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Abstract: Exact analytical operator solutions of the interacting model of
a single quantized (non-dissipative) harmonic oscillator (HO) with a train of
n-chirped Gaussian pulses are derived in terms of the error function of complex
argument. Explicit expressions are then calculated and examined computa-
tionally for the average photon number of the HO and the emitted spectrum.
The chirp parameter (c) induces non-sinusoidal oscillations that lead to: (i)
’step-like plateau’ in the dynamics of the average photon number with both
n, τR (repetition time) large, and, (ii) a ’hole burning’ profile and asymmetrical
ringing in the spectrum, depends on the initial state of the HO.
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1. Introduction

Basic statistical quantum mechanical study (e.g. [1], [2]) of radiation-matter
or radiation-radiation coupling has activated the research, both theoretically
and experimentally, in topical subjects, such as spectroscopy [3]-[6] quantum
computation and communication and optical signal information processing (e.g.
[7], [8]). The specific model of a single mode of the quantized radiation field
modelled as a quantized harmonic oscillator (HO) coupled with short laser
pulses is a one fundamental and interesting example to investigate for at least
two reasons:

(i) The single HO models a very large (∞)− number of Rydberg atoms sur-
rounded by a thermal or squeezed vacuum radiation reservoirs [9]-[11].

(ii) The perturbed HO is a suitable physical model of nano-biosensors in co-
herent phonon manipulation with mechanical resonators [12],[13].

In addition to to our earlier study of pulsed excitation of the single HO in
the cases of multimode rectangular, sin2- and exponential laser pulses [14]-[17],
we extend here our study to the case where the exciting pulsed laser field is
a train of chirped n-Gaussian pulses. We examine particularly the dynamical
behaviour of the average photon number of the (non-dissipative) HO, as well the
nature of the transient scattered radiation subject to variation of the chirped
pulses’ parameters.

The paper is presented as follows. In Section 2, we present the system
Hamiltonian and the analytical solutions of the corresponding model equations.
In Sections 3 and 4, we calculate the expressions with the computational results
for the average photon number and the spectrum, respectively. In Section 5, a
summary is given.

2. Hamiltonian and model equations

The system of a single mode quantized HO coupled to a classical laser pulse
has the following operator Hamiltonian model (in units of ~ = 1) [15] (we useˆ
notation to denote quantum mechanical operators [18]),

Ĥ = ωoâ
†â+Ωo

(

f(t)â†e−iωLt + h.a.
)

. (1)

The notations are: ωo is the circular frequency of the HO, f(t) is the complex
pulse shape of circular frequency ωL and Ωo is the pulse strength parameter
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(Rabi frequency associated with the driving pulse). The operators â, â†, are
the annihilation and creation operators, respectively, of the HO obeying the
commutator relations [18],

[

â, â†
]

= 1
[

â, â†â
]

= â (2)
[

â†, â†â
]

= −â†,

where the commutator of any two operators,
[

Â, B̂
]

= ÂB̂ − B̂Â.

In eq. (1), the first term represents the free Hamiltonian of the HO (apart

from the constant term
1

2
~ωo [18]), while the rest of the terms represent the

coupling of the HO with the classical pulse. Note, the non-operator classical
term Ω2

o|f(t)|2 representing the free energy of the classical pulse has no effect
within the quantization approach.

The time-dependent Heisenberg equation of motion for any operator Ô is:

i~Ô· =
[

Ô, Ĥ
]

, where Ĥ is the system Hamiltonian. Thus the operators â, â†

using the Hamiltonian (1) obey the following operator differential equations
(with ~ = 1),

â· = −iωoâ− iΩof(t)e
−iωLt, (3a)

â†· = iωoâ
† + iΩof

∗(t)eiωLt. (3b)

The solutions of (3) for initial time (to) and for arbitrary pulse shape f(t) have
the forms:

â(t) = e−iωo(t−to)Â(t), (4a)

â†(t) = eiωo(t−to)Â†(t), (4b)

where

Â(t) = â(to)− iΩoI(t)e
−iωoto ,

Â†(t) = â†(to) + iΩoI
∗(t)eiωoto , (5)

with

I(t) =

∫ t

to

f(t′)e−i∆t′dt′ , (6)

and ∆ = ωL−ωo is the frequency detuning parameter. For a train of n-Gaussian
pulse of equal width f(t) has the complex form [6], [19],



62 S.S. Hassan, R.A. Alharbey, T. Jarad, S. Almaatooq

fn(τ) =
n
∑

k=1

e−(1+ic)(τ−(k−1)τR)2 , (7)

where τ =
t

τo
is the normalized time, τo is the full width of a pulse at

1

2
-

maximum, τR =
TR

τo
is the normalized repetition time and c is the chirp (rate)

parameter.
In eq. (6), the initial time to depends on the switch-on of the pulse. Gaus-

sian pulses have smooth switch-on, and not sharp switch-on, as in e.g. rect-
angular pulses, so we take to → −∞. Hence, inserting eq. (7) into (6) we
get,

In = τo

∫ τ= t
τo

−∞

e−(1+ic)(τ ′−(k−1)τR)2e−i∆oτ ′dτ ′

= τo

n
∑

k=1

e−(1+ic)(k−1)2τ2
R

∫ τ

−∞

eaτ
′2−2bkτ

′

dτ ′

=

√

π

a

τo
2

n
∑

k=1

e−(1+ic)(k−1)2τ2
Re

b2
k
a

[

1 + erf(
√
a
t

τo
+

bk√
a
)

]

, (8)

where a = 1 + ic = aoe
iθ
(

ao =
√
1 + c2, θ = tan−1(c)

)

, ∆o = ∆τo, bk =

a

2

(

i∆o

a
− 2(k − 1)τR

)

and erf(z) =
2√
π

∫ z

0
e−z′2dz′ is the error function of

complex argument (z), see [20]. In the special case of n = 1 pulse eq. (8)
reduces to

I1(t) =

√

π

a

τo
2
eb

2
1/a

[

1 + erf(
√
a
t

τo
+

b1√
a
)

]

, (9)

with b1 = i
∆o

2
.

In the next two sections, we formulate the analytical expressions for the
average photon number and the scattered spectrum, and investigate them com-
putationally.

3. Photon number dynamics

Using eqs. (4)-(6), (8) the (quantum) average photon number of the HO, n̄(t) =
〈n̂(t)〉 (related to its energy) for arbitrary initial state is given by

n̄(t) = 〈â†(t)â(t)〉
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= 〈Â†(t)Â(t)〉

= n̄o +Ω2
o|In(t)|2 − iΩo

[

ā†oe
−iωotoIn(t)− c.c

]

, (10)

where n̄o = 〈n̂(to)〉 is the initial average photon number, and ā†o = 〈â†(to)〉 is
the initial average value of the HO amplitude variable. The presence of the
factor e−iωoto in (10) modifies the phase of the initial coherent state ā†o = α∗.
The second term in (10) represents the intensity of the classical driving pulse.
Here, we present the computational plots of the normalized photon number,

n̄i(t) =
〈n̂(t)〉i

max〈n̂(t)〉i
, i = o, α, in the two initial states of the HO, namely, the

vacuum and coherent states, respectively, where max〈n̂(t)〉i is the maximum
value of 〈n̂(t)〉i over the considered time domain.

(a) Initial vacuum state n̄o(τ)
In this case, n̄o = āo = 0 and the normalized form of (10) in this case has
the form n̄o(τ) = |In(τ)|2, which is independent of the pulse strength Ω2

o.
At exact resonance (∆o = 0) in the n = 1 pulse case Fig.1a, n̄o(τ) reaches
its constant maximum value monotonically for τ > 0, while for non-zero
chirp |c| 6= 0, the reach to the lesser constant value is oscillatory. In the
off-resonance case (∆o 6= 0) - Fig.1a, n̄o(τ) has an asymmetric peak for
c = 0 at τ = 0. For c 6= 0, the constant value for τ > 0 is larger with
c < 0. For ∆o 6= 0, and increasing pulse number n = 4, τR = 4, where
pulses are not overlapping, c = 0, the step-like structure at ∆o = 0 is
replaced by pronounced peaks and dips (Fig.1b).

(b) Initial coherent state n̄α(τ)
For initial coherent parameter α = |α| = 5,Ω′

o = 10, no = |α|2,∆o =
3, c = 0 for n = 1 pulse case, Fig.2a, n̄α(τ) has the shape of ’Mexican hat’
with asymmetry that turns to oscillations for τ ≶ 0 when c > 0. For c < 0,
the oscillations decay faster for τ < 0. For larger n = 4, τR = 4, Fig.2b,
the behaviour is very similar to Fig.1b. in the initial vacuum state, but
with distinguishable curves for c 6= 0 prior to the constant values.

4. Transient spectrum

The transient spectrum of the scattered radiation due the coupled system of
(HO+n-chirped Gaussian pulses) is given by [15]
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Fig.1a: The normalized average photon number n̄o(τ), with initial

vacuum state of the HO, against the normalized time τ =
t

τo
for

∆o = 3, c = 0,±6 and n = 1 pulse case. Inset figure shows the case
for ∆o = 0.

S(t,D,Γ) = 2Γ

t
∫

to

dt1

t
∫

to

dt2e
(−Γ+iD)(t−t1)e(−Γ−iD)(t−t2)〈Â†(t1)Â(t2)〉, (11)

where the average value of the HO auto-correlation function in (11), using (5)
is given by

〈Â†(t1)Â(t2)〉 = 〈â†(to)â(to)〉+Ω2
oI

∗
n(t1)In(t2)− iΩo〈â†(to)In(t2)〉

+ iΩo〈â(to)I∗n(t1)〉, (12)

with to → −∞ and Γ is the radiation detector’s width of frequency ω and
D = ω − ωo its frequency mismatch. Substituting (12) into (11), we get the
following form of the transient spectrum,

S(t,D,Γ) = 2Γe−2Γt
[

n(to)|J1(t)|2 +Ω2
o|J2(t)|2
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Fig.1b: As Fig.1a but for n = 4 pulse case and τR = 4. Inset
shows the case for ∆o = 0.

− 2ΩoIm(ā(0)J∗
1 (t)J2(t))

]

, (13)

with n̄o, āo defined below eq.(9). The quantities J1,2(t) are given by:

J1(t) =

t
∫

−∞

e(Γ−iD)t′dt′ =
e(Γ−iD)t

Γ− iD
, (14)

J2(t) =

t
∫

−∞

e(Γ−iD)t′I∗n(t
′)dt′. (15)

This last integral is evaluated by substitution for I∗n(t) from (8) and upon
integration by parts we finally get

J2(t) =

√

π

a∗
τo
2

n
∑

k=1

e(b
2
k
/a)∗e−(1−ic)(k−1)2τ2

R [J1(t) + Fk(t)] , (15a)
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Fig.2a: The normalized average photon number n̄α(τ), with initial

coherent state of the HO, against the normalized time τ =
t

τo
, for

∆o = 3, c = 0,±6, α = 5, θ = 0,Ω′
o = 10 and n = 1 pulse case.

where

Fk(t) =
e
−βk

(Γ−iD)
c1

Γ− iD

{

e
(Γ−iD)(c1t+βk)

c1 erf(c1t+ βk)

−e
(Γ−iD)2

4c2
1

[

erf

(

c1t+ βk −
Γ− iD

2c1

)

− f1

]

}

, (16)

with f1 = limto→−∞ erf (c1to + y), y = βk −
Γ− iD

2c1
.

The calculated transient scattered spectrum S(t,D,Γ) is given by eq. (13)
where the expressions for the quantities J1,2(t) are given by eq. (14)-(16). In
what follows, we present the computational plots of the normalized spectrum
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Fig.2b: As for Fig.2a but for n = 4, τR = 4

Sj(D
′) =

Sj(t,D,Γ)

maxSj(t,D,Γ)
against D′ for different sets of normalised parameters:

τ ′ = Γt,Ω′
o = Ωo/Γ, D

′ = D/Γ, ∆′ = ∆/Γ. The symbol (j) refers to the initial
state of the HO. So, So(D

′), Sα(D
′) refers to the normalised spectra in the

initial vacuum and coherent states, respectively.

(i) n = 1 pulse case
Fig.3a shows that the spectrum So(D

′) for c = ∆′ = 0 is essentially
a symmetric Lorenzian. For non-zero values of the chirp and detuning
parameters (c,∆′ 6= 0), the spectrum has an additional prominent peak
around D′ ≈ ∆′ with oscillatory envelope. The effect of initial coherent
state with ∆′ 6= 0 is reflected in Sα(D

′) - Fig.3b - as asymmetric hole
burning structure at D′ = 0, which deepens for c < 0, with additional
small peaks for |D′| 6= 0.

(ii) 2 ≤ n < 20 pulse case
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Fig.3: The normalised spectra So(D
′), Sα(D

′) against the nor-
malised detuning D′ for n = 1 pulse case.
(a) The normalised spectrum, So(D

′), in the initial vacuum state for
τ ′ = 0.5π, τ ′o = 0.3 and for different (c = 0,∆′ = 0) full line, and
(c = 0.5,∆′ = 15), dotted line.
(b) As (a), but for the initial coherent state, Sα(D

′), for τ ′ =
0.3π, τo = 0.3, α = 1, θ = 0.5π,∆′ = 8, c = ±2, full and dotted
lines, respectively.

Fig.4a shows that for n = 2 pulse, ∆′ = 12, So(D
′) has a central peak

at D′ = 0 with additional smaller peaks for c > 0 and a prominent peak
at D′ = ∆′ for c < 0. So, the shape of peak structure depends strongly
on the sign of c. With large n = 10 pulse - Fig.4b, the dependence of
So(D

′) on c is less prominent. The spectrum Sα(D
′) with initial coherent

state for n = 4 pulse - Fig.4c - has its main structure as: (i) asymmetric
narrowing of the central peak, (ii) the extra side peak for D′ > 0 is more
prominent for c < 0, and, (iii) occurrence of smaller peaks around the
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Fig.4: The normalised spectra, So(D
′), Sα(D

′) against the nor-
malised detuningD′, for τ ′ = 0.3π, τ ′o = 0.3, τR = 1,∆′ = 12, c = ±2,
full and dotted lines, respectively.
(a), (b) So(D

′) for n = 2, 10 pulse cases, respectively.
(c) Sα(D

′), for n = 4 pulse case and for no = 1,Ω′
o = 10.

central and side peaks at D′ = 0, ∆′.

(iii) n ≥ 20 pulse case
For large number of pulses n ≥ 20 and large c = 10 - Fig.5, the spectrum
with initial vacuum sate, So(D

′), shows the dependence of the spectrum
structure on τR (repetition time). For τR = 1, there is asymmetric 3-peak
structure at D′ = 0,±∆′ with fading ringing for large |D′| > 25. For τR =
0.5, where the train of pulses merge to the right (τ > 0) as a single pulse
of flat peak, the peak for D′ < 0 diminishes. For τR > 1, where the pulses
are not overlapping, the spectrum So(D

′) is essentially a single symmetric
Lorentzian with fading ringing at its tails. The spectrum, Sα(D

′), with
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Fig.5: The normalised spectrum, So(D
′), against the normalised

detuning D′, for large n = 20, c = 10 and for τ ′ = 0.3π, τ ′o =
0.3,∆′ = 12, τR = 1, 0.5, 1.4, (a)-(c), respectively.

initial coherent state show the same feature, broadly speaking, with large
c ≥ 10.

5. Summary

We have theoretically investigated the coupling model of a single mode of the
(quantized) harmonic oscillator (HO) with train of chirped Gaussian pulses in
the absence of damping processes. This concerns the dynamical study of the
HO average photon number (i.e. its average energy) and the transient emitted
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(scattered) spectrum for various system parameters (frequency detuning, Rabi
frequency of exciting pulses, chirp parameter, repetition time of pulses) and
different initial states of the HO (vacuum and coherent states). Exact analytical
solutions of the system variables are obtained in terms of the error function of
complex argument. The main results are:

(a) The average photon number dynamics, n̄(τ)
The profile of the chirped n-Gaussian pulses, of chirp and repetition time
parameters c, τR, respectively, together with other system parameters
have its reflection on n̄(τ). Specifically, for τR, n > 1, there is “step-
like plateau” structure for c 6= 0 (Figs.1,2b) with both initial vacuum and
coherent states, respectively.

(b) The transient spectrum, S(D)
For a single Gaussian pulse n = 1, the resonant Lorentzian peak at c = 0
has additional oscillatory peak with c 6= 0 in the initial vacuum state,
Fig.3a. For initial coherent state, there is “hole burning” effect - Fig.3b.
For both large n = 20, c = 10 - Fig.5 - the central Lorentzian with initial
vacuum state has asymmetrical side peaks for τR ≤ 1, while for τR > 1 it
is surrounded by small symmetric ringing. For initial coherent state with
both large n, c, the spectrum is qualitatively similar to that in Fig.5.

Possible extension of the present model (HO ⊕ train of chirped Gaussian
pulses) may include the damping process of the HO in normal [16] and squeezed
vacuum reservoirs [21, 22]. Further, inclusion of the fast oscillatory terms, with
the following terms replacements:

f(t)e−iωLt → 2f(t) cos(ωLt)

f∗(t)eiωLt → 2f∗(t) cos(ωLt)

in eqs. (3a)-(3b), respectively, introduces extra higher frequency terms e±2iωLt

in the analytical solutions [21]-[23], and hence having extra parameter
2ωL

γ
∼=

O(10−7), for optical radiation, or, O(10), for microwave radiation. This expects
to induce extra oscillations/ringing as in the case of a rectangular pulse [23].

Acknowledgment

S. S. Hassan acknowledges the hospitality of MMU (July-August, 2019) where
the final version of the manuscript was completed.



72 S.S. Hassan, R.A. Alharbey, T. Jarad, S. Almaatooq

References

[1] J.C. Garrison and R.Y. Chiao, Quantum Optics, Oxford University Press,
New York (2008).

[2] G.S. Agarwal, Quantum Optics, Cambridge University Press, Cambridge
(2013).

[3] M.O. Scully, and M.S. Zubairy, Quantum Optics, Cambridge University
Press, Cambridge, UK (1997).

[4] D. Felinto, C.A.C. Bosco, L.H. Acioli, S.S Vianna, Coherent accumulation
in two-level atoms excited by a train of ultrashort pulses, Optics Commu-

nications, 215 (2003), 69-73.

[5] Y.B. Band, Light and Matter, J. Wiley, UK (2006).

[6] Y.A. Sharaby A. Joshi and S.S. Hassan, Coherent population transfer in V-
type atomic system, Journal of Nonlinear Optical Physics and Materials,
22 (2013), 1450044-1450059.

[7] W.H. Steeb and Y. Hardy, Problems and Solutions in Quantum Computing

and Quantum Information, 2nd Ed., World Sci. Publ., Singapore (2006).

[8] V. Vedral, Introduction to Quantum Information Science, Oxford
Univ.Press, Oxford (2008).

[9] S.S. Hassan, G.P. Hildred, R.R. Puri and R.K. Bullough, Incoherently
driven Dicke model, S, J. Phys. B, 15 (1982), 2635-2655.

[10] R.K. Bullough, R.R. Puri and S.S. Hassan, Some remarks on the organi-
sation of living matter and its thermal disorganisation, In: Molecular and

Biological Physics of Living Systems (Ed. R.K. Mishra), Kluwer Acad.
Publ, Netherlands (1990), 1-18.

[11] M.R. Wahiddin, S.S. Hassan, and R.K. Bullough, Cooperative atomic be-
haviour and oscillator formation in a squeezed vacuum, Journal of Modern

Optics, 42 (1995), 171-189.

[12] H. Okamoto, A. Gourgout, C.-Y. Chang, K. Onomitsu, I. Mahboob, E.
Yi Chang and H. Yamaguchi, Coherent phonon manipulation in coupled
mechanical resonators, Nature Physics, 9 (2013), 480-484.



DRIVEN HARMONIC OSCILLATOR... 73

[13] P. Snyder, A. Joshi, J.D. Serna, Modeling a nanocantilever-based biosensor
using a stochastically perturbed harmonic oscillator, International Journal
of Nanoscience, 13 (2014), 145001-145009.

[14] A. Joshi and S.S. Hassan, Resonance fluorescence spectra of a two-level
atom and of a harmonic oscillator with multimode rectangular laser pulses,
J. Phys. B: At. Mol. Opt. Phys., 35 (2002), 1985-2003.

[15] S.S. Hassan, R.A. Alharbey and H. Al-Zaki, Transient spectrum of sin2-
pulsed driven harmonic oscillator, J. Nonlinear Optical Phys. and Materi-

als, 23 (2014), 1450052-1450066.

[16] S.S. Hassan, R.A. Alharbey and G. Matar, Haar wavelet Spectrum of sin2-
pulsed driven harmonic oscillator, Nonlinear Optics and Quantum Optics,
48 (2016), 29-39.

[17] S.S. Hassan, R.A. Alharbey and T. Jarad, Transient spectrum of pulsed-
driven harmonic oscillator: damping and pulse shape effects, Nonlinear

Optics, Quantum Optics: Concepts in Modern Optics, 48 (2018), 277-288.

[18] P.A.M. Dirac, The Principles of Quantum Mechanics, Oxford Univ. Press,
Oxford, 4th Ed. (1981).

[19] H. Tang, T. Nakajima, Effects of the pulse area and pulse number on the
population dynamics of atoms interacting with a train of ultrashort pulses,
Optics Communications, 281 (2008), 4671-4675.

[20] N.N. Lebedev, Special Functions and Their Application, Dover, New York
(1972).

[21] S.S. Hassan, A. Joshi, O.M. Frege and W. Emam, Damping of a harmonic
oscillator in a squeezed vacuum without rotating-wave approximation, An-
nals of Phys., 322 (2007), 2007-2020.

[22] T. Jarad, M.R. Qader and S.S. Hassan, Harmonic oscillator with Off-
resonant squeezed reservoir, International Journal of Applied Mathematics,
23 (2010), 1061-1067.

[23] S.S. Hassan and R.A. Alharbey, Fourier and Haar wavelet spectra of a
driven harmonic oscillator without rotating wave approximation, Nonlinear
Optics and Quantum Optics, 50 (2019), 315-325.



74


