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While there have been important theoretical advances in understanding the universality classes of
interfaces moving in porous media, the developed tools cannot be directly applied to experiments. Here
we introduce a method that can distinguish the isotropic and directed percolation universality classes
from snapshots of the interface profile. We test the method on discrete models whose universality class
is well known, and use it to identify the universality class of interfaces obtained in experiments on fluid
flow in porous media. [S0031-9007(98)07274-3]

PACS numbers: 61.43.Gt, 47.55.Mh, 68.35.Ja

Interface motion in a random medium presents us witing transition: for driving forceg” < F. the interface is
an archetype problem, with direct impact on variouspinned, and foF# > F, it moves with a velocity ~ f?,
phenomena in condensed matter physics, including fluigvhered is the velocity exponent anfl = (F — F.)/F..
flow in porous media [1], domain growth in disordered Numerical [7] and analytical [8] studies indicate that
magnets [2], and flux lines in disordered superconductorthe discrete models can be grouped into two universal-
[3]. In particular, much attention has been focusedty classes depending on the behavior of the QKPZ non-
on understanding the morphological evolution of anlinearity A. Isotropic models (i.e., models that have no
interface driven through a disordered medium. Two-growth direction determined by the random medium) have
phase fluid flow experiments have provided evidenceA = 0or A — 0 asf — 0. The scaling exponents of the
that the morphology of the interface can be either selfisotropicuniversality class can be determined analytically
similar or self-affine [4]. The self-similar morphology has from (2) with A = 0, obtaininga; = 1, 8; = 0.75, and
been successfully described by various percolation baset) = 0.33 in one dimension [9]. However, anisotropy
models, such as invasion percolation [1]. The motion andn the medium can induce & term that diverges at the
roughening of self-affine interface morphologies can belepinning transition. The exponents characterizing this
guantified by the global interface widtw (L, r), where anisotropicuniversality class can be obtained from an ex-
L is the system size. The study of discrete models andct mapping to directed percolation, providiag = 0.63,
continuum growth equations leads to the observation thg8, = 0.63, andé, = 0.63 [10,11].

the width follows [5,6] While in numerical simulations the universality class
B <t can b_e identified by measuring]_ for a tiIt_ed interfacg
w(L,t) ~ {L“ i > tx (1) [7], this me;hod cannot be ap_plled experlmgntally, since
o a constant tilt cannot be sustained. The scaling exponents

where 8 is the growth exponent and is the roughness obtained for paper wetting [10,12] are in excellent agree-
exponent. While both experiments and models have comment with the prediction of the anisotropic universality
firmed the applicability of scaling concepts, the obtainedclass. However, experiments on fluid flow between glass
roughness exponents are scattered between 0.6 and 112%ads provided exponents between 0.6 and 0.9 [13], not
[6], questioning the existence of universality, the founda-allowing to identify the universality class to which they
tion of the scaling hypothesis (1). belong. Thus, in order to properly characterize the experi-
Motivated by the success of the Kardar-Parisi-Zhangnental results we need to develop methods which, with-
(KPZ) equation in describing interface motion witter-  out relying on the determination of the scaling exponents,
mal noise, it has been proposed that interfaces in porousan identify and distinguish the two universality classes
media are described by the quenched KPZ (QKPZ) equadere we make a major step in this direction by introduc-
tion ing a method that can identify the universality class from
ok A shapshots of the interface at different time intervals. Af-
— =F + vV?h + — (Vh)* + 5(x,h), (2) ter demonstrating that the method successfully identifies
ot 2 the universality class of well-known models, we apply it
where n(x,h) represents the quenched noise in theto identify the universality class of interfaces obtained in
medium. This equation predicts the existence of a depinexperimental investigations.
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Consider an interfacen(i,r) moving in a porous dependence:

medium. Since the interface is rough, we can define w(s)[F — F'(s)]%
a local slopes; as being the linear fit to the interface V.(F,s) = =V (5)
in the region(i — 6/2,i + 8/2) (see Fig. 1). If there vo(F = Fo)

are slope-dependent terms governing the motion of the In conclusion, we expect that W (F, s) is independent
interface [such as the\(Vh)?> term in (2)], thelocal of the driving force, the interface belongs to the isotropic
velocityu; is expected to depend on the local it universality class, while a systematit dependence is
The main hypothesis of this paper is thidie local an indication that the interface belongs to the anisotropic
slope-dependent velocities satisfy similar scaling laws tainiversality class. Note that in experiments the driving
the average velocity We expect that the local velocity force is not available, but we can replace it with the
u(F,s), corresponding to the local slopg obeys the average velocity, becauséF) ~ (F — F.)’.
scaling law The advantage of this method is that it can be applied
1\ directly to both experimental and numerical data, as
u(F,s) ~[F = F)I, (3) long as we have snapshots of the interface at not too
where u(F,s) is the average local velocity of interface distant time intervals. The method is applied as follows:
segments with slope, F.(s) is the depinning threshold a discretized interface of total length is partitioned
corresponding to these segments, afidis the local into segments of lengths. The local slopes(i) for
velocity exponent. each of theL/5 segments is determined by fitting
In an isotropic mediumthere is no selected growth a line to it in the region(i — 6/2,i + 6/2), where
direction, thus the depinning threshold and the velocityi = §/2,36/2,...,L — §/2. We then repeat the same
exponent are independent of slope; iE.(s) = F. and partitioning for the interface captured at timet+ 7, and
0’ = 0. Consequently, the local velocities have the formcalculate the local velocities of each of the segments
u(F,s) = w(s)(F — F.)?, analogous to the scaling of the centered at asu(i,s) = [h(i,t + 7) — h(i,1)]/7. Asa
average velocity (F) = vo(F — F.)?;i.e., the only slope first step we calculate the average velocity of all segments
dependence comes in the nonuniversal prefaet@r).  with slopes when theaverage velocityf the interface is
Thus we expect that for an isotropic medium the ratio v, u(v,s) = [1/N(s)]> u(i,s), where the sum goes over
all segments which have the same slepandN (s) is the

Vi(F,s) = ulf,s) _ wis) (4)  number of such segments [naturaly, N(s) = L/8]. If
v(F) vo u(v, s) plotted as a function of is a parabola, it indicates
is independent of the driving force. that a slope-dependent nonlinear term is present in the

In contrast, one of the distinguishing features of angrowth equation. Finally, plottingV (v, s) = u(v, s)/v
anisotropic mediunis that the depinning thresholé{.(s),  allows us to distinguish the two universality classes: if the
decreases with. Furthermore, it has been shown [8] that u(v, s) curves collapse into a single one, we expect the
for globally tilted interfaces (i.e., interfaces which have amodel to belong to the isotropic universality class, while
nonzero global slope:), the velocity exponent is different if a systematicv dependence persists after rescaling, it
from 6, = 0.63 obtained for an untilted interface, and belongs to the anisotropic universality class.
it is equal to 1. Consequently, we cannot exclude the To test the applicability of the method, we calculate
possibility that for anisotropic medi@,, defined in (3) is "V (v, s) for models whose universality class is known [6],
different from6,. Thus for the anisotropic universality namely, the random field Ising model (RFIM) belonging
class the ratioV, = u(F,s)/v(F) has anontrivial F  to the isotropic universality class [14], and the directed
percolation depinning (DPD2) model [6,11] that is known
to belong to the anisotropic universality class. These
simulations also offer support for the scaling hypothe-
sis (3).

Random field Ising modek-The definition and the
o simulation techniques of the RFIM are described in
detail in Refs. [7,15]. We have found that the depinning
threshold of the local segments is independent of their
slope and it is equal to the depinning threshold of the
average velocityF.. Also, we found that the velocity
| exponent of the local velocities is constant and it is
8 | equal tod;. Figure 2a shows the local velocitiasv, s)

FIG. 1. In the interval of lengttd around the position the versus Fhe local slope for dlfferen'_[ dr_IVIng forces. The

interface is fitted with a straight line of slopg. Assuming para_bollc_ shgpe of the Curves |nd|cates_ that the KPZ
that in a consecutive interfade(i,s + r) the slope is stills;, ~ nonlinearity is present, in agreement with the results
the local velocity of point is Ak /. obtained from the global tilt measurements [7]. As

h(i,t + 1)
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FIG. 2. RFIM model. (a) Local velocity(v,s) versus the

local slopes for driving forces f = (H — H.)/H. ranging FIG. 3. DPD2 model. (a)(v,s) versuss for driving forces
from 0.015 (bottom curve) to 0.076 (top curve). The systemf = (F — F.)/F. ranging from 0.016 (bottom curve) to 0.07
size is L = 500 and each result was averaged over 200(top curve). The system sizeis= 20000 and each result was
realizations of the disorder. (b) The same curves rescaled bgveraged over 500 realizations of the disorder. (b) The same
the average velocities. curves rescaled by the average velocity.

Fig. 2b indicates, theV(v,s) curves collapse into a dated glass beads approximaté®0 + 20 um in diame-
single function, thus confirming that the RFIM belongster. The apparatus was continually agitated during filling
to the isotropic universality class. to help ensure a reasonably uniform packing of the beads.
DPD model—The DPD2 model, introduced by Tang Water was injected by a syringe pump through a series of
and Leschhorn, is described in detail in Refs. [7,11]. Assmall holes in a tube aligned along one of the narrow ends
a first step, we investigated the slope dependenck/of of the cell, approximately mimicking the ideal case of uni-
and#’. The scaling olu(F, s) has the following features: form injection along a line. Images were recorded at 2-sec
(a) F.(s) decreases withs| obeying the same scaling law intervals with a CCD camera and digitized with a resolu-
as F.(m) corresponding to tilted interfaces [8]; (b) The tion of 512 X 480 pixels. Only the central 17 cm of the
velocity exponent is independent of slope and it has theystem was recorded to avoid edge effects. The overall
value ) = 1. Consequently, while the average velocity scale was270 um/pixel, or about 1.5 beadpixel. All
has an exponenf, = 0.63, the local segments are all velocities were measured in units of bead diameters per
tilted from their local hard direction of depinning, and second.
thus they have! = 1 [8]. Figure 4a shows the local velocity curves obtained from
As shown in Fig. 3a the parabolic shape of il®,s) the experimental data. Their shape is consistent with a
curves indicates the presence of@h)? term. However, parabola, indicating the presence of the KPZ nonlinearity
in contrast with the results obtained for the RFIM, there is[16]. Figure 4b presenty/ (F,s) versus the local slopes
a systematic shift in theV, (v, s) curves with increasing for six different experiments. While there is some scatter-
v, confirming that the model belongs to the anisotropicing in the data collapse due to the asymmetry of the curves
universality class. [16], in general we can see that there is no systematic shift
Experiments—The experiments were performed in a with the increasing velocity, indicating that, while there is a
thin rectangular Plexiglas cell af25 X 41 X 0.16 cn®,  KPZ nonlinearity (suggested by the parabolic shap&0f
similar to that used in Ref. [13], and filled with unconsoli- the experiments belong to the isotropic universality class.
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EXPERIMENT A convincing summary of our results is shown in
0.25 Fig. 5, where we plotV (v,0) as a function ofv for
v the models corresponding to the two universality classes.
v v We see that, for the RFIM,V;(v,0) is independent of
0.20 - v v v , the average velocity, while, for the DPD moda¥, (v, 0)
< < M « “ increases systematically with Indeed, the driving force
& < « « dependence of the = 0 portions is(F — F.)? 7. In
S0 A . 4 1 thecase of the DPD2 mode), = 0.63 and# = I, thus
S . 4 A A 4 . . V,(v,0) increases withF — F.. On the other hand,
i * e . ® . V,(v,0) ~ v170)/% jncreases withuv. On the same
0.10 r = . . . . . ] plot we show V (v, 0) determined from the experimental
o ° ° ° ° o data, which, within the error bars, is consistent with the
(@) line corresponding to the RFIM and deviates considerably
0.05 from the DPD results, underlying our conclusion that the
experiments belong to the isotropic universality class.
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