
I. Introduction

The response of particles in suspension to externally applied 

driving forces is a subject of considerable practical interest 

[1–3]. For example, many industrial processes involve the

transport of micron or sub-micron sized particles along tubes 

or channels, as is the case in microfluidics, or require the 

particles to be dispersed by stirring or shearing. In addition, 

colloidal suspensions are very appealing for fundamental 

research, because they present relatively simple model system 

with length- and time-scales which enable basic aspects of 

nonequilibrium statistical mechanics to be studied in detail.

The classical dynamical density functional theory (DDFT) 

is a simple and popular method for predicting the time evol-

ution of the one-body density of Brownian many-body sys-

tems in the presence of time-dependent external force fields 

[4]. In the simplest case this time-dependence can correspond 

to an instantaneous switching of the external potential from 

one form to another (e.g. switching off a confining harmonic 

potential), leading to a relaxational dynamics. However, in 

general, when including external forces, the dynamics might 

crucially depend on particle interactions, and e.g. change pair 

correlations in nontrivial ways, and it is in such situations that 

the inaccuracy of DDFT becomes apparent.

The failure of DDFT to describe certain aspects of driven 

systems arises from the absence of non-affine motion, which 

prevents the particles from following the externally prescribed 

flow field. The neglect of non-affine motion arises from the 

assumption that the two-body density relaxes instantaneously 

to that of the equilibrium system corresponding to the nonequi-

librium density: the adiabatic approximation. This situation has 

been addressed in several previous studies [5, 6, 8], all of which 

employ phenomenological corrections to DDFT in an effort to 

restore some aspects of the non-affine motion. In [5] and [6] 

an additional mean-field contribution to the particle current 

takes the form of a convolution between the density and a ‘flow

kernel’, which captures how the particles roll past one another

in the presence of a flow field. In [7] the general mathemat-

ical structure of the phenomenological theory was justified by 

showing how consideration of the flow-distorted pair correla-

tions can generate non-affine current contributions when substi-

tuted into the formally exact equation of motion for the density.
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In this paper we develop a systematic scheme for describing 

external drive in DDFT by incorporating into the theory the 

influence on the one-body density of the distorted pair cor-

relations to second order in the flow-rate. This progress builds 

upon the work of Brady and Vicic [9], who solved analyti-

cally the low-density pair Smoluchowski equation in a series 

expansion up to second order in the flow-rate. This result, 

which is valid for an arbitrary incompressible flow, contains 

the key physical feature missing from the standard formula-

tion of DDFT, namely the influence of normal stresses on the 

one-body density. In all theoretical work so far performed 

only purely repulsive interparticle interactions have been 

considered. The results we present here are valid for arbitrary 

interactions, both attractive and repulsive. As an application of 

our theory we consider the shear-induced migration of repul-

sive colloidal particles subject to Poiseuille flow. As a conse-

quence of the spatially varying shear rate the particles tend to 

drift towards regions where the spatial gradient of the shear 

rate is small.

The paper will be organized as follows: in section II.A we 

recall the standard DDFT, in section II.B we discuss the pair 

Smoluchowski equation for the two-body correlations and in 

section  II.C give the analytic solution up to quadratic order 

in the flow-rate. In section  II.D we specialize the results of 

the preceeding section to hard-spheres in three dimensions. In 

section II.E we exploit the solution of the pair Smoluchowski 

equation to systematically extend the DDFT equations to treat 

driven systems. In section  III we apply the theory to treat 

Poiseuille flow and, finally, in section  IV we provide com-

ments and an outlook for future work.

II. Theory

II.A. Dynamical density functional theory

We consider a system of N Brownian particles in an external 

potential field, ( )V rext , interacting via the pair potential, u(r). In 

addition to the external potential field the particles also experi-

ence a velocity field ( )v r  which represents the external driving 

(e.g. shear). The time evolution of the N-particle configura-

tional probability distribution is given by the Smoluchowski 

equation [1]. Integration of the Smoluchowski equation over 

N  −  1 particle coordinates yields an exact equation of motion 

for the one-body density
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where D0 is the bare diffusion coefficient and ( )β = −k TB
1. The 

conditional two-body density, ( )( )ρ |tr r,
0
2

2 1 , is the density at r2, 
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Due to the presence of the conditional pair density equation (1) 

is not closed, but rather the first in a hierarchy.

In equilibrium the following sum-rule holds
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where [ ]ρFex  is the excess Helmholtz free energy functional 

[11, 12], which encodes the interaction potential. Making the 

(adiabatic) approximation that (2) holds also in nonequilib-

rium generates the standard DDFT
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where the total Helmholtz free energy [ ( )]F ρ tr,  is related to 

the excess part according to

V tr r rd , ,id ex ext[ ] [ ] [ ] ( ) ( )F F F ∫ρ ρ ρ ρ= + + (4)

where the ideal contribution is given exactly by (the thermal 

wavelength Λ is added for dimensional reasons)

[ ] ( )( ( ( ) ) )∫ρ ρ ρ= Λ −F k T t tr r rd , ln , 1 .id B
3 (5)

For situations where an external potential ‘blocks’ the affine 

flow (i.e. the particles cannot follow the flow into certain 

regions), then equation  (3) can provide qualitatively correct 

results [13–16]. However, even in this case the errors can be 

quite large for interacting systems [16].

II.B. Pair Smoluchowski equation

We start from the exact solution of the underlying problem 

in the limit of small density and negligible external potential. 

Integration of the N-particle Smoluchowski equation  over 

N  −  2 particles generates an exact equation for the nonequi-

librium two-body density. In general this coarse-grained equa-

tion contains an integral term involving the three-body density 

[3]. However, in the low density limit this integral term can 

be neglected, leading to the following pair Smoluchowski 

equation
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where the dependence of the pair density on two spatial argu-

ments reflects the fact that an external field breaks translational 

invariance. When supplemented with appropriate boundary 

conditions, equations (1) and (6) form a closed set of equa-

tions for determining the dynamics of the one- and two-body 

density for low-density systems.

For a translationally invariant system the pair density 

becomes a function of the relative particle position, = −r r r1 2, 

and the pair correlations may be described by the radial dis-

tribution function, ( ) ( )( )ρ ρ≡g t tr r, , / b
2 2, where ρb is the bulk 
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density. Note that the radial distribution function can still be 

anisotropic due to the external flow field. In this translation-

ally invariant situation the low density behaviour of ( )g tr,  is 

determined by the simpler pair Smoluchowski equation
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where = −r r r1 2 and the ∇ is taken with respect to r. 

The velocity vector v refers here to the relative velocity 

of the two particles resulting from affine motion, 

( ) ( ) ( )= −t t tv r v r v r, , ,1 2 . Equation  (7) is valid for low ρb, 

but for all velocities and flow types (both compressible and 

incompressible). In the present work we will focus on low 

velocities (on the Brownian time scale) and incompressible 

flow, for which ( )∇ ⋅ =v r 0.

II.C. Exact solutions of the pair Smoluchowski equation for 

low flow-rates

In sections  II.C and II.E we will follow closely [9]. For a 

translationally invariant bulk system the steady-state distorted 

radial distribution function is given by the well-known result 

(see e.g. [9])
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to leading order in the flow rate. In this expression 

(( ) ( ) )= ∇ + ∇E v v /2T  is the symmetrized velocity gradient 

tensor, ( ) ( ( ))β= −g r u rexpeq  is the low density equilibrium 

radial distribution function, r̂ is a unit vector and R is the 

particle radius. The dimensionless quantity h1(r) is a func-

tion which depends only on the radial coordinate, such that 

all anisotropy is captured by the quadratic form ˆ ˆ⋅ ⋅r E r. The 

second term in (8) gives the leading order flow-induced dist-

ortion of the radial distribution function and is valid for all 

incompressible flows (for generalization to compressible 

flow see [18]). In appendix A we show that substitution of 

(8) into (7) leads to the requirement that h1(r) satisfies the 

following differential equation, where we use ˜ =r r R/  for 

brevity
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where the pair potential enters equation  (8) implicitly via 

( )g req . The boundary conditions for this equation are: (i) that 

h1(r) vanishes as →∞r  and (ii) that the radial flux vanishes 

at short separations, to prevent the particles interpenetrating. 

For hard-core particles the second condition translates to 

( ) = −′h R2 1, where here and in the following ′h  denotes the 

derivative with respect to r̃.

We note that an alternative method of solving the pair 

Smoluchowski equation  was considered in [10], where the 

authors employed multipole methods to expand the solution 

in spherical harmonics. Solutions were obtained numerically 

by truncating the harmonic series once a suitable convergence 

criterion had been satisfied.

For hard spheres there is a simple analytical solution of 

(9). At low density the equilibrium radial distribution function 

becomes a step function, ( ) ( )= Θ −| |g r R y2eq , where ( )Θ ⋅  is 

the step function (zero for negative arguments, unity for posi-

tive arguments). We thus obtain
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Knowledge of ( )h r1
hs  for r  <  2R is not required, because the 

prefactor ( )g req  appearing for ⩾r R2  in (8) is zero within this 

range. For other interaction potentials (9) must be solved 

numerically, although we are only aware of one study in 

which numerical solutions were investigated (for charged 

hard-spheres, see p 489 of [17]).

Equation (1) has been extended to second order in the 

flow-rate by Brady and Vicic [9]. Beyond second order 

the boundary layer which develops close to contact leads 

to fractional powers in the flow-rate expansion and calcul-

ations become considerably more complicated. Fortunately, 

all of the physics we are presently interested in occurs 

already at second order in flow-rate. The second order result 

is given by
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where the vorticity tensor is given by ( ( ) ( ) )Ω = ∇ − ∇v v /2T  

and the double dot notation in the final term implies a full con-

traction over tensor indices. The second order contribution is 

constructed by considering all quadratic combinations of the 

fundamental flow tensors, E and Ω, which describe the pure 

straining motion and the pure rotation, respectively. The fact 

that Ω Ω = E E: :  makes inclusion of an extra term propor-

tional to Ω Ω:  unnecessary and (ˆ ˆ)⋅ Ω ⋅r r 2 is absent, because 
ˆ ˆ⋅ Ω ⋅ =r r 0.

As previously, the function h1(r) is given by solution of 

(9). The four new, dimensionless radial functions, hi(r), 

= …i 2, 5, are given by solution of the equations (recall that 

primes denote derivatives with respect to r̃)
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(Note that in [9] there is a typographical error on the rhs of 

equation  (14). The version given here is the correct one.) 

Equations (9) and (12)–(15) can be found by substitution of 

(11) into (7) and equating terms with common tensorial pref-

actors, in the spirit of the calcuation presented in appendix A.  

Although equations (9) and (12)–(15) are coupled, they have 

the convenient property that determination of hn(r) only 

requires knowledge of other hi(r) for i  <  n. For the case of 

particles with a hard-core at small separations (the only kind 

we will consider in this work) the boundary conditions are that 

( → ) →∞h r 0i  for all i values and that

( ) = −′h R2 11 (16)

( ) ( )=′h R h R2 22 1 (17)

( ) ⩾=′h R i2 0 3,i (18)

which arise from the boundary condition, ( ) ˆ⋅ =J r r 0 at 

˜ =r 2, where ( )J r  is the current. For such boundary conditions 

the shooting method provides a simple and reliable numerical 

approach for obtaining solutions.

For the special case of hard spheres the solutions of equa-

tions (12)–(15) which satisfy the boundary conditions are
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Each of these expressions is valid for ⩾r R2  and, as was the case 

for h1(r), information for shorter separations is not required.

The distorted pair correlations provide information about 

the relative spatial distribution of the particles and thus enable 

(for pairwise additive potentials) the stress tensor to be calcu-

lated according to
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which is valid for a translationally invariant bulk system. For 

inhomogeneous systems the stress tensor becomes a function 

of position
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A derivation of (24) can be found in [19] (p 162).

II.D. Special case: hard-spheres under shear flow

To make expression (11) more concrete, let us specify to the 

case of a shear flow, with flow in the x-direction and gra-

dient in the y-direction. In this cartesian coordinate system 

the symmetrized velocity gradient tensor has components 

( )γ δ δ δ δ= +E ˙ij ix jy jx iy , where γ̇ is the shear-rate. Equation (11) 

then becomes
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where γ= R DPe ˙ /2
0 is the Péclet number encoding the com-

petition between shear motion and Brownian diffusion. For 

hard-spheres the hi are given by equations (10) and (19)–(22).

Substituting equation (25) into (23) yields the pair interac-

tion contribution (omitting zero and one-body terms) to the 

shear viscosity

η η φ=
12

5
,s

2 (26)

where η σ γ= / ˙xy , ( )η π= k T D R/ 6s B 0  is the solvent viscosity 

and φ π ρ= R4 /3b
3  is the volume fraction [22]. Due to sym-

metry, contributions to ( )g r  of second order in the flow-rate 

do not contribute to the shear viscosity. However, they do 

contribute to the normal stresses and suspension pressure. 

The interaction contributions to the first normal stress dif-

ference, σ σ= −N1 xx yy, second normal stress difference, 

σ σ= −N2 yy zz, and pressure, σΠ = −Tr /3, are given by
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In this work we seek to address a major failing of DDFT for 

driven systems by incorporating a mechanism for generating 

flux orthogonal to the direction of flow, arising from inter-

particle interactions, which will lead to nontrivial changes 

in the density. Such ‘lateral fluxes’ are closely related to the 

normal stress differences under flow and so it would seem that 

a requirement of a sensible DDFT extension is that the second 

order in flow-rate distortion of ( )g r  be correctly handled.

II.E. Application to DDFT

II.E.1. General approximations leading to a DDFT. We now 

wish to exploit the exact limiting results from section  II.C 

to approximate the integral term in (1) and thus arrive at a 

closed theory for the dynamics of the one-body density under 

external driving. The key result, equation (11), is strictly only 

valid for translationally invariant systems, while equation (1) 
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requires as input the inhomogeneous nonequilibrium two-

body density. In steady-state the simplest approximation for 

the inhomogeneous two-body density is
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(30)

where = −r r r2 1. This approximation is equivalent to writing 

( ) ( ) ( )( )ρ ρ| = gr r r r
0
2

2 1 2 , with ( )g r  given by (11).

The approximate form (30) does not solve (6) exactly: sub-

stitution of (30) into (6) generates additional terms involving 

the product of flow rate and external field force of order 

( )γ∇V r˙ ext . However, provided that these additional terms 

remain sufficiently small, the approximation (30) is justified. 

For example, in a low density system of hard spheres at a hard 

repulsive wall these contributions will only contribute when 

particles are in direct contact with the substrate. It would be 

desirable to have an exact expression for the nonequilibrium 

two-body density in inhomogeneous situations, but this is 

unfortunately not available at present. Jin et al have pointed 

out that incorporating density gradient terms in the expression 

for the distorted inhomogeneous pair correlation function is 

essential in recovering the proper behaviour of the mass dif-

fusion coefficient. Due to the simplicity of our approximation 

(30) our theory may fail on this point.

We note, importantly, that the approximation in equa-

tion (30), applied for the case of a single wall, yields the cor-

rect value for the force exerted on the wall [7], see appendix C 

for details. For the special case of hard spheres at a hard wall, 

this implies that the contact density at the wall is found cor-

rectly, i.e. including its change due to shear.

If we accept (30) as a reasonable approximation, then it is 

still neccessary to determine an optimal choice for the equi-

librium two-body density. In the context of DDFT the natural 

choice for the first term in (30) is the adiabatic pair density 

corresponding to the instantaneous one-body density. This 

choice has the convenient feature that the first term in (30) 

when substituted into (1) generates the DDFT.

Substitution of (30) into (1) and using (2) leads directly to 

the following generalized DDFT equation
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This expression has precisely the form given in references 

[5, 6], where it was proposed using physical arguments. The 

approximations used here are generally also in line with 

those proposed in [7]. The non-affine velocity contribution, 

( )tv r ,fl 1 , arising from the coupling of interparticle interactions 

with external flow, is given by

( )
( )
( ) ((ˆ ˆ ) ( )

[(ˆ ˆ ) ( ) (ˆ ˆ ) ( )

(ˆ ˆ ) ( ) ( ) ( )]) ( )

( )

∫
ρ

ρ

β

= ⋅ ⋅

+ ⋅ ⋅ + ⋅ ⋅ Ω ⋅

+ ⋅ ⋅ ⋅ + ∇

t R h r

R

D
h r h r

h r h r u r

v r r
r r

r
r E r

r E r r E r

r E E r E E

, d
,

: .

fl 1
2

2
eq
2

1 2

1
12 12 1 12

2

0
12 12

2
2 12 12 12 3 12

12 12 4 12 5 12 1 12

 

(32)

This result is valid for any incompressible flow and arbitrary 

pair potential. The latter enters both explicitly via the force 

term ( )β∇ u r1 12  and implicitly via the hi(r), which are given 

by solution of equations (9), (12)–(15). Despite our approx-

imations equation (32) is still not tractable for practical appli-

cations, because knowledge of the pair density of the adiabatic 

state is required.

In order to obtain a theory which is closed on the level of 

the one-body density we factorize the two-body density

( ) ( ) ( ) ( ( ))( )ρ ρ ρ β= − u rr r r r, exp ,
eq
2

1 2 1 2 12 (33)

consistent with the low density limit. Substituting (33) into 

(32) then generates a convolution form

( ) ( ) ( )∫ ρ=t rv r r r K, dfl 1 2 2 12 (34)

where the (vectorial) flow kernel is given by

⎡
⎣⎢

⎤
⎦⎥

R h r
R

D
h r

h r h r

h r u r

K r r E r r E r

r E r r E E r

E E: exp .

2
1

2

0

2
2

3 4

5

( ) (ˆ ˆ) ( ) ((ˆ ˆ) ( )

(ˆ ˆ) ( ) (ˆ ˆ) ( )

( ) ( )) ( ( ))β

= − ⋅ ⋅ + ⋅ ⋅

+ ⋅ ⋅ Ω ⋅ + ⋅ ⋅ ⋅

+ ∇ −

 

(35)

Equations (31), (34) and (35) provide a closed theory for 

the dynamics of the one-body density, provided that one has 

access to a suitable approximation for the equilibrium free 

energy. The kernel (35) has been derived by considering the 

pair Smolochowski equation  in the low desnity limit. When 

applying the theory at finite densities it may be useful to 

rescale the kernel using the contact value of the equilibrium 

radial distribution function, ( )g R2eq .

For the special case of shear flow, with flow in the x-direction  

and gradient in the y-direction, the kernel can be written

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ( ))β

= − − +
−

+
+

+ ∇ −⎟⎟

⎛
⎝⎜

⎛
⎝⎜

⎞
⎠
⎞
⎠

D
xy

r
h r

x y

r
h r

x y

r
h r

x y

r
h r h r u r

K r Pe Pe
4

4

1

2
exp .

0 2 1
2

2 2

4 2

2 2

2 3

2 2

2 4 5

 

(36)

If the external field is such that the density only varies in the 

shear gradient direction, as is the case for channel-flow or 

shear parallel to a wall, the geometry of the situation allows 

the convolution integral (34) to be partially evaluated. The 

three dimensional convolution thus reduces to a one-dimen-

sional convolution

y t y y y yv , d ,yfl 1 2 2 1 2K( ) ( ) ( )∫ ρ= −
−∞

∞
 (37)
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where K( )y  is the resolved kernel required to treat the planar 

geometry. The non-affine velocity acts in the y-direction. In 

appendix B we show how the resolved kernel can be explicitly 

calculated for hard spheres under shear. The result is

K ( )
( )

( )
( )

⎜ ⎟
⎛
⎝

⎞
⎠

⎡
⎣⎢

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

⎤
⎦⎥

π= − − −

+ + + Θ − | |

y
D

R

y

R

y

R

y

R
R y

Pe
2

2

27
1

3

2

2

63
1

2

128

945
2 .

y
hs 2 0

2

2

2

2

 

(38)

The functional form of the kernel is shown in the inset of 

figure 1. The fact that the resolved kernel is antisymmetric in 

y has the consequence that the density in bulk is not influenced 

by the flow, i.e. evaluation of the integral (37) for ( )ρ ρ=y b 

yields zero. Moreover, for inhomogeneous systems the leading 

order flow-induced changes in the density are of order Pe2. 

This is consistent with the fact that the normal stresses driving 

lateral density currents are also second order in Pe.

For potentials consisting of a hard sphere repulsion and 

a longer range tail, e.g. the hard-core Yukawa potential, the 

Kernel splits into a sum of contact and tail contributions

K K K( ) ( ) ( )= +y y y ,y y y
tot c t (39)

where we only consider the y-component of the kernel. The 

contact contribution is given by
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(40)

where the functions ( ) ( )…h R h R2 22 5  are now obtained from 

numerical solution of equations  (12)–(15). The tail contrib-

ution in (39) is calculated by first expressing (36) in spherical 

polar coordinates (choosing the azimuthal angle φ around the 

y-axis, as described in appendix B) and then integrating over 

slices at fixed y. We thus obtain

⎡
⎣⎢

⎛
⎝⎜

⎞
⎠⎟
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⎠⎟

⎛
⎝⎜

⎞
⎠⎟
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(41)

where the lower boundary is given by

( ) ⩽⎧⎨⎩α =
| |

| |
y

R y R

y

2 2

otherwise
 (42)

Due to the presence of the numerically determined h-functions, 

this integral must be numerically evaluated. Fortunately, this 

need only be performed once for any given interaction potential.

The expression we derive here for the flow kernel is based 

on the low density limiting solution of the pair Smoluchowski 

equation. When seeking to apply the theory to higher den-

sity systems the accuracy of the approach would probably be 

improved by scaling the kernel with the equilibrium contact 

value of the radial distribution function, ( )g R2eq  for the pair 

potential of interest. We have have not done this here, because 

we only perform numerical calculations at low density state-

points for hard spheres (in which case ( )∼g R2 1eq ).

II.5.2. Numerical example for simple shear. As an initial test 

of our theory we consider the response of the density at a sin-

gle soft wall to an imposed linear shear flow parallel to the 

wall. Because our theory is based on the pair Smoluchowski 

equation, which neglects three-body correlations, we deliber-

ately choose a low density state point to be consistent with the 

underlying assumptions. Although we expect our approach to 

be useful also at higher densities, the approximations involved 

then become uncontrolled and difficult to assess. In figure 1 

we show the steady-state density profiles of a low density sus-

pension for four different values of Pe. In accordance with 

our previous findings based on a more empirical flow kernel 

approach [5], we find that the new kernel also predicts that 

shear flow parallel to the wall increases the density of particles 

at the wall. This occurs as particles are forced into the wall by 

collisions with their neighbours. This ‘pile up’ of density at 

the wall is associated with a pressure increase, relative to the 

equilibrium value (see appendix C).

III. Application: shear-induced migration

Microfluidic devices in which small quantities of fluid are 

driven through a microchannel are an emerging technology 

for processing suspensions (e.g. pharmaceuticals). If the 

shear-rate varies appreciably on the scale of a particle diam-

eter then the particles undergo a biased diffusion which causes 

them to drift to regions of low shear gradient; a phenomenon 

known as shear-induced migration. The migration of colloids 

in channel flow is a dominant transport mechanism in sus-

pensions which has been exploited to facilitate segregation in 

colloidal mixtures [26, 27] and which is relevant for under-

standing the flow of blood [27] as well as for numerous appli-

cations, such as food processing [28]. A variety of theoretical 

studies [29–32] and experiments [33–35] have addressed the 

migration dynamics of monodisperse hard-sphere colloids. 

However, the existing theoretical approaches remain on a 

semi-phenomenological level, where the interparticle interac-

tion potential does not enter explicitly.

Recently, Jin et al have developed a theoretical approach to 

treat shear-gradient concentration coupling in colloidal disper-

sions under flow [36]. This study was motivated by the desire 

to understand the non-uniform flow and instabilities observed 

in colloidal glasses, although the approach could also be well  

applied to shear induced migration in liquid states, as consid-

ered in the present work. In common with our approach Jin  

et al start from the course grained Smoluchowski equation for 

the one-body density, however, the inhomogeneous pair corre-

lations are treated quite differently. Whereas we consider dist-

ortions of adiabatic state pair correlations, which enables us to 
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employ a free energy functional, Jin et al approximate the full 

nonequilibrium pair correlation function directly. The latter 

method enables a more controlled treatment of the influence of 

density gradients on the distorted parts of the pair correlations, 

but prohibits connection to an equilibrium free energy.

To treat Poiseuille flow within our approach it is neccessary 

to first extend the theory of the flow kernel to treat spatial vari-

ations in the flow rate, i.e. spatial variations in E and Ω. At the 

current level of development of our approach we are forced 

to make an ad hoc assumption about how this generalization 

may best be achieved. The Poiseuille flow to be implemented 

here is represented by the velocity field

⎜ ⎟
⎛
⎝⎜

⎞
⎠⎟

⎛
⎝

⎞
⎠y

v H
y

H
yv e

2 4 2
,y

0
2

2( ) = − Θ − | | (43)

where H is the width of the channel to which the particles are 

confined and v0 is the shear rate gradient of the flow profile. 

The maximal velocity occurs at the center of the channel and 

is given by =v v H /8max 0
2 , whereas the maximal shear rate 

is at the sides of the channel and is given by γ| | = v H˙ /2max 0 . 

Because the shear flow is parallel to the confining walls all 

contributions to the flow kernel linear in Pe vanish by sym-

metry. As we do not have exact results, even at low density, 

for the distortion of the two-body density induced by inho-

mogeneous flow (viz. spatially dependent shear rate) there is 

no unique choice how to generalize our second order results 

for the flow kernel. However, our numerical investigations 

have led us to the pragmatic solution of replacing the constant 

Pe2 appearing in equations (38)–(41) by a spatially dependent 

function, according to → ( )γ γ
yPe ˙

R

D
2 0̇

4

0
2 , where the spatially 

dependent shear rate is given by

( )γ = − | |y v y˙ ,0 (44)

We defer a full analysis of spatially dependent shear rates to 

a future work.

In order to solve the generalized DDFT equations  (31), 

(37) and (38) for hard spheres we employ a softly repulsive 

external potential

( ) ( )⎛
⎝⎜

⎞
⎠⎟∑ α

=
− −

=

V y V
y y

exp
2

,
i

i
ext 0

1,2

2

2

  

(45)

where y1 and y2 specify the positions of the walls, V0 and α 

give the height and width of the wall potential. For our numer-

ical DDFT calculations we choose =V k T500 B  and α = R0.2 . 

In order to specify to hard spheres the Helmholtz free energy 

functional entering (31) must be specified. We choose to 

employ the standard Rosenfeld functional [37]. For the situ-

ations to be considered in this work the Rosenfeld functional 

provides very accurate results for the equilibrium density and 

should thus provide a good basis for calculations under shear.

Our density functional predictions are complemented 

by Brownian dynamics simulations of a system of 200 par-

ticles in a simulation box of side lengths =L d17.38y , 

ρ= = =L L N L d/ 10.976x z y , where d is the particle diam-

eter. The algorithm employed is standard BD [38]. For prac-

tical reasons we consider pseudo hard spheres interacting via a 

WCA repulsive potential (cut and shifted Lennard–Jones, with 

the cut at r  =  d) with interaction strength ε = 0.01. Periodic 

boundaries are used in the x and z directions. The particles 

move freely for values of y between y  =  −Ly/2 and y  =  Ly 

/2. However, if the particles leave this region they experience 

a soft confining repulsion: ( ) ( )χ χ= + −εF y y L/ /2w y
24 24 

for y  <  −Ly/2 and ( ) ( )χ χ= − − + +εF y y L/ /2w y
24 24 for 

y  >  Ly /2. The parameter χ is set equal to R.

In figure  2 we address Poiseuille flow and show steady-

state density profiles for four different values of the flow rate. 

Figure 1. Density profiles of hard spheres at a wall from DDFT. The shear flow is applied parallel to the softly repulsive wall. The reduced 

bulk density is low, R 0.011 943ρ =� . Results are shown for four different values of Pe, as given in the legend. As Pe is increased the 

packing peak at the wall grows in amplitude as particles are forced into the wall by collisions with their neighbours.
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As the rate of flow is increased the particles begin to accumu-

late in the center of the channel. The physical reason for this 

is that particles which are not located at y  =  0 (the central 

plane through the channel) experience on average more col-

lisions on one side than the other, due to the spatially varying 

shear rate in Poiseuille flow. The net result of these collisions 

is a biased diffusion, which tends to make the particles drift 

towards the center of the channel. Following the switching-on 

of the Poiseuille flow the density peak at the center develops 

until regular Brownian diffusion, which seeks to smooth 

density gradients, balances the biased diffusion induced by 

the inhomogeneous flow. A steady state density profile thus 

results. Although a systematic study of the transient develop-

ment of the migration peak still needs to be performed we 

find that the time required for a steady state to develop is a 

strong function of the flow rate. We were thus careful that our 

calculations were of sufficient duration that a true steady-state 

solution is obtained.

In figure  3 we show Brownian dynamics results for the 

steady state density profiles of pseudo hard-spheres subject 

to Poiseuille flow. When performing our Brownian dynamics 

simulations we were careful only to collect data beyond the 

transient regime. The simulated density profiles exhibit the 

same characteristic triangular shape observed in our DDFT 

calculations. The particles which are transported by the 

migration mechanism to the center of the channel are conse-

quently depleted from the regions close to the wall, leading 

to a reduction in packing effects in this region. In general we 

find that for the relatively narrow channels investigated in 

this work that there exists a competition between layering at 

the wall and the drift of particles to the center of the channel. 

This becomes more apparent when looking at the transient 

dynamics (not shown) - for short times after the switch on 

of flow the layering at the wall becomes more pronounced, 

but then decreases at later times as particles are transported 

towards the channel center, thus reducing the local density in 

the vicinity of the walls.

In figure 4 we show a fit of the simulation data obtained 

by adjusting the value of Pe employed in the DDFT, treating 

this as a free fit parameter. The fit was performed to obtain 

the best global representation of the simulation data, rather 

than aiming to match any specific feature (e.g. the height 

of the central peak). Although this initial result does not 

constitute a detailed comparison with Brownian dynamics  

simulations, it nevertheless demonstrates that our theory can 

be used to capture the qualitative form of the steady-state 

density profile. It is apparent that there is a significant mis-

match between the Péclet number employed in the simula-

tions and the value of Pe employed to fit our DDFT curve. 

This can be attributed to the following. (i) When general-

izing our theory to treat Poiseuille flow, which has a spatially 

dependent shear rate, we were forced to make an uncon-

trolled approx imation to extend a theory based on infor-

mation obtained from homogeneous flow calculations. We 

believe that this step preserves the correct qualitative behav-

iour, but is quanitatively in error. Improving upon this point 

will be a subject of future research. (ii) In order to obtain a 

large migration peak in simulation, it was found neccessary 

to consider rather large values of Pe. We have then sought to 

reproduce these density profiles using a theory based on a 

series expansion of the density in powers of Pe. Quantitative 

agreement between simulation and experiment can thus only 

be expected at smaller values of of Pe. One could argue 

that applying our theory at large Pe violates the underlying 

assumptions of the approach, however, the fact that the simu-

lation data can be rather well fit by using Pe as a free para-

meter suggests that the extended DDFT approach may well 

be of use in describing the density for a broad range of Pe. 

A more systematic comparison of our theory with Brownian 

dynamics simulation will be performed in the near future.

Figure 2. Steady-state density profiles calculated using DDFT for four different values of the maximal Péclet number (the Péclet number 
corresponding to the shear rate at the boundaries). As the flow rate is increased the central peak grows in magnitude as particles drift 
towards the centre, driven by collisions with their neighbours. This collision induced flux is balanced in steady-state by regular Brownian 
diffusion.
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IV. Discussion

In this paper we have presented a method by which DDFT 

may be corrected to incorporate the effects of external flow. 

The theory is in principle valid for all types of incompressible 

flow (e.g. shear or extensional) and contains corrections due to 

nonaffine particle motion up to second order in the flow rate. 

The most general form of the theory is given by (31) with non-

affine flow velocity given by (32). For the special case of hard 

spheres with shear flow in x-direction and gradient in y-direc-

tion the nonaffine velocity term simplifies to (38), where only 

the y-component of the kernel is of physical interest. The 

starting point of our theory is the exact equation of motion for 

the one-body density (1). Using exact results for the two-body 

density (at low density, to second order in Pe) we approxi-

mated the integral term in (1) to obtain a closed theory for the 

one-body density. We have thus demonstrated that the flow-

induced distortion of the two-body density, usually neglected 

in DDFT treatments of driven systems, leads to an additional 

non-affine contribution to the particle current. When suitably 

approximated this non-affine contribution can be expressed as 

a convolution of the one-body density with a flow kernel.

We note that our nonequilibrium theory fits very well 

within the general framework of the fundamental measures 

theory (FMT) approach to the DFT of hard particle fluids [37]. 

Within our dynamic theory the usual set of geometric weight 

functions employed in the FMT is supplemented by a non-

equilibrium weight function, the flow kernel, which generates 

Figure 3. Brownian dynamics simulation results of shear migration for a system of pseudo-hard spheres whose peak in the density profile 
increases in magnitude.

Figure 4. Fitting Brownian dynamics simulation data for the density profile of pseudo-hard spheres under Poiseuille flow using the 
modified DDFT theory developed in this work. The fit was performed to give the best global match between simulation and theory, where 
the Pemax number employed in the theory is treated as a fit parameter.
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lateral fluxes arising from non-affine motion. The difficulty 

of implementation of our theory is thus on the same level as 

standard DDFT for hard spheres, requiring only one addi-

tional convolution at each time-step.

As an application of our theory to a physically relevant 

problem we have considered the shear-induced migration of 

colloids confined to a channel and subject to Poiseuille flow. We 

find that our approach reproduces qualitatively the main fea-

tures of the Brownian dynamics density profiles, provided that 

the Péclet number input to the theory is treated as an adjustable 

para meter. It is likely that the agreement between the fitted value 

of Pe and the ‘real’ value employed in the Brownian dynamics 

simulations will improve when we consider smaller values of Pe. 

Nevertheless, it is quite gratifying that our theory can capture the 

qualitative form of the density profiles for this nontrivial out- 

of-equilibrium problem.

In the near future we intend to improve further our theor-

etical approach, as well as to perform a more detailed com-

parison with Brownian dynamics simulation in order to 

better understand the range of validity of our various approx-

imations. In particular it would be highly desirable to have 

exact solutions (or at least a more controlled approximation) 

for the distorted two-body density of colloids under Poiseuille 

flow. Further in this direction, it would also be of considerable 

interest to compare our present approach with that of Jin et al 
[36], with a view to improving our treatment of the distorted 

pair correlations in the presence of density inhomogeneities.
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Appendix A.  Derivation of the radial equation

Here we give a derivation of the differential equation  (9) 

for determination of the radial function h1(r). We begin by 

collecting some useful identities. For a general second-rank 

tensor M the following holds

[(ˆ ˆ) ( )] ( ) ( ˆ ˆ) ( )∇ ⋅ ⋅ = ⋅ ⋅ −a r
r

a rr M r r M 1 rr
2
2 (A.1)

( ) ˆ ˆ ( )
+ ⋅ ⋅

r

a r

r
r M rr

1 d

d
, (A.2)

where a(r) is an arbitrary radial function and ˆ ˆrr is a dyadic 

product. For an arbitrary vector field, u, we have

( ) ( )∇ ⋅ ⋅ = ⋅ ∇ ⋅ + ∇u M u M M : u (A.3)

where the double dot notation in the second term implies a full 

contraction, namely a scalar product followed by a trace oper-

ation. The divergence of a radial function mutiplied by M is

( ( ) ) ( ) ( )

ˆ ( )⎜ ⎟⎛
⎝

⎞
⎠

+

+

∇ ⋅ = ∇ ⋅ ∇ ⋅

= ⋅ ∇ ⋅

a r a r
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r

M M a r M

r M a r M .
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d

 
(A.4)

For the special case ( ˆ ˆ)= −rM 1 rr , this reduces to

ˆ ˆ( ( ) ( )) ( )ˆ−∇ ⋅ = −a r r a r1 rr r2 . (A.5)

Finally we have the identity

( ( ˆ)) ˆ∇ ⋅ ⋅ =M r r 0, (A.6)

and the elegant result

( ˆ) ( ) ˆ ˆ
∇ ⋅ ⋅ = −

⋅ ⋅
r r

M r
M r M rTr

. (A.7)

Returning now to the physical problem of interest, we first 

note that for translationally invariant flow the velocity field 

can be written as ( ) = ⋅v r E r. This suggests the following 

Ansatz for the solution of equation (9)

ˆ( ) ( ) (ˆ ) ( )
⎡
⎣⎢

⎤
⎦⎥= + ⋅ ⋅g g r A

R

D
h rr r E r10

2

0
1 (A.8)

where A is a dimensionless constant which remains to be deter-

mined. The expression is the most general form possessing the 

symmetry imposed by the external flow. Substitution of (A.8) 

into (9) and retaining only terms to leading order, yields for 

the steady state

( ( ) ( )) [ ( ) [(ˆ ˆ) ( )] ]∇ ⋅ = ∇ ⋅ ∇ ⋅ ⋅g r R Ag r h rv r r E r2 ,0
2

0 1 (A.9)

where we have used ( ) ( ( )) ( )β∇ = ∇g r u r g r0 0 . Using identity 

(A.1) and the incompressibility condition, ∇ ⋅ =v 0, enables 

us to re-write (A.9)
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(A.10)

Without loss of generality we fix the constant A  =  −1/2 and 

use the relation (A.3) to get
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 (A.11)

We will consider separately the two terms appearing in large 

brackets on the rhs of (A.11). To simplify term (i) we use 

(A.4) and (A.5)) and obtain

( ) (ˆ ˆ) ( ) ( ) ( )⎜ ⎟
⎛
⎝⎜

⎛
⎝

⎞
⎠

⎞
⎠⎟= ⋅ ⋅ −i

r r
r g r

h r

r
g

h r

r
r E r

1 d

d

d

d
4 .

2
2

0
1

0
1

2 (A.12)

To simplify term (ii) we use (A.6) and (A.7) to obtain

ˆ ˆ

ˆ

( ) ( ) ( ) ( ) ( ) ˆ

( ) (ˆ )

⎛
⎝⎜

⎞
⎠⎟= ∇ ⋅ ⋅ = −

⋅ ⋅

= − ⋅ ⋅

ii
g r

r

g h r

r r r
g h r

r

E r
E r E r

r E r

2 2 Tr

2
,

0 0 1

0 1

2

 (A.13)
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where ( ) =ETr 0 has been used. Substituting (A.12) and 

(A.13) into (A.11) and introducing ˜ =r r R/  yields the desired 

result

⎜ ⎟
⎛
⎝⎜

⎛
⎝

⎞
⎠

⎞
⎠⎟r r

r g r
h r

r
g r

h r

r

r
g r

r

r E r

r E r

1 d

d

d

d
6

d

d
.

2
2

0
1

0
1

2

0ˆ

(ˆ ˆ)
˜ ˜

˜ ( ) ( )
˜

( ) ( )
˜

(ˆ ) ˜ ( )
˜

⋅ ⋅ −

= − ⋅ ⋅

 

(A.14)

The coefficients of the quadratic form (ˆ ˆ)⋅ ⋅r E r  must be 

equal, because this expression remains valid for all choices 

of the traceless tensor E. We thus conclude that the Ansatz 

(A.8) is the correct leading order in Pe solution of the pair 

Smoluchowski equation  (7), where A  =  −1/2 and the func-

tion h1(r) satisfies the differential equation (9). Similar calcul-

ations lead to the differential equations (12)–(15).

Appendix B.  Projecting the flow kernel in planar 

geometry

We will concentrate first on the special case of shear flow, for 

which the flow kernel is given by (36). We select our planar 

geometry such that the density varies in the shear gradient 

direction, ( ) ( )ρ ρ= yr , substitute (36) into (34) and perform 

the integrations in the (x, y) plane. We employ a non-stan-

dard labelling for the spherical coordinate system, in order 

to be consistent with the usual choice (flow in x, gradient in 

y) employed in rheological studies. The angle θ is thus mea-

sured relative to the y-axis and the azimuthal angle φ relative 

to the x-axis. We thus seek to calculate the resolved kernel 

K( )y , which is connected to the non-affine velocity field  

according to

K( ) ( ) ( )∫ ρ= −
−∞

∞
y t y y y yv , d .fl 1 2 2 1 2 (B.1)

B.1. Hard spheres

For the case of hard spheres the integration is restricted to the 

shell r  =  2R. Integration in the (x, y)-plane thus corresponds 

to an integration over φ at fixed y (fixed θ). In the chosen coor-

dinate system equation (36) becomes

θ φ θ θ φ

θ θ φ

θ θ φ

θ θ φ

= −

−

−
−

+
+

+

D

R
h R s c c

h R s c c

h R
c s c

h R
c s c

h R

r, Pe 2

Pe 2

2
4

2
4

1

2
2 .

hs 0
1

2
2

2 2 2

3

2 2 2

4

2 2 2

5

( ) ˆ ( ( ) ( ) ( ) ( )

( ( ) ( ) ( ) ( )

( ) ( ( ) ( ) ( ))

( ) ( ( ) ( ) ( )) ( )))

K

 
(B.2)

where we use the shorthand notation ( ) ( )⋅ = ⋅s sin , ( ) ( )⋅ = ⋅c cos . 

Substituting in the contact values of the h-functions for hard 

spheres

( )
( )
( )
( )
( )

=
=
=
= −
= −

h R
h R
h R
h R
h R

2 2/3

2 0

2 8/27

2 8/63

2 128/945

1

2

3

4

5

then yields the kernel

K ( ) ˆ ( ) ( ) ( )

( ( ) ( ) ( ))

( ( ) ( ) ( ))

⎜

⎟

⎡
⎣⎢

⎛
⎝

⎞
⎠
⎤
⎦⎥

θ φ θ θ φ

θ φ θ

θ φ θ

= −

+ − −

+ + +

D

R
c s c

s c c

s c c

r,
2

3
Pe

Pe
2

27

2

63

64

945
,

hs 0

2 2 2 2

2 2 2

 

(B.3)

The unit vector is given by

ˆ ( ) ( )ˆ ( )ˆ ( ) ( )ˆθ φ θ θ φ= + +s c c s sr e e e .x y z (B.4)

Substitution of (B.4) into (B.3) and integration over φ yields 

for the y-component of the resolved kernel

K ( )
( )

( )

⎜ ⎟
⎛
⎝

⎞
⎠

⎡
⎣⎢

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

⎤
⎦⎥

π= − − −

+ + +

y
D

R

y

R

y

R

y

R

Pe
2

2

27
1

3

2

2

63
1

2

128

945

y
hs 2 0

2

2

2

2

 

(B.5)

which is the component of physical interest for the present 

work.

B.2. Hard sphere plus an attractive or repulsive tail

We next consider the form of the projected kernel for poten-

tials formed by the sum of a hard sphere repulsion and a longer 

range attractive (repulsive) tail, e.g. the hard-core Yukawa 

potential. For such potentials the kernel splits into a contact 

contribution and a tail contribution

y y g R y2y y
hst c

eq
tK K K( ) ( ) ( ) ( )= + (B.6)

where the first term is simply equation  (B.5) scaled by the 

contact value of the equilibrium radial distribution function.

Appendix C.  Force balance and non-equilibrium 

osmotic pressure

In this appendix, we repeat the arguments given in [7] to 

demonstrate that the approximations performed in the main 

text yield, for the case of a single wall, the exact value for 

the force exerted on the wall by the suspension. (Exact value 

in the sense that it equals the perpendicular pressure comp-

onent in the bulk far way from the wall.) In orther words, our 

approx imations correctly treat force balances. Let us therefore 

rewrite equation  (1), using ( )( ) = −∇ ⋅ρ∂
∂

tj r,
t

t

r,
, in terms of 

the stress in equation (24),

( ) ( ) ( ) ( )σρ β= + ∇ ⋅ −∇t D Vj r, t r v r, .ext (C.1)
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Again, this equation  is identical to equation (1) using equa-

tion  (24) for the stress σ. For a steady state solution with a 

wall (hard or soft) being parallel to the xz plane (compare 

figure 1), we have ( ) ( )ρ ρ= yr , and

( ) =j y 0.y (C.2)

As the quantities in equation  (C.1) are invariant in x and z 

directions due to symmetry, equation  (C.1) simplifies with 

equation (C.2) to

( ) ( ) ( )∫ ∫ρ σ− ∂ = − ∂
−∞

∞

−∞

∞
y y V y y yd d .y y yyext (C.3)

The term on the lhs is identified as the force per sur-

face area exerted on the external potential by the particles, 

( ) ( )∫ ρ= − ∂
−∞

∞
F A y y V y/ dy y

ext
ext . In case Vext grows suffi-

ciently fast towards →−∞y  (e.g. in the case of an inpene-

trable wall), we have vanishing density at = −∞y , and hence

( )σ= − ∞
F

A
.

y
yy

ext

 (C.4)

Equation (C.4) states the expected result that the yy comp onent 

of the stress tensor in the bulk equals the force acting on the wall 

by the suspension, Actio et Reactio. However, is this true also 

for approximated solutions? As noted in [7], this is true for any 

approximation, that fulfills the following two conditions. (i) The 

approximation must conserve that the divergence of σ, with σ 

given in equation (24) is indeed the expression entering the exact 

equation (1). This is mathematically true for any approxiamtion 

for ( )ρ 2  in equation (1), which preserves the symmetry of ( )ρ 2  in 

the two arguments r1 and r2. (ii) The approximation for ( )ρ 2  must 

approach the correct result for the bulk. Both conditions are ful-

filled by equation (30) for any pair potential and wall potential. 

We thus concluce that equations (30) and (31) give the correct 

force exerted on the wall (correct in the sense that it is as good as 

the approximations used for the bulk pair correlation).
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