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Driven Interfaces in Disordered Media: Determination of Universality Classes
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While there have been important theoretical advances in understanding the universality classes
interfaces moving in porous media, the developed tools cannot be directly applied to experiments. He
we introduce a method that can distinguish the isotropic and directed percolation universality class
from snapshots of the interface profile. We test the method on discrete models whose universality cla
is well known, and use it to identify the universality class of interfaces obtained in experiments on fluid
flow in porous media. [S0031-9007(98)07274-3]
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Interface motion in a random medium presents us wi
an archetype problem, with direct impact on variou
phenomena in condensed matter physics, including flu
flow in porous media [1], domain growth in disordere
magnets [2], and flux lines in disordered superconducto
[3]. In particular, much attention has been focuse
on understanding the morphological evolution of a
interface driven through a disordered medium. Two
phase fluid flow experiments have provided evidenc
that the morphology of the interface can be either se
similar or self-affine [4]. The self-similar morphology has
been successfully described by various percolation bas
models, such as invasion percolation [1]. The motion an
roughening of self-affine interface morphologies can b
quantified by the global interface widthwsL, td, where
L is the system size. The study of discrete models a
continuum growth equations leads to the observation th
the width follows [5,6]

wsL, td ,
Ω

tb if t ø tx

La if t ¿ tx , (1)

whereb is the growth exponent anda is the roughness
exponent. While both experiments and models have co
firmed the applicability of scaling concepts, the obtaine
roughness exponents are scattered between 0.6 and
[6], questioning the existence of universality, the founda
tion of the scaling hypothesis (1).

Motivated by the success of the Kardar-Parisi-Zhan
(KPZ) equation in describing interface motion withther-
mal noise, it has been proposed that interfaces in poro
media are described by the quenched KPZ (QKPZ) equ
tion

≠h
≠t

­ F 1 n=2h 1
l

2
s=hd2 1 hsx, hd , (2)

where hsx, hd represents the quenched noise in th
medium. This equation predicts the existence of a dep
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ning transition: for driving forcesF , Fc the interface is
pinned, and forF . Fc it moves with a velocityy , fu,
whereu is the velocity exponent andf ­ sF 2 FcdyFc.

Numerical [7] and analytical [8] studies indicate tha
the discrete models can be grouped into two universa
ity classes depending on the behavior of the QKPZ no
linearity l. Isotropic models (i.e., models that have n
growth direction determined by the random medium) hav
l ­ 0 or l ! 0 asf ! 0. The scaling exponents of the
isotropicuniversality class can be determined analyticall
from (2) with l ­ 0, obtainingai ­ 1, bi ­ 0.75, and
ui ­ 0.33 in one dimension [9]. However, anisotropy
in the medium can induce al term that diverges at the
depinning transition. The exponents characterizing th
anisotropicuniversality class can be obtained from an ex
act mapping to directed percolation, providingaa ­ 0.63,
ba ­ 0.63, andua ­ 0.63 [10,11].

While in numerical simulations the universality clas
can be identified by measuringl for a tilted interface
[7], this method cannot be applied experimentally, sinc
a constant tilt cannot be sustained. The scaling expone
obtained for paper wetting [10,12] are in excellent agre
ment with the prediction of the anisotropic universality
class. However, experiments on fluid flow between gla
beads provided exponents between 0.6 and 0.9 [13], n
allowing to identify the universality class to which they
belong. Thus, in order to properly characterize the expe
mental results we need to develop methods which, wit
out relying on the determination of the scaling exponent
can identify and distinguish the two universality classe.
Here we make a major step in this direction by introduc
ing a method that can identify the universality class from
snapshots of the interface at different time intervals. A
ter demonstrating that the method successfully identifi
the universality class of well-known models, we apply i
to identify the universality class of interfaces obtained i
experimental investigations.
© 1998 The American Physical Society
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Consider an interfacehsi, td moving in a porous
medium. Since the interface is rough, we can defin
a local slope si as being the linear fit to the interface
in the regionsi 2 dy2, i 1 dy2d (see Fig. 1). If there
are slope-dependent terms governing the motion of t
interface [such as thels=hd2 term in (2)], the local
velocityui is expected to depend on the local tiltsi.

The main hypothesis of this paper is thatthe local
slope-dependent velocities satisfy similar scaling laws
the average velocity. We expect that the local velocity
usF, sd, corresponding to the local slopes, obeys the
scaling law

usF, sd , fF 2 F0
cssdgu0

, (3)

where usF, sd is the average local velocity of interface
segments with slopes, F0

cssd is the depinning threshold
corresponding to these segments, andu0 is the local
velocity exponent.

In an isotropic mediumthere is no selected growth
direction, thus the depinning threshold and the veloci
exponent are independent of slope; i.e.,F0

cssd ­ Fc and
u0 ­ u. Consequently, the local velocities have the form
usF, sd ­ wssd sF 2 Fcdu , analogous to the scaling of the
average velocityysFd ­ y0sF 2 Fcdu; i.e., the only slope
dependence comes in the nonuniversal prefactorwssd.
Thus we expect that for an isotropic medium the ratio

VisF, sd ;
usF, sd
ysFd

­
wssd
y0

(4)

is independent of the driving forceF.
In contrast, one of the distinguishing features of a

anisotropic mediumis that the depinning threshold,F0
cssd,

decreases withs. Furthermore, it has been shown [8] tha
for globally tilted interfaces (i.e., interfaces which have
nonzero global slopem), the velocity exponent is different
from ua ­ 0.63 obtained for an untilted interface, and
it is equal to 1. Consequently, we cannot exclude th
possibility that for anisotropic media,u0

a defined in (3) is
different from ua. Thus for the anisotropic universality
class the ratioVa ; usF, sdyysFd has a nontrivial F

FIG. 1. In the interval of lengthd around the positioni the
interface is fitted with a straight line of slopesi . Assuming
that in a consecutive interfacehsi, t 1 td the slope is stillsi ,
the local velocity of pointi is Dhyt.
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dependence:

VasF, sd ­
wssd fF 2 F0

cssdgu0
a

y0sF 2 Fcdua
. (5)

In conclusion, we expect that ifV sF, sd is independent
of the driving force, the interface belongs to the isotropic
universality class, while a systematicF dependence is
an indication that the interface belongs to the anisotrop
universality class. Note that in experiments the driving
force is not available, but we can replace it with the
average velocity, becauseysFd , sF 2 Fcdu .

The advantage of this method is that it can be applie
directly to both experimental and numerical data, a
long as we have snapshots of the interface at not to
distant time intervals. The method is applied as follows
a discretized interface of total lengthL is partitioned
into segments of lengthd. The local slopessid for
each of the Lyd segments is determined by fitting
a line to it in the regionsi 2 dy2, i 1 dy2d, where
i ­ dy2, 3dy2, . . . , L 2 dy2. We then repeat the same
partitioning for the interface captured at timet 1 t, and
calculate the local velocities of each of the segment
centered ati asusi, sd ­ fhsi, t 1 td 2 hsi, tdgyt. As a
first step we calculate the average velocity of all segmen
with slopes when theaverage velocityof the interface is
y, usy, sd ­ f1yNssdg

P
usi, sd, where the sum goes over

all segments which have the same slopes, andNssd is the
number of such segments [naturally,

P
s Nssd ­ Lyd]. If

usy, sd plotted as a function ofs is a parabola, it indicates
that a slope-dependent nonlinear term is present in th
growth equation. Finally, plottingV sy, sd ; usy, sdyy

allows us to distinguish the two universality classes: if the
usy, sd curves collapse into a single one, we expect th
model to belong to the isotropic universality class, while
if a systematicy dependence persists after rescaling, i
belongs to the anisotropic universality class.

To test the applicability of the method, we calculate
V sy, sd for models whose universality class is known [6],
namely, the random field Ising model (RFIM) belonging
to the isotropic universality class [14], and the directed
percolation depinning (DPD2) model [6,11] that is known
to belong to the anisotropic universality class. Thes
simulations also offer support for the scaling hypothe
sis (3).

Random field Ising model.—The definition and the
simulation techniques of the RFIM are described in
detail in Refs. [7,15]. We have found that the depinning
threshold of the local segments is independent of the
slope and it is equal to the depinning threshold of th
average velocity,Fc. Also, we found that the velocity
exponent of the local velocities is constant and it is
equal toui . Figure 2a shows the local velocitiesusy, sd
versus the local slopes for different driving forces. The
parabolic shape of the curves indicates that the KP
nonlinearity is present, in agreement with the result
obtained from the global tilt measurements [7]. As
2927
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FIG. 2. RFIM model. (a) Local velocityusy, sd versus the
local slope s for driving forces f ­ sH 2 HcdyHc ranging
from 0.015 (bottom curve) to 0.076 (top curve). The syste
size is L ­ 500 and each result was averaged over 20
realizations of the disorder. (b) The same curves rescaled
the average velocities.

Fig. 2b indicates, theV sy, sd curves collapse into a
single function, thus confirming that the RFIM belong
to the isotropic universality class.

DPD model.—The DPD2 model, introduced by Tang
and Leschhorn, is described in detail in Refs. [7,11]. A
a first step, we investigated the slope dependence ofF0

c
andu0. The scaling ofusF, sd has the following features:
(a) F0

cssd decreases withjsj obeying the same scaling law
as Fcsmd corresponding to tilted interfaces [8]; (b) Th
velocity exponent is independent of slope and it has t
valueu0

a ­ 1. Consequently, while the average velocit
has an exponentua ­ 0.63, the local segments are al
tilted from their local hard direction of depinning, an
thus they haveu0

a ­ 1 [8].
As shown in Fig. 3a the parabolic shape of theusy, sd

curves indicates the presence of als=hd2 term. However,
in contrast with the results obtained for the RFIM, there
a systematic shift in theVasy, sd curves with increasing
y, confirming that the model belongs to the anisotrop
universality class.

Experiments.—The experiments were performed in
thin rectangular Plexiglas cell of125 3 41 3 0.16 cm3,
similar to that used in Ref. [13], and filled with unconsol
2928
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FIG. 3. DPD2 model. (a)usy, sd versuss for driving forces
f ­ sF 2 FcdyFc ranging from 0.016 (bottom curve) to 0.07
(top curve). The system size isL ­ 20 000 and each result was
averaged over 500 realizations of the disorder. (b) The sam
curves rescaled by the average velocity.

dated glass beads approximately170 6 20 mm in diame-
ter. The apparatus was continually agitated during fillin
to help ensure a reasonably uniform packing of the bead
Water was injected by a syringe pump through a series
small holes in a tube aligned along one of the narrow en
of the cell, approximately mimicking the ideal case of uni
form injection along a line. Images were recorded at 2-se
intervals with a CCD camera and digitized with a resolu
tion of 512 3 480 pixels. Only the central 17 cm of the
system was recorded to avoid edge effects. The over
scale was270 mmypixel, or about 1.5 beadsypixel. All
velocities were measured in units of bead diameters p
second.

Figure 4a shows the local velocity curves obtained from
the experimental data. Their shape is consistent with
parabola, indicating the presence of the KPZ nonlineari
[16]. Figure 4b presentsV sF, sd versus the local slopes
for six different experiments. While there is some scatte
ing in the data collapse due to the asymmetry of the curv
[16], in general we can see that there is no systematic sh
with the increasing velocity, indicating that, while there is a
KPZ nonlinearity (suggested by the parabolic shape ofV ),
the experiments belong to the isotropic universality class
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FIG. 4. (a) Dependence ofusy, sd on s for the interfaces
obtained in the experiments. The average velocity is give
in bead diameters per second. (b) The same curves rescaled
the average velocities.
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A convincing summary of our results is shown in
Fig. 5, where we plotV sy, 0d as a function ofy for
the models corresponding to the two universality class
We see that, for the RFIM,Visy, 0d is independent of
the average velocity, while, for the DPD model,Vasy, 0d
increases systematically withy. Indeed, the driving force
dependence of thes ­ 0 portions is sF 2 Fcdu02u. In
the case of the DPD2 modelua ­ 0.63 andu0

a ­ 1, thus
Vasy, 0d increases withF 2 Fc. On the other hand,
Vasy, 0d , ys12uadyua increases withy. On the same
plot we showV sy, 0d determined from the experimenta
data, which, within the error bars, is consistent with th
line corresponding to the RFIM and deviates considerab
from the DPD results, underlying our conclusion that th
experiments belong to the isotropic universality class.
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