained variational framework. 2016. 3

[18] Sepp Hochreiter and Jürgen Schmidhuber. Long short-term

memory. Neural computation, 9(8):1735–1780, 1997. 2, 4

[19] Jun-Ting Hsieh, Bingbin Liu, De-An Huang, Li Fei-Fei, and

Juan Carlos Niebles. Learning to decompose and disentangle

representations for video prediction. CoRR, abs/1806.04166,

2018. 2

[20] Xun Huang and Serge Belongie. Arbitrary style transfer in

real-time with adaptive instance normalization. In Proceed-

ings of the IEEE International Conference on Computer Vi-

sion, pages 1501–1510, 2017. 3

[21] Phillip Isola, Jun-Yan Zhu, Tinghui Zhou, and Alexei A

Efros. Image-to-image translation with conditional adver-

sarial networks. In Proceedings of the IEEE conference on

computer vision and pattern recognition, pages 1125–1134,

2017. 3

[22] Lukasz Kaiser, Mohammad Babaeizadeh, Piotr Milos,

Blazej Osinski, Roy H Campbell, Konrad Czechowski,

Dumitru Erhan, Chelsea Finn, Piotr Kozakowski, Sergey

Levine, et al. Model-based reinforcement learning for atari.

arXiv preprint arXiv:1903.00374, 2019. 2

[23] Nal Kalchbrenner, Aäron van den Oord, Karen Simonyan,

Ivo Danihelka, Oriol Vinyals, Alex Graves, and Ko-

ray Kavukcuoglu. Video pixel networks. CoRR,

abs/1610.00527, 2016. 2

[24] Amlan Kar, Aayush Prakash, Ming-Yu Liu, Eric Cameracci,

Justin Yuan, Matt Rusiniak, David Acuna, Antonio Torralba,

and Sanja Fidler. Meta-sim: Learning to generate synthetic

datasets. In Proceedings of the IEEE International Confer-

ence on Computer Vision, pages 4551–4560, 2019. 1, 2

[25] Tero Karras, Samuli Laine, and Timo Aila. A style-based

generator architecture for generative adversarial networks. In

Proceedings of the IEEE conference on computer vision and

pattern recognition, pages 4401–4410, 2019. 2, 3

[26] Tero Karras, Samuli Laine, Miika Aittala, Janne Hellsten,

Jaakko Lehtinen, and Timo Aila. Analyzing and improv-

ing the image quality of stylegan. In Proceedings of the

IEEE/CVF Conference on Computer Vision and Pattern

Recognition, pages 8110–8119, 2020. 3, 8

[27] Seung Wook Kim, Yuhao Zhou, Jonah Philion, Antonio Tor-

ralba, and Sanja Fidler. Learning to simulate dynamic envi-

ronments with gamegan. In Proceedings of the IEEE/CVF

Conference on Computer Vision and Pattern Recognition,

pages 1231–1240, 2020. 1, 2, 4, 5, 7

[28] Yoon Kim. Convolutional neural networks for sentence clas-

sification. arXiv preprint arXiv:1408.5882, 2014. 4

[29] Diederik P Kingma and Max Welling. Auto-encoding varia-

tional bayes, 2014. 2, 3

[30] Eric Kolve, Roozbeh Mottaghi, Daniel Gordon, Yuke Zhu,

Abhinav Gupta, and Ali Farhadi. Ai2-thor: An interactive

3d environment for visual ai. In arXiv:1712.05474, 2017. 1

95828



[31] Manoj Kumar, Mohammad Babaeizadeh, Dumitru Erhan,

Chelsea Finn, Sergey Levine, Laurent Dinh, and Durk

Kingma. Videoflow: A flow-based generative model for

video. CoRR, abs/1903.01434, 2019. 2

[32] Anders Boesen Lindbo Larsen, Søren Kaae Sønderby, and

Ole Winther. Autoencoding beyond pixels using a learned

similarity metric. CoRR, abs/1512.09300, 2015. 2, 3

[33] Alex X Lee, Richard Zhang, Frederik Ebert, Pieter Abbeel,

Chelsea Finn, and Sergey Levine. Stochastic adversarial

video prediction. arXiv preprint arXiv:1804.01523, 2018.

2, 5

[34] William Lotter, Gabriel Kreiman, and David Cox. Deep pre-

dictive coding networks for video prediction and unsuper-

vised learning. arXiv preprint arXiv:1605.08104, 2016. 2

[35] Arun Mallya, Ting-Chun Wang, Karan Sapra, and Ming-Yu

Liu. World-consistent video-to-video synthesis, 2020. 2

[36] Sivabalan Manivasagam, Shenlong Wang, Kelvin Wong,

Wenyuan Zeng, Mikita Sazanovich, Shuhan Tan, Bin Yang,

Wei-Chiu Ma, and Raquel Urtasun. Lidarsim: Realistic lidar

simulation by leveraging the real world. In Proceedings of

the IEEE/CVF Conference on Computer Vision and Pattern

Recognition, pages 11167–11176, 2020. 1, 2

[37] Michael Mathieu, Camille Couprie, and Yann LeCun. Deep

multi-scale video prediction beyond mean square error,

2016. 2

[38] Matthias Minderer, Chen Sun, Ruben Villegas, Forrester

Cole, Kevin P Murphy, and Honglak Lee. Unsupervised

learning of object structure and dynamics from videos. In

Advances in Neural Information Processing Systems, pages

92–102, 2019. 2

[39] Junhyuk Oh, Xiaoxiao Guo, Honglak Lee, Richard L Lewis,

and Satinder Singh. Action-conditional video prediction us-

ing deep networks in atari games. In Advances in neural

information processing systems, pages 2863–2871, 2015. 2

[40] Jonah Philion and Sanja Fidler. Lift, splat, shoot: Encoding

images from arbitrary camera rigs by implicitly unprojecting

to 3d. arXiv preprint arXiv:2008.05711, 2020. 8

[41] Xavier Puig, Kevin Ra, Marko Boben, Jiaman Li, Tingwu

Wang, Sanja Fidler, and Antonio Torralba. Virtualhome:

Simulating household activities via programs. In CVPR,

2018. 1

[42] Marc’Aurelio Ranzato, Arthur Szlam, Joan Bruna, Michaël

Mathieu, Ronan Collobert, and Sumit Chopra. Video (lan-

guage) modeling: a baseline for generative models of natural

videos. CoRR, abs/1412.6604, 2014. 2

[43] Nataniel Ruiz, Samuel Schulter, and Manmohan Chandraker.

Learning to simulate. arXiv preprint arXiv:1810.02513,

2018. 1

[44] Masaki Saito, Eiichi Matsumoto, and Shunta Saito. Tempo-

ral generative adversarial nets with singular value clipping,

2017. 2

[45] M. Saito and Shunta Saito. Tganv2: Efficient training of

large models for video generation with multiple subsampling

layers. ArXiv, abs/1811.09245, 2018. 2

[46] Shital Shah, Debadeepta Dey, Chris Lovett, and Ashish

Kapoor. Aerial Informatics and Robotics platform. Tech-

nical Report MSR-TR-2017-9, Microsoft Research, 2017. 1

[47] Tamar Rott Shaham, Tali Dekel, and Tomer Michaeli. Sin-

gan: Learning a generative model from a single natural im-

age. In Proceedings of the IEEE International Conference

on Computer Vision, pages 4570–4580, 2019. 3

[48] Nitish Srivastava, Elman Mansimov, and Ruslan Salakhutdi-

nov. Unsupervised learning of video representations using

lstms. CoRR, abs/1502.04681, 2015. 2

[49] Richard S Sutton. Integrated architectures for learning, plan-

ning, and reacting based on approximating dynamic pro-

gramming. In Machine learning proceedings 1990, pages

216–224. Elsevier, 1990. 2

[50] Emanuel Todorov, Tom Erez, and Yuval Tassa. Mujoco: A

physics engine for model-based control. In 2012 IEEE/RSJ

International Conference on Intelligent Robots and Systems,

pages 5026–5033. IEEE, 2012. 2

[51] Sergey Tulyakov, Ming-Yu Liu, Xiaodong Yang, and Jan

Kautz. Mocogan: Decomposing motion and content for

video generation. CoRR, abs/1707.04993, 2017. 2

[52] Thomas Unterthiner, Sjoerd van Steenkiste, Karol Kurach,

Raphael Marinier, Marcin Michalski, and Sylvain Gelly. To-

wards accurate generative models of video: A new metric &

challenges. arXiv preprint arXiv:1812.01717, 2018. 6

[53] Carl Vondrick, Hamed Pirsiavash, and Antonio Torralba.

Generating videos with scene dynamics, 2016. 2

[54] Ting-Chun Wang, Ming-Yu Liu, Jun-Yan Zhu, Guilin Liu,

Andrew Tao, Jan Kautz, and Bryan Catanzaro. Video-to-

video synthesis. CoRR, abs/1808.06601, 2018. 2, 3

[55] Dirk Weissenborn, Oscar Täckström, and Jakob Uszko-

reit. Scaling autoregressive video models. CoRR,

abs/1906.02634, 2019. 2

[56] Fei Xia, Amir R. Zamir, Zhi-Yang He, Alexander Sax, Jiten-

dra Malik, and Silvio Savarese. Gibson env: real-world per-

ception for embodied agents. In Computer Vision and Pat-

tern Recognition (CVPR), 2018 IEEE Conference on. IEEE,

2018. 5

[57] Wei Yu, Yichao Lu, Steve Easterbrook, and Sanja Fidler.

Efficient and information-preserving future frame prediction

and beyond. In ICLR, 2020. 2

[58] Richard Zhang, Phillip Isola, Alexei A Efros, Eli Shecht-

man, and Oliver Wang. The unreasonable effectiveness of

deep features as a perceptual metric. In Proceedings of the

IEEE conference on computer vision and pattern recogni-

tion, pages 586–595, 2018. 3

105829


