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ABSTRACT Amultitude of cyber-physical system (CPS) applications, including design, control, diagnosis,

prognostics, and a host of other problems, are predicated on the assumption of model availability. There are

mainly two approaches to modeling: Physics/Equation based modeling (Model-Based, MB) and Machine

Learning (ML). Recently, there is a growing consensus that ML methodologies relying on data need to

be coupled with prior scientific knowledge (or physics, MB) for modeling CPS. We refer to the paradigm

that combines MB approaches with ML as hybrid learning methods. Hybrid modeling (HB) methods is a

growing field within both the ML and scientific communities, and are recognized as an important emerging

but nascent area of research. Recently, several works have attempted to merge MB and ML models for

the complete exploitation of their combined potential. However, the research literature is scattered and

unorganized. So, we make a meticulous and systematic attempt at organizing and standardizing the methods

of combining ML and MB models. In addition to that, we outline five metrics for the comprehensive

evaluation of hybrid models. Finally, we conclude by shedding some light on the challenges of hybrid

models, which we, as a research community, should focus on for harnessing the full potential of hybrid

models. An additional feature of this survey is that the hybrid modeling work has been discussed with a

focus on modeling cyber-physical systems.

INDEX TERMS Cyber-physical systems, deep learning, deep neural networks, hybrid models, model-based,

machine learning, physics guided, physics informed, physics prior, theory guided.

I. INTRODUCTION

Just as the microscope empowered our naked eyes to see

cells, microbes, and viruses, thereby advancing the progress

of biology and medicine; or as the telescope opened our

minds to the immensity of the cosmos and has enabled

humankind to explore and understand the space in spectac-

ular detail, in the current century, ComputingScope (com-

putational ‘‘instruments’’ for ‘‘viewing’’ and analyzing data)

will help successfully decipher and navigate another infi-

nite: the staggeringly complex multi-modal (text, image,

video, and sensors) information in all facets of our lives.

The associate editor coordinating the review of this manuscript and

approving it for publication was Fan-Hsun Tseng .

ComputingScope will give us a vision of the whole and

help us synthesize actionable information. Recent success

of Deep Learning (DL) [1]–[8] acts as a harbinger of the

potential of ComputingScope. While the DL has made a

significant impact in domains such as natural language pro-

cessing (NLP), computer vision, and speech recognition, its

impact on cyber-physical systems (CPS) is only recently

being understood. In order to realize the potential of DL

frameworks in CPS applications, there is a growing consensus

that ML methodologies relying on data need to be coupled

with physics-based modeling (prior knowledge) techniques.

The technology push driving the integration of a myriad

variety of sensors, computational intelligence, communica-

tion, and control to bring ‘‘smartness’’ into a variety of CPSs
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is the immediate next frontier for ComputingScopes. CPSs

are complex systems capable of Cognition, Communication,

Computation and Control (4C) [9]–[13]. Consequently, CPS

has four main components with unique functions. They are

physical infrastructure consisting of sensors for sensing the

stimuli to curate raw data, actuators for responding to the

stimuli, a computational intelligence platform for computing

the response contingent upon the stimuli, and a network that

interconnects all of them. Figure 1 illustrates the architecture

and functioning of a CPS. The development of intelligent

computational techniques (computation component of the

CPS) that are capable of harnessing CPS sensor curated raw

data to generate actionable intelligence (typically hidden in

data) is the focus of this review.

FIGURE 1. Schematic diagram of a Cyber-Physical System depicting the
manner in which the physical (Sensors, actuators, computational devices,
network infrastructure) and cyber (Sensed and computed data,
algorithms, system models, network protocols, bandwidth etc.)
components are interwined.

Amultitude of CPS applications, including design, control,

diagnosis, prognostics, and a host of other problems, are

predicated on the assumption of model availability. There are

mainly two approaches to modeling: Physics/Equation based

modeling (Model-Based, MB) and Machine Learning (ML).

Model-based methods assume the availability of an accu-

rate system model, while data-driven methods are based on

machine learning. Purely data-drivenMLmethods ignore any

knowledge about the physical/abstract systems. Additionally,

ML approaches require a large amount of labeled training

data that is typically unavailable. MB approaches require

excellent physics models and good specification of parameter

values.When building models of complex CPSs, we are often

limited by the unavailability of the parameters of the system

components due to incomplete technical specifications, hid-

den physical interactions, or interactions that are too complex

to model from first principles. Hence, we often make simpli-

fying assumptions (e.g., linear approximations) and construct

coarse models that imperfectly describe the behavior of the

real system. A prudent approach is to use hybrid methods

that use the physics of the system and prior knowledge about

the domain to guide the construction of machine learning

techniques such as Deep Neural Networks (DNNs). The prin-

cipal goal of this review is to discuss challenges related to the

development of hybrid methods that combine multi-physics

equation-based models with data-driven machine learning

models (such as DNNs) to enable predictive modeling of

CPSs in the presence of imperfect models and sparse and

noisy data.

Our review is complementary to the existing review in the

hybrid modeling domain [14]. The key differences include

but are not limited to (1) our focus is different and is primarily

on CPS applications, (2) we outline a completely differ-

ent framework for categorizing hybrid modeling techniques,

(3) we provide an update on recent hybrid modeling papers

in the last five years with a primary focus on deep-learning

techniques, and (4) we outline several new directions for

research in CPS hybrid modeling domain.

The paper is organized into eight sections. Section II dis-

cusses the existing techniques of modeling CPS. The hurdles

faced by the existing CPSmodeling techniques are elaborated

in section III. The necessity of combining ML and MB for

eliminating those hurdles are outlined in section IV. The

methods for combining ML and MB models are discussed

in section V. The metrics for evaluating the performance of

the hybrid models are deliberated in section VI. The new

challenges which may emanate from hybrid modeling are

explored in section VII. And finally, section VIII concludes

the paper. Figure 2 summarizes the main components of

our work.

II. MODELING CYBER-PHYSICAL SYSTEMS

A cyber-physical system is an embodiment of physical enti-

ties and accompanying processes with computational capa-

bilities to link the physical world of sensors and actuators

with the virtual world of information processing [15]–[20].

The term ‘Cyber-Physical System’ was coined by Helen Gill

fromNSF in 2006 [21]. The federal Networking and Informa-

tion Technology Research and Development (NITRD) [22]

envisions that CPSs can revolutionize agriculture [23]–[26],

building control [27]–[30], security [31]–[33], energy man-

agement [34], hazard response [35]–[38], healthcare [16],

[39], [40], society [41], [42], transportation [43], [44],

environment [45] and manufacturing industries [46]–[49].

Even after exploded research interests and investments, the

research in CPSs is still in a nascent stage. Detailed review

outlining the-state-of-the-art in CPS domain can be found

in [16], [31], [50]–[53].

Progress in CPS automation can be seen as belonging to

three eras. Era one, where all the dirty dangerous [54] work

involving onerous human labor, industrial equipment was

automated. This was succeeded by automation of the dull [54]

activities, which consisted of automated interfaces, clerical

chores, service transactions, etc. And finally, now, in the third

era, CPS is being empowered to make decisions [54]. In the

third era, AI in general and machine learning, in particular,

is going to assist CPS in making automated decisions to

accomplish physical tasks. Previously, automation captured
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FIGURE 2. Structure of the current outlined work on hybrid modeling in CPS domain: (a) CPS modeling
techniques; (b) challenges in the CPS modeling techniques; (c) hybrid models incorporating MB and ML;
(d) metrics for evaluating the hybrid models; (e) direction for future work in hybrid modeling;
(f) cyber-physical system; (g) applications of CPS.

the segment of the work, which was more manual but less

cognitively challenging. Automation powered by artificial

intelligence has the potential to capture some part of the

remaining segment of the work. It can help augment human

capabilities by being capable of doing mental work along

with the menial work. While doing so, the CPS has to meet

a few additional goals that are still open for research. The

CPS must bring the precision, accuracy, and latency from

the computing world to the physical world. The asynchrony

in time and space must be fixed. The CPS must cater to

the privacy and security of itself and the associated users.

The intrinsic and extrinsic heterogeneity, complexity must

have to be addressed. The internal, external, and cross-

functional dynamics must be comprehended and modeled.

It must abridge the gap between the discrete and logical func-

tions from the virtual computing world and the continuous

physical dynamics of the real world.

Several attempts have been made at modeling CPSs to

harness the revolutionizing potential of the CPSs. Depending

on the intended goal of the CPS and the characteristics of

the CPS, the modeling techniques have broadly diversified

into four categories: (1) Physics-based equations; (2) State

machine based; (3) rule and agent based; and (4) data-

driven models. All these modeling paradigms are pictori-

ally represented in Figure 3. These modeling techniques

encompass white-box models, grey-box models and black-

box models [55], [56]. The physics-based equations and state

machines are used to model the continuous and discrete

dynamics of a system respectively. They are purely based on

the physical dynamics of the system. They are robust but lack

intelligence. Rule and agent based models leverage the data

generated by the system, along with the knowledge of CPS.

Hence, rule and agent based models are more capable. The

data-driven methods take advantage of data. The following

subsections include a brief critical appraisal of these model-

ing paradigms.

A. PHYSICS EQUATION BASED CPS MODELING

The physical dynamics of all systems, including CPS, are

continuous in nature [57]. They evolve with time. Such con-

tinuous dynamics are effectively captured by physics-based

equations. These physics-based models usually take the form

of equations. The equations can be simple dependence equa-

tions or ordinary differential equations or partial differential
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FIGURE 3. CPS modeling paradigms: (a) Physics-based equations; (b) State machines; (c) Rule and agent
based models; (d) Data-driven (DNN) models.

equations or a combination of them [58], [59] (Figure 3(a)).

For a time(t) dependent system of n independent variables

denoted by xi where i = 1, 2, . . . , n and m target variables

denoted by yj where j = 1, 2, . . . ,m, a simple dependence

equation can be of the form

f (t, xi, yj) = 0 (1)

If the dynamics takes the form of ordinary differential

equations [60], then it will be

g
(

x, yj,
dkyj

dxk

)

= 0 (2)

In case of complex systems, it is difficult to identify the

individual impact of a parameter accurately. In such cases, the

dynamics takes the form of partial differential equations [61].

Then the equations will be in the following form:

h
(

t, xi, yj,
∂kyj

∂tk
,
∂ lyj

∂x li

)

= 0 (3)

where k, l = 1, 2, . . . p are the indices of the differential oper-

ators. The equation-based models are limited to modeling

continuous dynamics. Causality, conservation laws, objec-

tivity, and composability are the main attributes of physics-

based equations [62].

B. STATE MACHINES BASED CPS MODELING

State machines are used for modeling discrete dynamics

[59], [63]–[65]. Discrete dynamics involve a set of discrete

sequential steps, e.g., the number of times a ball bounces

under gravity. The number is going to be a natural num-

ber, which is discrete in nature. A fundamental difference

between the continuous and discrete dynamics is that unlike

continuous dynamics which is inherently smooth, discrete

dynamics is discontinuous. Discrete events are instanta-

neous in nature. So, the derivative is zero before and after

the event but tends to hit infinity at that instant. Discrete

dynamics can be modeled using finite state machines or

extended state machines depending on the number of states.

They can be event-triggered or time-triggered. Mathemat-

ically, a finite state machine is a tuple of five variables

(States, Inputs,Outputs,Update, InitialState) [9], [65]. State

machines can be broadly differentiated into Mealy machines

and Moore machines. If the output is produced when a tran-

sition happens, it is a Mealy machine [66]. If the output is

produced when the machine is in a particular state, it is a

Moore machine [67]. They are convertible into each other.

A simple hypothetical finite state machine model is depicted

in Figure 3(b).

State machines are an efficient way to model discrete

dynamics. Causality, time invariance, linearity, stability,

and memorylessness are some of the properties common

to both physics-based equations and state machine based

methods [9].

C. RULE AND AGENT BASED CPS MODELING

CPS can also be represented using a set of agents and

semantically defined rules. The state machines are unlikely

to capture the interdependencies among different states. Rule

and agent based models promise to capture the intra- and

inter- dependencies among the cyber and physical com-

ponents along with the heterogeneity and complexity of

the CPS. Such systems are also referred as multi-agent

system (MAS) [68]–[70] and agent based models (ABM)

[71], [72]. MAS or ABM describes the system by describ-

ing its constituents. As a result, they are quite effective at

modeling a whole system when the whole is bigger than the

sum of its constituents due to their interactions [71]. MAS is

supported by a set of sensors that sense the environment and

create data. The data is acted upon by smart agent(s) using

decision making algorithms (Figure 3(c)). The agents make
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decisions based on a semantically defined set of rules. As they

use data and semantic rules, MAS is capable of extracting

insightful information from the data. Temporal continuity,

social skills, and autonomy are the main attributes of an agent

[73], [74]. These intelligent MAS are not completely black

box in nature. They incorporate the recognized semantics of

the system into the model. E.g., the semantics addresses the

difference between the flow in the cyber (data) and physical

domains (power in energy systems vs. vehicles crossing a toll

booth). A simple example could be a parking lot where the

CPS can guide the oncoming vehicles for an empty parking

slot and stop accepting additional vehicles if the lot is full.

Unlike the physics-based or state machine based models,

which are limited by the need for adaptability and inter-

operability [74] in CPS, rule and agent-based systems are not

limited by them. The former methods are neither smart nor

adaptable. But, rule and agent based systems are smart and

adaptable. This is why the research work in rule and agent-

based models of CPS has seen multifold growth in recent

times. Even then, as the rule and agent based models exploit

the semantics of the system, complex systems pose a serious

challenge to MAS [75] like those in physics-based or state

machine based models.

D. DATA-DRIVEN CPS MODELING

The data-drivenmodels completely rely on data. They obviate

the knowledge of system dynamics. The data-driven models

must be able to model the inherent characteristics of the

CPS, i.e., continuous (regression) and discrete (classification)

dynamics of the CPS.

Attempts at data-driven modeling of CPS for captur-

ing the hybrid dynamics tried to exploit concepts from

bayesian learning [76], algebraic geometry [77], bounded

error [78], compressive sensing [79], inference of state

transition logics [80], regression approach underpinned by

recursive clustering and linear multi-class classification [81],

symbolic regression [82], hybrid stable spline algorithms [83]

etc. An excellent review of earlier methods of identify-

ing hybrid systems can be found in [84]. The earlier

methods [76]–[78], [85] mostly focused on simple piece-

wise affine systems which use linear transition rules [80].

Recent methods try to capture the non-linear dynamics

from relatively complex systems [79]–[83]. Recently, DNNs

(Figure 3(d)) with non-linear activation functions received

widespread recognition for their ability to learn complex non-

linear functions [86]–[89]. They have also started to find use

in modeling CPS [90], [91]. Currently, there is a consen-

sus that only models powered by artificial intelligence can

achieve acceptable levels of autonomy by coping up with the

uncertainties of the real world [92]. The DNNs, which come

under the umbrella of artificial intelligence and have taken

the canonical form of AI techniques, are best equipped to

make the CPS autonomous. Nonetheless, the deep learning

techniques are plagued by their own limitations, which are

briefly discussed in section IV. The primary reasons for the

poor performance of purely ML-based data-driven methods

in CPS modeling for state assessment of the CPS are

(1) physical systems work in dynamic environments where

system performance is changing continuously, (2) the inabil-

ity of ML methods to generalize beyond their initial set of

training data, (3) sparse training data set, (4) ML methods

are agnostic to underlying physics, resulting in predictions

that are sometimes inconsistent with the laws of physics, and

(5) in predictive CPS maintenance applications, the primary

focus is on anomaly detection that can lie in the tail end

of the data distribution. Hence, the current work focuses

on combining conventional physics knowledge with neural

networks (NNs) to overcome those limitations.

III. CHALLENGES IN MODELING CYBER-PHYSICAL

SYSTEMS

The models of the CPS must model every component of the

CPS. In other words, it should constitute the models of phys-

ical components and processes, computational algorithms,

software, and networks. Interpretability and composability

of the physics-based models are the main drivers behind

their widespread adoption. Interpretability prevents failures.

Composability facilitates the construction of complex CPS.

Together they make the physics-based models of CPS ubiq-

uitous and indispensable. But, the model-based systems are

plagued by a diverse set of challenges such as solver depen-

dency of the model, Zeno behavior, non-determinacy, hetero-

geneity of the system, maintaining the consistency among the

components of the model, distributed behavior and miscon-

nected model components [93].

Different numerical solvers used in a CPS model may use

different numerical precision, leading to different behaviors

of the CPS models [60], [93]. As simple components evolve

into complex systems, understanding and modeling the inter-

action among the components becomes even more challeng-

ing. Ensuring consistent evolution among all the components

is also difficult. In addition to this, the time lag created during

computation and communication must also be modeled. The

unevenness in measurements of time across the components,

loss in communication, network delays, etc. must also be

incorporated [93]. Our goal is not to discuss the methods

to address all the above-mentioned challenges. Rather, we

mainly focus on specific CPS modeling challenges that can

be eradicated or minimized by combining model-based and

data-driven methods.

A. DISCRETIZATION OF THE CONTINUUM

In cyber-physical systems, cyber components like micropro-

cessors and digital communication networks portray discrete

dynamics. Whereas, the physical elements of the CPS like

electro-mechanical, humane, and chemical components por-

tray continuous behaviors [9]. Hence, modeling a CPS can

be split into two parts: continuous behaviors and discrete

behaviors. The models must address the semantic dichotomy

between discrete and continuous behaviors and their interac-

tions. For modeling any CPS, we must integrate continuous

behavior with discrete behavior. The computational models,
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which are inherently discrete, must model the continuous

behavior using some means like numerical approximation or

numerical integration [57], [60], [94]. The time precision of

the computational models shall allow modeling the discrete

dynamics. Hence, the time precision of the computational

models should be finer than that of the discrete system

dynamics.

However, the time precision of the computational model

is fixed and cannot be refined beyond a certain limit. That

poses severe challenges to the computationalmodels tomodel

the continuous dynamics portrayed by the physical elements

when the continuous events become superfine. When the

physical events become superfine, the time period of the

events diminish, and uncountably many events happen in a

small time interval. For example, consider a ball bouncing

freely under gravity. It is subjected to wind drag. And as the

collisions are not perfectly elastic in nature, some energy is

lost during the collisions. Gradually, the amplitude (bouncing

height) of the ball diminishes. After a certain point in time,

the amplitudes become so small that it becomes difficult to

differentiate two different free falls of the ball. The time

period of the falls also reduces considerably. Consequently,

the frequency of the events (collisions) shoots infinity. Such

behavior is called as Zeno behavior, where infinite events

occur in a finite time interval [95]. That leads to huge diffi-

culties in modeling a system. The point after which the events

can’t be modeled any more by the computational model is

called Zeno point. Although challenging [95], there is some

prior work that attempted to determine the Zeno point of a

cyber-physical system [96], but there is a dearth of work on

modeling Zeno behavior.

B. ENVIRONMENTAL CHAOS AND LIMITS OF

DETERMINISM OF MODELS

In addition to the challenge of discretization of the contin-

uum, two more challenges prevent the models of CPS from

becoming robust. They are chaotic behavior of the envi-

ronment and the limits of determinism of the models [95].

Deterministic systems are predictable. The output can be

predicted accurately if the inputs, system parameters, and

the initial conditions are known precisely. However, most

nonlinear feedback systems encounter uncertainties. Even

real-time systems that seem robust, non-chaotic, like the

standard scheduling algorithms, can exhibit chaotic behavior

in the presence of uncertainty [97]. Chaotic behavior is so

fundamental that it weakens determinism. Determinism is an

invaluable property as it facilitates definitive analysis of the

CPS and enables complex and reliable designs [95]. How-

ever, deterministic models are never complete. E.g., a single-

threaded imperative program is deterministic, if only the

output is taken into account. The same program becomes

non-deterministic if the time of computation is also taken

into account. So, indeterminacy is inherent. Limiting cases

will always arise at which the deterministic models are going

to fail, and the model will no longer be valid. When the

limiting cases are unidentifiable, non-deterministic models

are the only way out. In such cases, Heisenberg’s uncer-

tainty principle seemsmore relevant [95]. However, the scope

of Heisenberg’s uncertainty principle is limited to quantum

mechanics. It does not extend up to Newtonian mechanics.

However, for practical cases, even Newtonian mechanics is

inadequate. It has to be supplemented by Mertonian laws to

make it more practicable.

C. EVOLUTION FROM NEWTONIAN SYSTEMS TO

MERTONIAN SYSTEMS

With the advent of data-driven modeling, the proliferation

of Merton’s systems has drastically increased than those of

Newton’s systems. It is only because of the close interaction

between actual and artificial life. The CPS has become cyber-

physical social systems (CPSS) [98]–[100]. Even though

some preliminary low fidelity MB exists for the CPS, which

can be adapted for modifications, adapting them for pro-

cesses that lack well-understood first principles (E.g., mobil-

ity behavior, advertisement click rates, energy consumption

in apartments and systems with human intervention) is infea-

sible [58]. Modeling such systems has been possible with

the support of big data, cloud computing, internet of things,

NNs, reinforcement learning, etc. [101]. This evolution can

be broadly restated as traditional systems with small data, and

big Newtonian laws have taken over by the modern systems

with big data but smaller Mertonian laws. The deterministic

systems have taken the background. The foreground has dom-

inated by the statistical systems governed by probabilistic

laws. Newton’s laws exclusively will be inadequate for mod-

eling CPSs.We have to introduceMerton’s laws for modeling

such things. Merton’s systems are governed byMerton’s self-

fulfilling prophecy. It says a prediction directly causes itself

to become true, because of the feedback between belief and

action [102], [103]. Such systems are governed by free will.

Hence, they cannot be controlled but can be influenced to

achieve the desired objective in a probabilistic environment.

The uncertainty in the complex spatio-temporal dynamics of

the environment creates a chasm between the deterministic

model and the actual physical systems. Ordinarily, causal-

ity prevails in Newtonian systems. In the case of Merton’s

systems, causality is a luxury that is almost unachievable

with the available resources for complexity, diversity, and

uncertainty [101]. The gap can be mitigated by integrating

the model-based approaches based on Newtonian laws and

the data-driven approaches based on Merton’s philosophy.

D. ADVENT OF BIG DATA

It is important to note that physics-based models for mod-

eling a system do not actually need data to model the sys-

tem. Rather, they need a deeper understanding of the causal

relationship of the system’s parameters and variables [104].

So, they are effective at modeling any system of simple

to moderate complexity. More importantly, they are quite

effective at modeling systems with small to medium scale of

data. However, recent years have seen a huge surge in the

amount of collected data. More data directly translates into
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better information about the system. For complex systems,

where inferring the causal relationship between the input and

output variables could be a daunting task, a large size of data

helps. Data harnessing has seen a surge because of pervasive

sensing, rapid computational capabilities, the proliferation of

the internet and its users. It led to the rise of big data. Big data

needs bigger and effective processing technologies. The pro-

cessing technologies started with model-based algorithms.

But, are shifting into data-driven techniques. For a model-

based approach, limiting cases will keep on accumulating as

more and more data gets collected. More data will cover the

state space better. Hence, it will produce accurate and robust

models depending upon the effectiveness of the models for

processing the data.

CPS is going to be ubiquitous. It is going to touch and

alter every part of life and the ecosystem we are living in.

They will be pervasive. Data will be created, processed, and

acted upon continuously in real-time. Continuous creation

of data will shove the CPS into the scope of big data. Big

data is characterized by its characteristic V’s [105]–[110].

Although significant variation can be observed in the number

of V’s available in the literature, all of them have the first

three V’s: volume, variety and velocity. The volume refers

to the huge amount of data that needs to be collected, pro-

cessed, and stored. Variety is the complexity of the data.

It can be structured, unstructured, or a mix of both. Typi-

cally, structured data can be organized into a tabular form,

whereas unstructured data cannot. Velocity refers to the speed

at which data is being generated, which in turn needs ade-

quate processing capabilities. Although MB can be effective

at handling the velocity, it will be inefficient at handling

the volume and variety of big data. The variety increases

the dimension of data. Every additional dimension can be

ascribed to a new system parameter. That parameter may have

an unanticipated influence on the model. That will contribute

to increasing the complexity of the MB. Additionally, with a

humongous volume of data, the state space will be covered

almost completely. Hence, almost all the exceptional cases

will be captured by the data. Every exceptional case is potent

to uncover a new phenomenon. And, every phenomenon may

require a newmodel altogether. So, a model encompassing all

the exceptional cases will become intractable. The solution

is data-driven methods. Although they are not likely to be

explainable, they will definitely model the state space better.

IV. SYNERGY BETWEEN MACHINE LEARNING AND

PHYSICS-BASED MODELS

Both the ML models and physics-based models can be used

for system modeling purposes. As stated previously, the

MBs do not need data to model the system. They need

the understanding of the system dynamics [57]. MBs need

data for calibrating their effectiveness. On the other hand,

ML models need data for modeling the system. Data with-

out any consideration of the dynamics of the system [58]

empowers the MLmethods to be applicable to different types

of systems. However, data can never be complete because

of the discrete nature of the input parameters and the out-

put variables of the system [111]. Irrespective of whether

data acquisition is expensive or not, data can never fill the

state space. So, the chasm between the system and the data

generated by it is ingrained in ML models. They tend to

fail beyond the regime of the training data [58]. Thus lack

extrapolability. This is evident from the success of convo-

lutional neural networks (CNNs) with the development of

ImageNet database [112], [113], which were prone to failure

with older databases [114], [115]. So, it is wise to conclude

that ML models, although accurate, can never be complete.

The DNNs operate in a monolithic manner, hence inhibiting

modularity, hierarchy, and composability. The whole network

learns simultaneously. They only care for learning a mapping

from the input to the output variables without any care for

the intermediate variables. Additionally, as ML models do

not pay any heed to the causal relationship of the system

variables, they lack interpretability. As the ML models learn,

they are susceptible to learn spurious but accurate mappings

from the input data to the output data. That makes ML a

double-edged sword.

Contrastingly, MBs have the potential to be complete if all

the system dynamics from intrinsic to extrinsic and micro to

mega-scale are taken into account. However, such dynamics

are insurmountably difficult to capture even with delicate

simulations and meticulous observations. They can be expen-

sive in terms of cost, computation, and time. So, some dynam-

ics are often ignored [57]. A few assumptions are made. That

simplifies the model of the system by disregarding the impact

of those dynamics. That makes the MB incomplete and inac-

curate [111]. For example, the impact of wind drag, energy

lost due to the non-elastic nature of collisions, the elasticity

of the material of the ball, the buoyancy of the medium is

often ignored in case of the bouncing ball. Although inac-

curate, the MB tend to extrapolate the system behavior [58].

If simulations are carried out delicately and observed meticu-

lously for capturing the dynamics accurately, then theMB can

become complex [57]. Complexity compromises tractability.

Tractability is of paramount importance in control applica-

tions. Even sometimes, the impact of some dynamics is con-

sciously ignored to make the model amenable. Even then, the

MB extrapolate far beyond the operating conditions utilized

for model validation with reduced accuracy [55].

Often, it is easier to acquire data from a system using

simulations than understanding the system dynamics. It is

quite easy to fit an ML model to the data originating from the

system. Data is sparse. But,MLmodels discover a continuous

function to fit the same sparse data. Hence, they fill the state

space. So, although data can never fill the state space, the

model can. With the same data, it is easier to validate an MB,

provided it is available. But if the data does not include any

anomaly, neither the ML can model it, nor the MB can be

validated against it. E.g., consider themagnitude of accelera-

tion of the ball bouncing under gravity. The magnitude of the

acceleration is equal to the acceleration due to gravity when

the ball is in air. The ball is in the air during most of its flight.
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FIGURE 4. The spectrum of physics and data showcasing the effectiveness of pure physics-based, data-driven and hybrid models for predicting the path
of an oncoming quadrotor from a hexarotor in an autonomously operating swarm of UAVs for CPS applications. (a), (c) and (b) represent the predicted
path of pure physics, pure data-driven and hybrid models respectively. The corresponding models are shown in (e), (g) and (f). Figure (d) shows an
instance of data which comprises of the position (Ep), orientation (Eθ) and velocity (Ev ) of the quadrotor.

But, the magnitude is different from the acceleration due to

gravity at the moment when the ball hits the floor. It appears

as an anomaly in the plot. If the data does not capture the

moment, neither the ML nor the MB can guarantee consistent

behavior. So, it is essential for the data to capture all the

events. The same goes for the bouncing ball when it exhibits

Zeno behavior. As the data can’t be recorded after the Zeno

point due to the limitation of the simulator,MLmodels cannot

model Zeno behavior.

However, the causative agents behind the Zeno behavior

can be identified, and MB can be used to model them. The

causative agents for the Zeno behavior of the bouncing ball

are the inhibiting forces due to the environment. Air drag, the

viscosity of the medium, non-elastic collisions, deformable

nature of the material of the ball contributes to the inhibiting

forces. The initial height of the ball and buoyancy of the

medium are the driving forces. These aspects of the system

can only be brought into the model using MB. Hence, it is

sometimes prudent to complement the ML with MB [58],

[111], [116]. By combining them, one can actually recover

a complete model of the CPS. We feed the knowledge we

have into the MB. The ML model discovers the knowledge

which we do not know [117]. Nonetheless, all models are

wrong, but some are useful [118], [119]. Hybrid models are

comparatively more useful and more efficient as they harness

the best of both worlds. The efficacy of hybrid models over

pure MB and ML models are pictorially shown in Figure 4

for predicting the path of an oncoming quadrotor from a

hexarotor in an autonomously operating swarm of unmanned

aerial vehicles (UAVs) used in CPS applications. Addition-

ally, hybrid models can be re-calibrated conveniently. As new

data becomes available, the re-calibration of MB can face

the difficulties associated with the solving of underlying

highly complex optimization problems [120]. Whereas, the

ML gets calibrated in an incremental manner. That eases the

re-calibration of a hybrid model.

V. HYBRID MODELING: INFUSING PHYSICS INTO

DATA-DRIVEN MODELS

Consider a CPS predictive modeling task such as the path

prediction of an oncoming quadrotor from a hexarotor in case

of an autonomously navigating swarm of UAVs (Figure 4) for

CPS applications. Given input state variablesX (Figure 4(d)),

model parameters PMB, and target variable Y (state variables

of the quadrotor at a future instant of time), the physics-based

models, fMB : [X,PMB] → Y maps input state variables and

parameter values to the target variable Y . Predictive model-

ing in a purely model-based approach is primarily focused

on ‘‘calibrating’’ model parameters PMB using observational

data. Typically, in model-based approaches, we make simpli-

fying assumptions and build simple physics-based models of

key system components. For example, we model the response

of a mechanical CPS system as a response of a linear mass-

spring-damper component, although the behavior is typically

nonlinear. Therefore, YPhy (output of the calibrated model)

typically is an incomplete representation of the target variable

due to abstraction, simplification, and missing physics in fMB,

and this causes the model output YPhy to be different than

observations Y as shown in Figure 4(a). The data-driven

machine learning approach, however, is focused on training

a model fML : X → Y over a set of training data to produce

estimates of outputs Ŷ given inputs X. The ML model also

cannot predict the path exactly (Figure 4(c)) as they have

limited capability to capture the system dynamics. Both these

approaches have their limitations.

In a hybrid modeling approach, one creates a hybrid com-

bination of MB and ML approaches that combine the power

of both (Figure 4(b) and 4(f)). One way to combine them
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FIGURE 5. Hybrid modeling domain can be categorized into three main classes (1) data preprocessing done by physics-based approaches, (2) fusion
enabled by innovative architecture of ML (neural network) model, and (3) development of suitable regularization functions.

is to use the output of fMB as an input to fML or fHybrid :

[X,PMB,PML] → Y, where fHybrid = fML◦fMB. Themachine

learning component will thus encapsulate the remaining

unmodeled complexity of the system in a lumped form. In this

approach, the ML model acts in a complementary fashion to

enable accurate model prediction. If the physics-based mod-

els are accurate, then the hybrid model will ensure YPhy = Ŷ .

However, even if the ML model leads to more accurate

modeling capability but lacks the mechanistic coherency of

the underlying system (for example, violates the physics of

the overall system), it cannot be used in the CPS modeling

domain. Therefore, we constrain the ML model to learn in

a fashion that respects the physics of the underlying process.

Additionally, one can use synthetic labeled data from physics-

based models to complement the experimental training data

and train the ML models to address the data sparsity issue.

Furthermore, a tuned fHybrid output Ŷ can be used to generate

additional data to fine-tune the parameters PMB (coarsely cal-

ibrated initially using sparse observations) of the MB physics

equation in an intelligent fashion.

There are two main novel aspects of hybrid modeling

approach: (i) the hybrid combination of MB andML comple-

ments each other to createmore precise predictivemodels that

respect the physics of the underlying system and (ii) the use

of both the physics-based models and sensor acquired data to

train theMLmodel and estimate the parameters ofMBmodel

in a symbiotic fashion. There has been several works across

a wide variety of applications which attempted at combining

the ML and MB models. The terminology for referring such

architectures is not consistent. The keywords which were

used to refer such architectures include ‘using prior infor-

mation’ [121], [122], ‘physics guided’ [123]–[127], ‘resid-

ual physics’ [128]–[131], ‘physics based’ [132], ‘physics

fusion’ [128], ‘physics infused’ [133], ‘theory guided’ [14],

[134], ‘hybrid’ [135]–[137], ‘physics informed’ [138]–[143],

[143]–[146], ‘physics constrained’ [123], [147], [148] etc.

However irrespective of the name of the hybrid model, they

share a lot of commonalities. Depending on the nature of

the interaction between the PMB and PML in a hybrid model,

the existing work in hybrid modeling domain can be broadly

categorized into three categories: (1) approaches that use

PMB as preprocessing or inputs to machine learning model

(such as deep learning) (Figure 5 1©), (2) innovative network

architectures that imbibe physics of the problem at hand

in PML (Figure 5 2©), and (3) loss functions that enforce

physics infusion in the learned DL model (Figure 5 3©). The

three major categories are motivated by the control levers

of a DNN for learning better functions to obtain accurate

mappings. The three levers are better data which can be

acquired by better preprocessing techniques, infusing good

features into the network, and better loss functions. A single

DNN can incorporate all the control levers in an integrated

fashion, as shown in Figure 5. We lump other existing work

in the hybrid modeling domain that does not fall exactly into

one of three categories defined above into a fourth category

termed ‘‘Miscellaneous’’. Additionally, we primarily focus

on the work done in hybrid modeling, where the used ML

approach is Deep Learning (NNs). However, similar ideas

could also be used in conjunction with other ML approaches

such as Support Vector Machines (SVM) [149]–[151] and

Random Forest (RF) [152], [153] etc. Additionally, as the

prior research work on hybrid modeling in the cyber-physical

space is quite limited, we open up our scope of the hybrid

models to all existing applications to make it comprehensive

and complete.

A. PHYSICS BASED PREPROCESSING (PBP)

Almost all the methods for processing data follow three steps:

data preprocessing, feature extraction, and feature process-

ing. The sole purpose of preprocessing is to ease the use of

data in the succeeding steps. Noise removal, data transforma-

tion, data reduction, instance selection, dimension reduction,

etc. constitute the preprocessing techniques [154]. Unlike the

feature extraction techniques, which could be very specific,
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FIGURE 6. Different types of hybrid physics-guided machine learning models: (a) Physics-based preprocessing; (b) Physics-based network architectures

that ingest the output of physics models with or without the raw data; (c) Physics-based network architectures for spatio-temporal data where the ŶMB
and ŶML are deeply integrated into each other; (d) Physics-based regularization.

the preprocessing techniques can be used in a wide variety of

applications [155]. Preprocessing is essential for MLmodels.

Normalization is the simplest form of preprocessing. Band-

pass filtering, downsampling [156], channel selection, time

window setting [157], data cleaning, encoding [158] are a

few more examples of simple preprocessing techniques. In

the first class of hybrid architectures, the MB is used for pre-

processing the data before feeding them into the ML model.

The MB preprocesses the input data x and converts it into x̂.

The ML learns a mapping between the preprocessed data x̂

and the actual outputs y and predicts the actual output as ŷ

with an error ǫi given by ǫi = y − ŷ. Such physics-based

preprocessing hybrid models are illustrated in Figure 6(a).

As the DNNs are capable of learning from pristine data,

they have almost eliminated the need for data preprocessing.

However, the elimination of data-preprocessing comes at the

cost of deeper and complex networks. Again, insufficient and

noisy data adds to the pain of the complexity of the ML

models. Hence, preprocessing can help to alleviate the pain.

Raw data is usually a time-series signal. Techniques like fast

Fourier transform (FFT) can be applied to convert it into the

frequency domain. Consequently, the features also get trans-

formed. Ordinarily, frequency domain representations are

used for stationary signals. Due to their high sensitivity, they

are widely used for anomaly detection tasks [159]. For non-

stationary signals, time-frequency representations are used.

The time domain and frequency domain representations are

one-dimensional representations. Wavelet transform, empir-

ical mode decomposition, short-time Fourier transform can

be used to convert the 1D representations into 2D time-

frequency domain representations [160].

The preprocessing techniques for data analysis can be

broadly split into time-domain analysis, frequency domain

analysis, and time-frequency analysis.Mean-variance, empir-

ical mode decomposition [161], and kurtosis estimation

fall under time-domain analysis. Fast Fourier transform,

bispectrum analysis are examples of frequency domain anal-

ysis. Short-time Fourier transform (STFT), wavelet trans-

form [162], [163], Hibert-Huang transform [163], sparse

decomposition [164], wavelet packet transform comes

under the umbrella of time-frequency based preprocessing

techniques [165].

Hybrid architectures which use physics-based prepro-

cessing have found applications in manufacturing indus-

try [166]–[169], healthcare industry [170]–[172], energy

industry [173], and for processing hydrological data

[174]–[176], meteorological data [177] among several others.

Compressed sensing was used for extracting low dimensional

features from raw temporal data before passing it into a

stacked denoising autoencoder DNN [178]. Other prepro-

cessing techniques like spectral kurtosis [179] and envelope

analysis [180] were used for extracting the frequency band
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FIGURE 7. Different cases of physics-based preprocessing models .

with the most useful information. The output was further

processed by using fast Fourier transform before feeding it

to a CNN [166], [167]. Ensemble empirical mode decompo-

sition (EEMD) [181] was used for decomposing the input

data into a set of intrinsic mode functions (IMF) and a

residual series [174]. Each IMF was then supplied to an ANN

for further processing. Data preprocessed with empirical

mode decomposition (EMD) were supplied to a radial basis

function network [175] and Elman NN [176], to an auto-

encoder [170], into a long short-term memory (LSTM) net-

work [173] and a deep belief network (DBN) [182]. EMDwas

also used for extracting low-level features before proceeding

to a DNN for extracting high-level features [183]. The fre-

quency spectrum of raw data was fed to a DNN based stacked

auto-encoder [184]. Time-frequency domain data and energy

spectrum features of the data were used for preprocessing

before feeding the data into deep Boltzmann machines,

stacked auto-encoders, and deep belief networks [185]. Non-

linear soft threshold and digital wavelet frames were used

to denoise the data before feeding it into a stacked auto-

encoder [186]. Wavelet analysis was used for converting

raw data into 2D time-frequency images, which were sub-

sequently fed into a deep CNN [187]. Data transformed as

wavelet packet energy image was supplied to a CNN [188].

The signal was decomposed using Morlet wavelet to get a

multiscale spectrogram image [189]. The spectrogram image

was passed into a CNN for further processing. Deep Boltz-

mann machines usually accept data preprocessed by wavelet

transform or Teager-kaiser energy operator [190], [191].

A computationally inexpensive delayed error normalized

least mean square (DENLMS) [171] filter was used for

preprocessing the data [171]. Additionally, discrete wavelet

transform was used for extracting higher-level features like

heart rate variability (HRT) before passing the data to the ML

model [171]. The short-time Fourier transform is computa-

tionally less expensive than wavelet transform and Hilbert–

Huang transform. Discrete wavelet transform was used for

removing noise before feeding the data to a recurrent neural

network (RNN) [169]. Figure 7 summarizes this class of

hybrid models. The impact of a few preprocessing techniques

like PCA, scaling, and normalization on the performance of

autoencoders were studied in [192]. Several preprocessing

techniques like envelope metrics, statistical metrics, fre-

quency, and discrete domain metrics were reviewed in detail

by [193] for feature extraction. For a comprehensive review

of preprocessing techniques [194] can be referred.

Although the preprocessing techniques encapsulate a

wide variety of goals like noise removal, data transforma-

tion, feature extraction, most of them are shallow features.

They do not add any system-specific information to the

ML model.

B. PHYSICS BASED NETWORK ARCHITECTURES (PBNA)

The PBNA tries to explore the best combination/fusion of NN

architecture and data emanating from the MB component.

A plethora of such architectures has surfaced recently. The

non-existence of the answers to the questions ‘how do the

NN actually learn the features of a system?’ and ‘what is the

best architecture for introducing MB into an ML model?’ are

providing the thrust for such architectures. The quest has ger-

minated into a new research domain called neural architecture

search [195]–[198]. Broadly, the architectures can be one or

a combination of DNNs, CNNs, RNNs, and other NNs with

physics. The innovative architectures can ingest the output of

the MB into a particular node of a specific layer of the ML

(Figure 6(b)) or the output of the MB can be embedded into

the NN (Figure 6(c)). In addition to the output of theMB, they

can also take raw input data as another input (Figure 6(b)).

71060 VOLUME 8, 2020



R. Rai, C. K. Sahu: Driven by Data or Derived Through Physics? A Review of Hybrid Physics Guided ML Techniques

Such physics-based architectures have found use in envi-

ronmental data analysis [123], dynamical systems [133], bio-

logical systems [133] and image processing [132]. The output

of the physics model was used as an additional input feature

for a multilayered perceptron for modeling the temperature

of a lake [123]. The output of the MB was fed into the

last layer of an LSTM network along with the unprocessed

inputs for modeling an inverted pendulum and growth of

cancer cells [133]. The physics-based motion model of aerial

vehicles was sandwiched between two RNN modules for

multistep prediction of the non-linear dynamics of the aerial

vehicles [137]. It enhanced the training and convergence

speeds in addition to the accuracy of predictions. A data

augmented residual model, and a recurrent data augmented

residual model [131] were formulated for creating a physical

simulator offering universal uncertainty estimates. In Toss-

ingBot [129], the output of the physics-based controller was

fed to FCN ResNet-7 [199] for robotic applications. A deep

lagrangian network (DeLAN) [200] was developed for learn-

ing the motion of mechanical systems like robot tracking

control. It incorporated Lagrangian mechanics into the hybrid

architecture. The fusion methods were categorized into series

and parallel models depending on the way the MB and ML

are connected [120], [201], [202]. A combination of series

and parallel connections was used for predicting the failure of

a turbine blade [201]. The MB was fused with an ANN and

SVR [203] for modeling rainfall-runoff. The work in [132]

attempted to recover the shape of an object by letting a CNN

based autoencoder to figure out a way for combining the

physical solution and polarized images of the object. A tensor

basis neural network [204] was proposed where rotational

invariance was fed to the last hidden layer of an MLP in the

form of a tensor for modeling Reynolds stress anisotropy.

An adaptive neuro-fuzzy inference system [205] was infused

with the predicted tool wear for prediction of remaining

useful life [136].

The architectures discussed so far directly fuses the output

of the MB into the ML model. But, such direct fusion can’t

be done in case of spatio-temporal data and accompanying

spatio-temporal physics models. Such data are encountered

in videos, fluid, and thermal applications. In such cases, the

output of the MB is deeply integrated into the ML model by

embedding the output of the MB model at all steps of time

and space (Figure 6(c)). Such deep embedded hybrid models

have been used in fluid flows [139], [140]. The outputs of

MB was fed into a NN as a set of collocation points. The

number of collocation points can be increased to increase the

influence of physics in the hybrid architecture. They devel-

oped the architecture for both continuous and discrete-time

models. This architecture was used for both solving [139] and

discovering [140] nonlinear PDEs. Invariance or symmetry

attributes were embedded into a NN [206] by determining the

invariant basis and training the NN on them. It was used for

turbulence modeling and solid mechanics.

In addition to these, various works tried to encrypt the

MB as a NN and fuse it with an ML model. An MB

transformed as a NN coalesces better with a NN. A cellular

NN [207] was used to solve the PDE in Hybrid-Net [135]

before attaching it to a ConvLSTM network for fluid and

thermal applications. A symbolic multilayered NN inspired

from equation learner [208], [209] was used for blending

prior knowledge in [210] for learning accurate PDEs from

data. In [211], the LEarned Alternating Direction Method of

Multipliers (Le-ADMM) [212] method is unrolled into a NN

for solving inverse problems. It was appended to another

pure NN or U-Net [213] for reconstructing mask-based

lenseless images into traditional images from lensed cam-

eras. Such a physics-based unrolled network has also been

used for image reconstruction [214] and optimizing coded-

illumination [215] in case of a LED array microscope.

As figuring out the best architecture for a particular prob-

lem is still an unsolved problem, a physics-based neural archi-

tecture search [128] model has been developed for predicting

the trajectory of a projectile and for estimating the velocities

of rigid objects after a collision.

C. PHYSICS BASED REGULARIZATION

In this class of hybridmodels, the physics-based equations are

used as an additional regularization term in the loss function

of the NN. The NN is constrained to acquiesce to the laws

of physics. The principle behind this class of hybrid architec-

tures is penalizing/minimizing the violation of physics-based

constraints or governing equations. The physics equations

y = f (x) are restated as y − f (x) = 0 for using them as

a constrained loss. Minimizing the loss y − f (x) becomes

an additional goal in the loss function (Figure 6(d)). The

physics-based pre-processing and fusion architectures need

the MB to be evaluated or require the PDEs to be solved. But,

regularization based approaches directly engulf the equation

as a constraint, thereby altering the computational cost.

Such hybrid models have been used for analysis of envi-

ronmental data [123], machine vision applications [148] and

fluid dynamics [216]. Temperature-density and density-depth

relations were used as constraints for modeling the tempera-

ture of a lake at different depths [123]. A weighted constraint

function was used to penalize data that are inconsistent with

prior knowledge in case of the video of a projectile [148].

The loss function of the pix2pix architecture in a condi-

tional GAN [217], [218] was penalized by using a constraint

enforcing module for spatial sensitivity analysis for predict-

ing urban land use [219]. The loss of a fully connected NN

was made to include boundary conditions and residuals of the

governing equations for surrogate modeling in hemodynam-

ics [220]. Reinforcement learning was also used for learn-

ing non-parametric models under constrained state spaces

in continuous environments [221]. It was used for dynamic

applications like quadcopter navigation and cart-pole prob-

lem. Physics has also been used as a prior in reinforcement

learning [222]. As low fidelity MB’s capture the general

trend and the high fidelity MBs additionally capture intricate

local details, a multi-fidelity physics constrained NN was

proposed for incorporating linear and nonlinear PDEs [223].
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Approximation andmonotonicity constraints were also incor-

porated into the loss function of a NN [224] for predicting

oxygen solubility in water.

Various regularization based hybrid approaches were used

in case of availability of no or less labeled data. A constrained

convolutional autoencoder was used for surrogate modeling

and uncertainty quantification in steady-state flow applica-

tions [147]. An architecture with both fusion and constrained

regularization was used in [225] for multiphase flows. It also

included an additional loss term for the difference between

the output of MB and the actual output. It performed well

under data scarcity. A NN was trained with a video dataset

without any labels in a supervised manner purely by using a

physics-based constraint [148].

D. MISCELLANEOUS ARCHITECTURES

Accurate inference of the physical dynamics of a system by

using conventional principles may need mountainous efforts

even with plenty of data. The ML models only learn a

mapping between the values of the input and output vari-

ables. So, neither the NN based ML models nor the hybrid

architectures discussed so far can learn new interpretable

physics. It is because of two factors. First, the data by itself

is meaningless if not underpinned by physical dynamics.

E.g. compare the ball bouncing on earth (gearth = 9.8 ms−2)

with the same ball bouncing in a viscous medium on moon

(gmoon = 1.625 ms−2). The energy lost while bouncing on

earth is purely due to the gravity of earth. On the moon, it

will split into the energy lost due to the moon’s gravity and

the viscosity of the medium. Consider that the viscosity of

the medium is controlled on the moon for imitating the ball’s

bouncing behavior on earth. Now, if the data is fed to ML

models to model the dynamics, the ML models can learn the

same mapping in both cases. It is because the ML models

disregard the underlying physics. In the moon’s case, the ML

model can ignore the effect of viscosity, which accounted for

the difference between the accelerations due to the gravity of

the moon and the earth. So, the data doesn’t knowwhat it rep-

resents. Secondly, the activation functions used by NNs have

abysmal physical significance. Hence, the unknown physics

which they are capable of discovering is perceived with huge

skepticism. So, several data-driven physically meaningfulML

methods were developed for discovering physics from data.

They use physically significant mathematical operations or

interpretable activation functions or use classical NNs to

unravel the physics-based equations underlying the system

dynamics. In such cases, data can be used to extract physics,

and the same physics can be used for complementing the ML

models.

Sparse Identification of Nonlinear Dynamics

(SINDy) [235] used a thresholded least square-based

approach to establish a relationship between the target

function and a library of candidate functions consist-

ing of algebraic and transcendental functions. Dynamic

Mode Decomposition (DMD) [236], [237] built on proper

orthogonal decomposition (POD) can be used to extract

spatio-temporal correlations. The DMD tries to infer a linear

operator at least for small time periods that approximates

the spatial data, which can have millions of degrees of

freedom. Koopman operator [238], an infinite-dimensional

linear operator, was used for extending DMD for nonlinear

dynamics [237], [239]. The inefficiency of linear opera-

tors for modeling the non-linear dynamics led to extended

dynamic mode decomposition (eDMD) [240], [241]. SINDy,

DMD, and Koopman theory has also been extended

for control applications in [242]–[244]. The conservation

laws of a dynamic system were discovered by symbolic

regression [245].

In addition to the above, the equation learner [208], [209]

used interpretable activation functions (sine, cosine, iden-

tity) in a DNN for learning the governing equations of the

system dynamics. PDE-Nets [210], [246] exploited the cor-

relation between convolutional filters and differential oper-

ators for learning the PDEs governing thermal dynamics.

An n-gram model and a recursive neural network were used

in an attribute grammar framework for discovering efficient

mathematical identities [247]. Two DNNs were used for dis-

covering non-linear dynamics in terms of non-linear PDEs for

spatio-temporal data [248]. These techniques have been used

to model dynamic and fluid systems. Variational Autoen-

coders are known to encode features like physical properties.

The discriminator of a GAN can learn a feature level sim-

ilarity metric. So, in 3D-PhysNet [249], a deep variational

encoder with a discriminator was trained using the data from

a finite element simulator for discovering the behavior of

deformable objects under external forces.

In other systems where the dynamics of some compo-

nents are unknown, a NN can be used to learn the dynamics

of those components. The NN can be used as a module

along with the modules corresponding to other components.

In Neural Lander [250], the dynamics of a UAV was learned

using NN, and the MB was used for its control. A physics

infused DNN was used for learning each feature and then

concatenated them for predicting the properties of organic

compounds [251].

VI. METRICS FOR HYBRID MODELS

Error metrics are essential components for evaluating the

efficacy of any numerical modeling scheme. The intention of

this section is to provide a summary of a variety of perfor-

mance metrics that are suitable for the CPS hybrid modeling

domain. The outlined summary will help improve general

understanding of metrics for hybrid modeling and facilitate

their selection in different applications, including the CPS

domain.

A. UNIVERSAL ERROR MEASURES

The current section discusses the errors that are fundamental

to the holistic evaluation of a model. Consider a collection of

data S = (X ,Y ) where each sample is represented by (xi, yi)

where xi represents the input variables and yi represents the

output variables. X and Y represent the set of input and output
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TABLE 1. A set of error measures.

variables respectively. Both xi and yi can be multivariate.

The model learns a mapping fHybrid : xi 7→ yi defined as

fHybrid (xi) = ŷi such that Ŷ ≈ Y with minimum total error E .

The total error E (=
∑i=n

i=1 ǫi) is the sum of the individual

errors ǫi, given by ǫi = yi−fHybrid (xi). There are several ways

to define the total error. A detailed list summarizing several

measures of error are outlined in Table 1. The mean square

error (MSE) and the mean absolute error (MAE) are the most

prominent and commonly used measures of error among all

of them. The MSE and MAE are defined below:

1) MEAN SQUARE ERROR

The mean square error has taken the canonical form among

all the loss functions. Mean square error is the mean of the

sum of squares of the difference between the actual and the

predicted values. It is defined as

MSE =
1

n

i=n
∑

i=1

[yi − fHybrid (xi)]
2 (4)

It is closely related to the quadratic loss function. It is

an even, continuous, and differentiable function. The MSE

differentiates the error due to bias and variance in a smooth

manner. It is the sum of the variance and the square of

the error due to bias. Addressing the error due to bias and

variance has been a prime cause in statistical data analysis.

The cross-validation technique widely used in machine learn-

ing is based on minimizing the overall error by reducing

individual errors due to bias and variance. This is why the

MSE has taken the canonical form.

It heavily penalizes the outliers. That is good in the case

where failure can be fatal or expensive, e.g., manufacturing,

autonomous driving, security, etc. However, if only MSE is

used as a metric to accept or reject a dataset, a single distant

outlier can outright reject an almost perfect dataset.

2) MEAN ABSOLUTE ERROR

The mean absolute error is the main contender against the

mean square error for taking the canonical form. It is themean

of the sum of the absolute values of the difference between the

actual and predicted values. It is defined as

MAE =
1

n

i=n
∑

i=1

|yi − fHybrid (xi)| (5)

It penalizes all the errors evenly. The MAE doesn’t

split into errors due to bias and variance directly. It is

not differentiable everywhere in its domain. That limits its

applicability.

Due to the evident advantages ofMSE overMAE and other

error measures, MSE has been used to illustrate the ideas in

the subsequent sections.
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FIGURE 8. The relation between different metrics and the system’s space: (a) the subspace from where the data is sampled from the
complete space generated by the CPS; (b) Near and far extrapolation from the manifold generated by the hybrid model; (c) Optimal size of
data required for modeling the CPS; (d) noisy data.

B. UNIVERSAL METRICS OF A MODEL

Is training a hybrid model on the complete dataset really

necessary when the speed of generating data has already

surpassed the capacity of storing data [252]? If not, how

much data themodel actually needs for optimal performance?

As noise is inseparable from the data, how to evaluate the

robustness of the model to noise? Accuracy is an indispens-

able metric for every model. CPS is no exception. But for

a CPS, the latency between the stimuli and response is also

of significant importance. So, how to gauge the latency?

The answers to all these questions lie in a systematic set of

evaluation metrics.

If we disregard the system-specific evaluation metrics, up

until now, all the models were only evaluated for accuracy

within the range of the training dataset. Holistic evaluation

has never been a priority. Even the cross-validation technique

used for model selection in the case of NNs evaluates the

model within the range of the training data. As the model can

never be trained on the complete space generated by the CPS,

can the same model perform well beyond the range of the

training data? We propose five metrics for the evaluation of a

hybrid model used for modeling CPS. They are as follows:

1) INTERPOLABILITY

The model learns a continuous function fHybrid from the

sparse dataset S. So, the complete manifold M derived

from the sparsely populated dataset S may not exactly rep-

resent the subspace S of the space S that is actually carved

out by the system (Figure 8(a) and 8(b)). Mathematically,

S 7→ M ≈ S ⊂ S. Hence, the interpolability metric is

used to evaluate how accurately the manifold M represents

the system’s subspace S . It is defined as the mean of the sum

of the squares of the difference between the predicted outputs

and the actual outputs within the range of the training data

(Figure 8(b)). Mathematically, the interpolability metric can

be defined as

MSEInt =
1

n

i=n
∑

i=1

[yi − fHybrid (xi)]
2, xi ∈ Range(S) (6)

A lower error translates into better accuracy of the model

against unseen data within the range of the training set. Most

deep learning techniques conclude their evaluation with the

interpolability metric. That’s why the earlier deep learning

architectures failed drastically against unseen datasets until

the development of ImageNet database [112], [113], which

included data from diverse categories. Still, they are vul-

nerable to failure against unseen data. Their success can be

attributed to the diverse data they have been trained upon,

which ultimately reduced the amount of data they can ever

be exposed beyond the space of the training data.

2) EXTRAPOLABILITY

The data is always sparse and is likely to extend its horizon

as more and more data is collected. As all the data can never

be collected, it is wise to evaluate every model if it performs

well beyond the range of the training data S. It is defined as

71064 VOLUME 8, 2020



R. Rai, C. K. Sahu: Driven by Data or Derived Through Physics? A Review of Hybrid Physics Guided ML Techniques

the mean of the sum of the squares of the difference between

the predicted and the actual outputs beyond the range of the

training data (Figure 8(b)). Mathematically, the extrapolabil-

ity can be defined as

MSEExt =
1

n

i=n
∑

i=1

[yi − fHybrid (xi)]
2, xi /∈ Range(S) (7)

The interpolability metric and the extrapolability metric

are mutually exclusive. A model with good interpolability

and extrapolability can be said to be complete as it can

performwell within and beyond the boundaries of the dataset.

The interpolability and the extrapolability metrics together

constitute the generalizability metric. However, the extrap-

olability of a model of a CPS is quite difficult to evaluate

as it will be difficult to identify the exceptional behavior

of the system, simulate it, and collect the extraneous data.

A simple example could be expecting a model that has been

trained for classifying the predecessors of human beings

(e.g., monkeys, apes, and gorillas) to perform well on classi-

fying human beings. The hybridmodels have portrayed excel-

lent extrapolability [133], [200], [215], [224], [225], [253].

3) OPTIMAL SIZE OF DATA

Every dataset has different local and global behaviors. When

data is sparse, it captures the global behavior. When data is

abundant, the local behavior is also captured along with the

global behavior. The local variation can be due to noise in

the system. So, continuing collecting data to capture the local

behavior when you are actually capturing noise is unwise.

But, as no clear demarcation exists between local and global

behavior, it is difficult to know when to stop harnessing

data.

More data doesn’t guarantee better information about the

system. More data doesn’t even improve the model when

the accuracy of the model has already stagnated. The per-

formance of a model is sensitive to the size of data until it

saturates. It saturates when the complete global behavior is

captured. As harnessing data can be expensive, continuing

amassing data even after the stagnation of the accuracy of the

model is imprudent. So, the accuracy of the model MSEInt
shall be evaluated on a running basis, and the data harnessing

from the same subspace shall be stopped once the accuracy

plateaus. Once theMSEInt converges, new data shall be sam-

pled beyond the convex hull of the training data. It can be

mathematically described as

MSEBoost =
1

w

[ i=p+2w−1
∑

i=p+w

[yi − fHybrid (xi)]
2

−

i=p+w−1
∑

i=p

[yi − fHybrid (xi)]
2

]

≤ ε (8)

where w is the window size, p is a random point, and ε

is the convergence parameter. If the boost (improvement)

in MSE is insignificant (MSEBoost ≤ ε), then sampling

data from the current subspace shall be stopped and moved

to a new subspace beyond the convex hull of the cur-

rent subspace (Figure 8(b)). The running average is equiv-

alent to 1-dimensional convolution with average pooling.

Hence, the MSEBoost is equivalent to the difference in the

pooled averages of 1-dimensional convolutions. The size of

the data at the stopping point is the optimal size of data

required for modeling the system in the current subspace

(Figure 8(c)).

4) ROBUSTNESS TO NOISY DATA

As hybrid models equip ML models, they are not insensitive

to noise in the data. So, the model must be evaluated against

noisy inputs. Noisy inputs tend to affect the local behavior of

the model. The chaos of the environment could be a factor

behind noisy data. Artificial noise (Figure 8(d)) shall be

introduced into the system during simulations to create noisy

data. And the performance of the model must be evaluated

against those noisy data. For an artificial noise N defined as

N ∼ (µ, σ 2) where µ and σ 2 are the mean and variance of

the noise respectively, the MSE is defined as:

MSEN =
1

n

i=n
∑

i=1

[yi − fHybrid (xi + N )]2 (9)

The noise may or may not have a zero mean.

The deployed CPS is likely to encounter noisy data. So, the

CPS models must be robust against the impact of noisy data.

Robust models are those that are resistant to noise. Hybrid

models have been proven to be more robust to noise than pure

MB and ML methods [133].

5) MODEL COMPLEXITY

The performance metrics discussed so far are measures of

the performance of the model. They are sufficient for model-

ing offline systems. But, for online, deployable systems like

CPS, additional performance metrics must also be included.

An accurate CPS with a delayed response is not desirable.

So, additional metrics for gauging the delay, which is mostly

due to the complexity of the model, must also be included.

Model complexity translates into the time of processing and

memory requirements. A complex computational model will

require higher memory and time for processing. The compu-

tation time can be estimated based on the number of floating-

point operations (FLOPs). As CPSs are live systems, complex

computational models can delay the response time of the

CPS, thereby compromising the dynamic interaction of the

CPS with the environment. Memory is required for storing

the parameters of the model, e.g., weight matrices, bias matri-

ces, and physics parameters. Bigger, deeper networks and

complex physics models tend to need more parameters and

thus necessitate more memory. Equipping miniature mobile

CPS with huge memory may not be feasible. So, If memory

requirement is high, deploying them online can be diffi-

cult. FLOPs and memory can serve as good implementation

metrics.
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VII. DIRECTIONS FOR FUTURE WORK IN HYBRID

MODELING DOMAIN

In CPS, multiple simple components combine for a common

bigger cause. Their combination compounds their interaction

and impact. Consequently, their individual limitations dimin-

ish, and new challenges arise. The new challenges could be

due to their interaction or because of any individual compo-

nent which subverts others. Similarly, in a hybrid model, the

ML subverts several shortcomings of the MB, as discussed

in section IV. Due to this, there has been a lot of inter-

est in the hybrid modeling domain. Despite the significant

recent progress in the hybrid modeling domain, there are

various challenges that throttle down the full-fledged growth

of hybrid modeling. They must be addressed in order to

exploit the full capacity of hybrid models. In the following

subsections, we discuss a few relevant directions for future

work in the hybrid modeling domain.

A. HYBRID MODELS: MODEL SELECTION

Model selection is crucial in the hybrid modeling domain.

Model selection in physics-based and machine learning

domains are quite intuitive. But, not so in the case of hybrid

models. Appropriate MBs are selected based on the system,

its dynamics, and associated parameters. The data gener-

ated by a system can be broadly classified into spatial data,

sequential data, or a combination of them. Several MBs

model them individually or collectively. Among the deep

learning techniques for data processing, CNN and LSTM

architectures are prominent. The CNNs are effective at pro-

cessing spatial data, and LSTMs are efficient at processing

sequential data. Their combination is used for processing a

combination of spatial and sequential data. Autoencoders [6]

are used to extract the abstract features of a dataset in an

unsupervised manner. So, there is a clear intuition for model

selection in both the physics and the deep learning space.

However, there is no clear guideline for model selection in

the hybrid modeling space. A well-defined set of guidelines

for selecting hybrid models will improve the performance

of hybrid models in all aspects and broaden their scope of

applications.

B. BENCHMARK PROBLEMS IN HYBRID DOMAIN

A set of benchmark problems eases the evaluation and

comparison of different algorithms. Benchmark problems

are essential for the growth of every domain. Currently,

the ImageNet database [112], [113] and the inverted

pendulum [254], [255] serve as the benchmark problems for

object detection and reinforcement learning tasks respec-

tively. But, no benchmark CPS problems or dataset exists for

evaluating and comparing the hybrid models. In addition to

that, the benchmark problems are specific to each application

and evolve with the success of the state of the art algorithms.

The benchmark problems in object detection and recognition

evolved from CalTech 101 [114] to CIFAR-10 [115] to Ima-

geNet [112], [113]. In general, the growth of the state of the

art techniques can be directly inferred from the complexity

of the benchmark problems. So, the benchmark problems for

hybrid modeling in CPS shall also evolve with the expertise.

Also, as CPS also has diverse applications, it may require the

formulation of unique benchmark problems for each domain.

C. REGRESSION PROBLEMS WITH LOW AMOUNT

OF DATA

Supervised learning algorithms try to ‘‘learn’’ accurate mod-

els that can predict the value of the dependent attribute

(output) from the attribute variables (inputs). Regression is

one of the two main groups of supervised learning problems

(classification being the other) in which the output variable is

a real or continuous value. Regression problems manifest in a

multitude of CPS domain problems. Modifying, training, and

tuning hybrid models for a regression problem is non-trivial

in comparison to classification problems.

Additionally, in between the spectrum from full physics

to no physics and from zero data to big data, there lies an

area in the hybrid modeling domain that has limited data

and limited physics. A large class of CPS modeling tasks

belongs to the limited data and limited physics realm. Train-

ing accurate hybrid models for regression problems with a

low amount of data is a fertile field for future research. The

prior works [133], [200], [215], [224], [225] has shown that

hybrid models considerably outperformed both MB and ML

in terms of interpolability and extrapolability in a variety

of applications with limited data. However, the application

problems in these existingwork are limited to simple systems.

They have not been exclusively tested in CPS applications.

Hence, an exclusive and comprehensive evaluation of hybrid

models against CPS with limited data is required.

D. LEARNING WITH LESS LABELS

With enough data, one can build accurate hybrid or data-

driven models. Accurate hybrid models currently require lots

of labeled data. The commercial world (image, video, and text

analytics) have curated large sets of labeled data for training

models through cheap but effective crowdsourcing methods.

Unfortunately, crowdsourcing techniques are not amenable

for creating datasets for the CPS domain. Alternate means

of data labeling can result in a 100x higher cost and longer

time to label. Developing novel hybrid models that learn with

fewer labels opens up a new avenue of research and practical

applications. Specifically, semi-supervised hybrid learning

approaches that use less amount of labeled data along with

a huge amount of unlabeled data is an interesting avenue of

research in the CPS hybrid modeling domain.

Moreover, as CPS finds applications in diverse domains,

labeling may require domain-specific expertise. So, utilizing

techniques like active learning [256] and semi-supervised

learning [257] for hybrid modeling in general, and CPS in

particular, is a fruitful avenue of research. Hybrid learning

techniques are yet to use concepts from active and semi-

supervised learning. Additionally, a set of metrics for unsu-

pervised learning [258] in CPS should also be developed.
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The success of unsupervised learning in CPS hybrid model-

ing can truly make the CPS ubiquitous.

E. INTELLIGENT COLLECTION OF DATASETS FOR HYBRID

MODELS

Data collection is an expensive process. Moreover, data is

always sparse and can never completely represent the state

space. So, data shall be collected in an intelligent manner to

capture the global behavior of the system. As the model is

trained on the set of acquired data, the model tends to improve

its interpolability (MSEInt ). However, the performance of the

model against new data, i.e., extrapolability (MSEExt ) is not

guaranteed. The extrapolability of the model will be at par

with the interpolability if the new test data is in the vicinity

of the space of the training data and vice versa (Figure 8(b)).

Hybrid models are capable of learning the complete model

of the system. Hence, to develop a complete model of the

system, new data shall be collected from the regions of the

system’s space that are far from the training set, in which the

model is likely to fail. The MSEExt will be high. The system

shall be simulated to capture exceptional cases like system

failure and abrupt behavior. Such data acquisition will be

instrumental for systems where the consequences of failure

can be catastrophic. The model shall be trained on such data

for reducing its bias and until its accuracy saturates. Then,

again a new region shall be sought. And the process shall

be repeated. To conclude, the acquisition of new data and

training of the model shall be conducted in a non-cooperative

game-theoretic approach for influencing the mean square

error. Additional techniques for data collection, as described

in [259] can also be used. The accuracy of the model can be

expected to improve in steps where each step corresponds to

a new region of data that is not in the proximity of the trained

data.

F. GEOMETRIC MACHINE LEARNING IN CYBER-PHYSICAL

SYSTEMS

CPS has opened up the gates for the flood of big data in

every imaginable domain. Big data is accompanied by high

dimensional input data [111]. When the dimensionality of the

data is very high, the useful data is actually embedded in a

low dimensional manifold. Learning such manifolds comes

under the purview of geometric deep learning. Recent work

in the CPS [260], [261] has forayed into geometric deep

learning, where the data is non-Euclidean. In a non-Euclidean

setting, the properties of Euclidean geometry like translation

invariance and stability against local deformations [262] are

no more valid globally. They are only valid locally. So, the

CNNs, which leverage these two properties for processing

spatial data, cannot be used anymore. That invites novel con-

cepts from geometric deep learning into the cyber-physical

space. Among the geometric deep learning techniques, struc-

tured graph CNNs [261] and spectral clustering [263] tech-

niques have already been utilized for CPS. Other techniques

like spectral CNNs [264], [265], graph CNNs [266], [267],

geodesic CNNs [268], manifold learning should be explored

for CPS applications. Geometric deep learning techniques

can be instrumental for processing big data [269] in a cyber-

physical setup.

G. IMBALANCED DATA AND DATA AT TAIL

The data, in general, is likely to be imbalanced, i.e., not all

the classes will have even representation. Its impact becomes

critical in security applications, disease classifications, fraud

and fault detection, etc. In most cases, misclassifying the

minority class (e.g., disease or a perpetrator), which does

not have enough data for allowing the algorithm to learn,

is probable. The impact of misclassification in case of dis-

ease prediction or security applications can be fatal or catas-

trophic. The techniques for controlling the adverse impact

of class balance manipulates the data or the learning algo-

rithm or both [270]. However, their performance at mitigating

the impact of class imbalance is not as expected and hence

debatable [270]–[272]. Additionally, data at the tail-end, for

example, anomalies in CPS system behaviors are hard to

curate. An anomalous data sample can be considered to be

generated by distribution (tail-end) that is significantly differ-

ent from the normal behavior distribution. In general, anoma-

lies are too expensive, time-consuming, and sometimes even

dangerous to record. Therefore anomalies are not observed

abundantly on real CPS systems. We still have a long way to

go for correctly addressing imbalanced data and data at the

tail in the context of CPS hybrid modeling.

VIII. CONCLUSION

This is a diligent attempt at disseminating the collective

intelligence of hybrid models in an organized manner. We

have classified the hybrid models into physics-based prepro-

cessing, physics-based network architectures, physics-based

regularization, and miscellaneous categories based on the

way the MB is brought into the hybrid architecture. The

manner in which their synergy can help eliminate the chal-

lenges posed by big data, probabilistic nature of CPS, envi-

ronmental chaos, and limits of determinism to the existing

modeling techniques of CPS is also elucidated. In addition

to this, we have illustrated how the MB can eradicate the

limitations of ML models arising due to the time resolution

of the data acquisition system. Overall, the combination is a

win-win situation. Moreover, we proposed five metrics for

all-round performance evaluation of a hybrid CPS model.

The discussed metrics go beyond the conventional metrics of

accuracy within the training dataset. Finally, the challenges

faced by hybridmodels that deter the growth of hybridmodels

in the CPS domain are briefed. We hope the current work

to become a stepping stone at the organized dispersal and

growth of CPS hybrid models.
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