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Randomness is an essential tool in many disciplines of modern sciences, such as cryptography, black
hole physics, random matrix theory, and Monte Carlo sampling. In quantum systems, random operations
can be obtained via random circuits thanks to so-called g-designs and play a central role in condensed-
matter physics and in the fast scrambling conjecture for black holes. Here, we consider a more physically
motivated way of generating random evolutions by exploiting the many-body dynamics of a quantum
system driven with stochastic external pulses. We combine techniques from quantum control, open
quantum systems, and exactly solvable models (via the Bethe ansatz) to generate Haar-uniform random
operations in driven many-body systems. We show that any fully controllable system converges to a unitary
g-design in the long-time limit. Moreover, we study the convergence time of a driven spin chain by
mapping its random evolution into a semigroup with an integrable Liouvillian and finding its gap.
Remarkably, we find via Bethe-ansatz techniques that the gap is independent of g. We use mean-field
techniques to argue that this property may be typical for other controllable systems, although we explicitly
construct counterexamples via symmetry-breaking arguments to show that this is not always the case. Our
findings open up new physical methods to transform classical randomness into quantum randomness, via a

combination of quantum many-body dynamics and random driving.

DOI: 10.1103/PhysRevX.7.041015

I. INTRODUCTION

Randomness generating quantum operations play a
central role in our understanding of many various physical
phenomena [1]. Recently, with the development of quan-
tum information processing, random operations have found
new applications, not only as a theoretical tool but also in
practical protocols. Indeed, they are used in quantum
cryptography [2], quantum process tomography [3], fidelity
estimation [4], quantum communication and entanglement
sharing [5-7], quantum data hiding [2,8,9], and entangle-
ment generation [10-13]. Because of their crucial impor-
tance, several procedures have been developed to generate
either truly random or pseudorandom operations via
random quantum circuits [4,14-20]. However, from the
physical point of view, these protocols often have a
complexity comparable with universal quantum computa-
tion, being based on the application of a sufficiently large
set of quantum gates. Here, on the other hand, we consider
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a more physically inspired approach, based on quantum
control, where the quantum system is controlled by random
classical pulses.

Quantum control is an established research field at the
overlap of control theory and quantum mechanics.
Essentially it provides a framework to steer a quantum
system through Hilbert space by applying time-dependent
fields. Controllability is a powerful algebraic tool to fully
characterize when any possible unitary evolution in the
system’s Hilbert space can be obtained from the
Schrodinger equation with a suitable choice of time-
dependent fields. The central question of this paper is
what happens when we apply random fields to a control-
lable system. We show, under some conditions, that after a
suitably long mixing time the corresponding random
unitary evolutions of the system converge to a uniformly
random set, as measured by the Haar measure. Therefore,
one of the central result of this paper is that driving a
controllable quantum system with stochastic control pulses
offers a natural approach to generate random unitary
operations with physical processes.

Within this picture, the estimation of the mixing time is
the crucial theoretical aspect. We use several tools from the
theory of open quantum systems and many-body physics,
such as low-energy effective Liouvillians, mean-field
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techniques, and the Bethe ansatz, to find an accurate
estimation of the mixing time in several situations. In
particular, we focus on a one-dimensional system with edge
control due to the availability of analytical tools, as well as
the intuitive interpretation available in such a system with
Lieb-Robinson bounds and spin waves. This particular case
is also motivated by the current experimental capabilities in
integrated photonic circuits [21,22], where different sto-
chastic control pulses can be simulated by changing the
spatial extent of the waveguides via electrically tuned on-
chip heaters [23]. In those systems a major recent result has
been the experimental measurement of boson sampling
[24-26], a problem that is believed to be hard to simulate
classically. Random unitary operations and higher-dimen-
sional systems are required in boson sampling to have a
convincing demonstration of quantum computational
supremacy [27]. Pseudorandom operations in those experi-
ments are currently obtained via a finely tuned network of
several beam splitters and phase shifters. The different
approach we present here is based on the simpler imple-
mentation of noisy quantum walks and, therefore, can offer
an advantage to perform boson sampling experiments on
larger scale.

A further motivation for this paper comes from quantum
control itself. The algebraic tools developed in quantum
control are typically not able to provide an estimation of
the control time needed to reach a given target operation.
In view of practical applications, this is a big handicap,
because noise will always limit the total time available to an
experimenter. It is therefore of interest to find estimates of
such times. The analytical expressions for the mixing time
obtained in this paper also provide an easily computable
upper bound for the control time. Indeed, by definition,
after the mixing time the system has already explored all
possible unitary evolutions with stochastic control pulses.
This implies that, apart from measure zero sets, at this time
any evolution is achievable with a suitable choice of the
control field.

Finally, another motivation for the present work is for the
problem of fast scrambling of quantum information. The
problem was first identified in the setting of black hole
physics [28,29], where it was conjectured that black holes
start evaporating information when most localized micro-
scopic degrees of freedom (d.o.f.) become inaccessible
without measuring a constant fraction of the whole system.
Unfortunately, identifying mechanisms for fast scrambling
has been challenging, and providing tools to rigorously
analyze scrambling times even more so. Moreover, explicit
constructions of fast scramblers [30] are not directly
inspired by physical models. Here, we describe a physically
motivated process that could lead to new insights in the
design and analysis of fast scrambling models.

The paper is organized as follows. In Sec. II, we show
how to obtain Haar-uniform unitary evolutions (i.e., a
unitary design) via quantum control techniques. We focus

on ¢-design, not only for its applications in quantum
information, but also to quantify the distance with the
target uniform distribution. We consider Markovian sto-
chastic control pulses and introduce some general tech-
niques for the estimation of the mixing time. In Sec. III, we
map the problem of unitary design to a general many-body
problem, studying its mean-field solution and discussing
the limitations of the latter approach via symmetry-break-
ing arguments. In Sec. IV, we focus on a specific one-
dimensional model controlled at one of its boundaries. We
show that this model in certain limits can be mapped to an
exactly solvable model and we study its analytic solution
via Bethe-ansatz techniques. A central result of this section
is that the mixing time for this particular model is
independent of the number of copies ¢. Intuitively, the ¢
independence implies that pseudorandom unitaries
obtained with random control pulses approximate all the
moments of the Haar distribution with the same accuracy.
These predictions are then corroborated with numerical
simulations. In Sec. V, we show other applications for
boson sampling, the decay of correlations in spin chains,
and the estimation of the control time. Conclusions and
perspectives are written in Sec. VL.

I1. UNITARY DESIGNS VIA
QUANTUM CONTROL

Physical quantum systems are modeled via a
Hamiltonian operator H, which describes the interactions
between the components of the system. When external
control is applied to the system, its evolution is represented
by a time-dependent Hamiltonian,

H(r)=H+ g(1)V, (1)

where g(t) is an external control pulse and V is an operator.
If d is the dimension of the Hilbert space, then H and V are
d x d Hermitian matrices while g(7) is a scalar function
depending on time r. For multiple pulses, H(r) =
H + > ,g:(t)V,. After some time T, the combined action
of the natural interactions and the external pulses is a
unitary operation U="T exp|—i [ H(s)ds], where T rep-
resents the time order operator. In general, the amount of
different unitary operations U that can be obtained from the
dynamics of the system is limited. However, if the system is
fully controllable, then any operation can be obtained with
a suitable engineering of the control pulse. In other terms,
given any U € SU(d), it is possible to find a control profile
g(1) such that U=7T exp[—i [I H(s)ds], where the control
time 7 depends on the target unitary U. There are many
powerful theorems to test controllability. In general, a
system described by the Hamiltonian as in Eq. (1) is
controllable [31] if H, V and their nested commutators
[A,[B,[C,...]]] (where {A,B,C,...} € {H,V}) generate
the Lie algebra of SU(d). Although the algebraic con-
ditions for controllability are well known, it is still an open
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problem in quantum control to estimate the control time 7',
given also the knowledge of the target gate U and the
operators H and V. For fully controllable systems there
exists a minimal control time, generally unknown, such that
all target gates can be obtained exactly at that time [32]. For
small dimensional systems, analytic bounds of such uni-
versal control time may be found in terms of quantum
speed limits or Cartan decompositions of spin systems. In a
high-dimensional system, such tools become intractable. If
the system is drift free (H, = 0), control times are trivial or
determined only by energy bounds on the time-dependent
fields. We are instead interested in systems where the
controls need to work together with a drift to achieve full
control (so-called weak controllability). In such a case, the
time scale is bounded by the dynamics of the drift and
provides insights into the many-body physics triggered
by it.

We now consider the control pulse as a stochastic
process, namely where a certain profile g(7) can be applied
to the system with a probability p,;, and study the
distribution of the resulting unitary operations. Such a
random pulse can be obtained, for example, by considering
the Fourier expansion of the control signal,

() =Y Ay cos(ant + gp), (2)
P

where the amplitudes A, the phases ¢, and possibly even
the frequencies w; are random variables. We use the
notation E[-] to denote the average over those random
variables. Repeating the experiment with many random
signals, one obtains a distribution of unitary matrices,
where each matrix U is obtained with probability p.
Random unitary operations play a central part in many
quantum information protocols. A pivotal role in many
applications is played by the uniform distribution, also
called the Haar distribution, which is invariant under the
action of the unitary group itself. In the following sections
we study when, and how rapidly, the distribution py,
converges to the Haar-uniform distribution.

A. Comparing random evolutions: Unitary g-design

Obtaining truly uniform random unitaries is a very
hard task, and normally one observes pseudouniform
distributions which approximate the uniform (Haar) mea-
sure up to some errors. Pseudouniform distributions can be
obtained with random quantum circuits [4,14-18], but
these circuits typically require many different gates that
make the implementation in physical systems demanding.
Recently, alternative protocols based on physically inspired
time-dependent Hamiltonians have been proposed [33,34].
Nonetheless, these approaches still require that all the
interactions inside the system should change in time, an
assumption that currently is beyond reach in many

experimental platforms. Here, on the other hand, we focus
on a general scheme which occurs in most quantum
systems, namely, when the natural and time-independent
interaction H experienced by the system is paired with an
external control, as in Eq. (1).

There are many ways of comparing the distance between
two quantum processes. When dealing with randomness
generating processes, it is often convenient and relevant to
work with approximate g-designs [35]. A unitary g-design
is a distribution of unitaries, possibly discrete, that gives the
same expectations of the Haar distribution for polynomial
functions of degree at most g (see, e.g., Ref. [36]). It is
often inaccessible experimentally to distinguish between
truly random processes and approximate ¢g-designs.
Formally, approximate ¢-designs are defined by the
requirement that

nmav@«n@ﬂy—/im%aku%mwvm <e.

(3)

for suitably small e, where ||-||, refers to the diamond norm,
E;, denotes an average over some given distribution of
unitaries p;, and pygao (dU) is the Haar measure. This is the
most stringent distinguishability measure between quantum
processes, and guarantees that no single (global) measure-
ment on the system and a possible ancilla can distinguish
between the two processes with probability larger than €. A
related notion [18] is that of quantum expanders, which are
defined by

m%m—wdwwaum%wwwn<a

(4)

where X®44 = X®4 @ (X®4)*, Equation (4) can be regarded
as the vectorized version of Eq. (3): given an operator
X =1 X;i|i){(jl, its vectorized form s | X)) = > . X;;|ij).
However, it is strictly weaker, and the separation between
the two bounds can be exponential in the system size.
However, Eq. (4) is often much easier to work with in
practice [18]. It follows from the definition that |[AX)) =
A ® 1]X)) and |XA)) = 1 ® AT|X)). Therefore, X®%4 is
the vectorization of the superoperator p > X®4pX®4T,
Quantum expanders and g¢-design compare probability
distributions of unitary matrices by comparing the
“moments” of the distribution, namely, random processes
that depend polynomially on the random variable.
Two close distributions of unitary matrices have similar
moments, as shown in Ref. [14], e(u, q) < 2¢W (4, fitaar )
for all measures p, with YV the Wasserstein distance [37],
W1, ) = supy| [ f(U)[u1(dU) = pp(dU)]|, where f is
a 1-Lipschitz function and U is a unitary matrix. The
Wasserstein distance is a measure between classical prob-
ability distributions, and hence one can use a number of
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classical Markov chain mixing tricks to bound it. However,
we do not use it, as we instead use tools from condensed-
matter physics to bound the mixing time.

In the quantum control setting, E;; in Egs. (3) and (4) is
the average over many unitary operations obtained after the
application of random pulses up to a certain time 7.
Therefore,

E [U®qu®qT]

= E[(Te ) (T Sy ) s)

To simplify the theoretical description of this problem we
make two assumptions. (i) We assume that the stochastic
process ¢(t) is Gaussian. This is a reasonable approxima-
tion in many cases and can be obtained, e.g., via Eq. (2)
when K > 1, in view of the central limit theorem. (ii) We
assume also that g(r) is harmonic, namely, that E[g(z +
5)g(t)] = ¢(s) is independent of z. Moreover, without loss
of generality, the harmonic process can be chosen such that
E[g(?)] = 0. In view of these assumptions, exploiting the
results of Refs. [38,39], in Appendix A we find a closed-
form expression for Eq. (5). That expression can be
drastically simplified if we assume that the correlation
time is finite and there exists a suitably large 7' such that
Tc(Ts) = (6/2)8(s), where & is the Dirac delta function
and o is a constant. In the long-time limit, > 7 >
[[H]||, ]| V]|, one finds then that

Ey[U®IpUBTT] = 7'F'p, (6)

where
Lip = ~i[H®.p| =S [VOI. [V pll. (1)
and X®9 =X @® X @ ..., with @ the Kronecker sum

X®Y=XQ®1+1®Y. Therefore, with these three
approximations, the long-time dynamics of the stochastic
process is Markovian and described by the above Lindblad
equation [40,41], where the operator L7 is called
Liouvillian. Similarly to what happens with the replica
trick in statistical physics [42], the average over the noise
effectively couples the initially uncoupled copies.
Sometimes we use the more convenient vectorized form
of the above equation,

o O [oms\2
L, = =ifi® -2 (VG") , (8)
where X =X ® 1—1Q® X7 is the vectorization of the
commutator [X,-]. If t— oo, then E,[U®pU®?"] con-
verges to one of the steady states of the Liouvillian £9.
In the following section, we prove that the steady-state
manifold of £? coincides with the state space after
averaging over the Haar measure, namely, that all the

moments of the random unitary evolution converge to the
averages over the uniform distribution for 7 — co.
Moreover, we study the mixing time via the gap of the
Liouvillian and show that, in several cases, the latter is
independent of g. Physically this is important, because it
implies that all the moments converge (in 2-norm) at the
same time, as given by the inverse of the Liouvillian gap,
and that, accordingly, we can use the latter to estimate the
mixing time of the random unitary evolutions.

B. Steady state of the Liouvillian evolution

We start by describing the steady state of £4. In general,
the dimensionality of the steady state set is in one-to-one
relation with the conserved quantities of the Lindbladian
evolution [43]. Given an orthonormal basis {M,} of the
steady-state space, equipped with the standard Hilbert-
Schmidt product, there exists a dual operator set {J,, } such
that £97J, =0, where L' is the Liouvillian operator
Eq. (7) after the substitution H — —H. The latter sub-
stitution does not change the dynamical algebra, so
algebraic considerations based on controllability hold also
for £97. From the conserved quantities J , and their dual
operators M, one finds the steady state as po =
> M, Tr( ”po) where pg is the initial state [43]. Since
the system is controllable, repeated commutators of H®¢
and V®¢ give rise to the algebra su(d)®4. Therefore,
because of the Schur-Weyl duality [44], the only operators
that commute with both H®7 and V®4, and more generally
with Eq. (5), are index permutation operators. Let S, be the
group of permutations of the set I, ..., g and let P, 6 € S,
be the operator that permutes the index of the tensor copy
H®4, namely, the operator that maps Wiiiy..i, 1O
Wo(iy).olis)....a(i,) fOr €ach set of indices i;. It is simple to
show that P P, = P,, and that these operators form a
unitary representation of the permutation group S,.
The index permutation operators are the only conserved
quantities of the Liouvillian, £4(P,) = L7"(P,) =0, so
P = 2 sPsPs. However, since the operators P, are not
orthonormal, one has

=Y p,Tr[P;P, (9)

nES,

Tr[Pipo] = Tr[Pipe)

wherein the first equality holds because P, is a conserved
quantity. By inverting the above equation, we find that

Poo = lime™Capy =

t—o00

S (M), TePLplPy. (1)

n,o

where M, = Tr[P}P,]. It has been shown in Ref. [45] that

M,, = d""'®) where I(c) is the number of cycles in the
cycle decomposition of ¢. The dimensionality of the
steady-state manifold is then given by the matrix rank of
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M. One finds that the steady-state degeneracy is ~e©(9).

The right-hand side of Eq. (10) is exactly equal to the
integration over the Haar measure (see, e.g., Proposition 3
in Ref. [45]). Therefore, we show that

limetﬁqp—/dUU@’qu@qT, (11)

—00

namely, that the infinite time evolution of the system under
the Liouvillian Eq. (7) is equivalent to an integration over
the Haar measure.

In summary, we show that by driving a controllable
system with random control pulses Eq. (2), where the
stochastic process is Gaussian, harmonic, and has a finite
correlation time, the resulting average evolution of
the quantum system converges for t — oo to a uniform
integration over the Haar measure.

C. Construction of excited states

Certain excited states of the Liouvillian Eq. (8) can be
built up directly from the excitations of the individual

quantum systems. It is convenient to separate L, from
loc

Eq. (8) into local terms £;°° acting only on the kth copy, and
a nonlocal interaction. Indeed,

q

q
(02 o o
L,=Y L -5 PIRAA (12)
k=1 k#l=1
Ly = —ift, =S V3. (13)

where H X \O/k, and accordingly £I°¢, act only on the kth
copy. Therefore, each L£¢ for different k is equivalent
to a single-copy Liouvillian £;. We assume that the
operator £, is diagonalizable (with right and left eigen-
vectors) and call

Ly =) Al (14)

its eigenvalue decomposition, where the eigenvalues 4; are
ordered with decreasing real part (starting from zero) and
I1; are the corresponding eigenprojections. The operators

(i) _ ®U-1 (g-J)
7 =" @) @ Mg’ (15)

are then eigenprojections of £9, with eigenvalue ;. To
show this, we note indeed that HE-” is proportional to the

vectorization of the identity operator in each copy, aside
from the jth one, since Iy is the projection onto the steady
state and, accordingly, TT(g)(X) = p, Tr[X], which is pro-
portional to the identity operator. Therefore, \O/IH;") =0

[because [V,,Hﬁi) (X)] = 0 for all X], as long as [ # j. On

the other hand, for [/ =j, it is \o/'k‘o/,l'Iy> =0, since by
construction k # j. This shows that Eq. (15) is a projector
on the eigenspace of £, with eigenvalue 4;. Moreover, from
the operators Eq. (15) one can also construct the eigenstates
of £, that act on the irreducible representations of the
symmetric group—indeed, since the permutation operators
P, commute with the Liouvillian, then PG(HY))P{T; is an
eigenprojection of £, for all o.

In summary, the eigenstate of £; with the lowest gap can
be used to construct some exact eigenstates of £, although
it remains to be shown that they have the smallest gap.
These eigenvalues have degeneracy at least as large as the

()

ground-state degeneracy, since P,IT;

tor with eigenvalue 4; of L.

is also an eigenvec-

D. Convergence time

Given the results of the previous section, we want to
know how rapidly the semigroup converges to the uniform
distribution Eq. (11). In Appendix B, we provide a brief
introduction to the convergence theory of dynamical semi-
groups, and argue that when the generator is not reversible
(detailed balance), the convergence is governed by the
singular value gap of the channels rather than the spectral
gap of the generator. In general, we want to bound the
trace norm, but it is more convenient to analyze the 2 — 2
norm:

||etm — Ul £ dquetm —Uxllr-2 (16)

where U, = lim,_, .,¢"“? and d is the dimension of the local
Hilbert space. Let s;(¢) be the singular values of e’*,
ordered from largest to smallest. The largest has magnitude
one. Then the singular values of (e'* —U,,) are strictly
smaller than one, and

e = Usalla—z = suplll (e ~ L))l (17)
v

If the Liouvillian were reversible, then the singular values
5;(t) would be given by e, where 4; are the eigenvalues of
L. Unfortunately, the semigroups that we are working with
are not Hermitian. Nonetheless, from Eq. (B5), we find that
the 2 — 2 norm can be bounded in terms of the eigenvalues

and eigenvectors of L7 as

e = Usllpoy < D ™I JIRSIL ). (18)

Ji4;#0

where A ; are the eigenvalues of £4, and R s L j are its right
and left eigenvectors, satisfying tr[L}'Rk] = dj.

In general it is very difficult to bound Eq. (18), since the
norms of the eigenvectors can be very large, and it is often

041015-5
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difficult to get good bounds on the spectrum. Nonetheless,
in Appendices B-D, we study both the weak (6 = ¢ — 0)
and strong (¢ = €~! - o0) coupling limits, and show the
following properties: (i) the spectral gap is O(¢), in both
the strong and weak coupling limits—for strong driving,
the decrease of the gap for larger o is consistent with the
general occurrence in open systems [46]; (ii) the eigen-
vectors satisfy |R;) = S|®;) and |[L;) =S"'|®;), for
some invertible matrix S and an orthonormal basis |®;).
The condition number of S is «(S) = ||S||||S7!| and
satisfies k(S) = O(1 + €). Moreover, in Secs. III B and
IV we discuss some cases where the Liouvillian gap is
independent of g. Models whose mixing time is indepen-
dent of g have also been obtained in Ref. [34], at the
expense of more stringent requirements on the fluctuating
terms of the Hamiltonian.
We then get that

e = Ugllamn < e dk(S)?, (19)

where 1* is the eigenvalue with the smallest nonzero real
part and «(S) = O(1 + ¢). In terms of the trace norm, we
then get that

sup||e™ (p) —Us (p)| < e d¥x(S)>.  (20)

P

In the weak or strong coupling limits, the condition
number will be of order 1, yielding a mixing time of
T* ~4qlog(d)/A*. We lose a lot in two steps of the bound,
both times involving a term of order d?9. In certain cases,
this is overly pessimistic. For instance, for a tensor product
of n semigroups, the mixing time is 7* ~ log(n)T7, where
T7 is the mixing time of a single subsystem [47]. We might
ask whether the mixing time of Eq. (7) is also of the order
T* ~log(q)T;, with T} = O(1/4*).

We can see that this is not the case from the following
argument,

[ —Uglliy 2 e = Ussllr- (21)

> Z etRe[,lj] ; (22)
JjiRe[d;]=—2"

since the lower bound is saturated when § = 1, and we
have isolated the subspace with eigenvalue A*. Now, in
Sec. I1 C we argue that if the gap of £ is the same as the
gap of L', then we can construct the eigenvectors with
minimal nonzero eigenvalue of £¢ from those of £!. In
particular, the size of this subspace is at least as large as the
size of the ground-state subspace. But we know that the
ground-state subspace has dimension d, > ¢?@. Hence,
the first excited subspace does as well. Then,

e = Us |-y = €O De". (23)
Thus, the mixing time is at least 7* ~ O(g/A*), even in the
weak coupling limit.

Finally, we comment on the distinction between the
singular value gap of e’* and the eigenvalue gap of £. We
know that as t — oo, the singular value gap s*(¢), namely,
the largest singular value s;(r) # 1, converges to e
however, it is not clear how rapidly this occurs. This is
discussed in the numerical studies of Sec. IV, where we
show that, in both the strong and weak coupling limits, the
difference between the spectral gap and the singular value
gap vanishes on a time scale much smaller than 1/4*.

III. MANY-BODY THEORY
OF UNITARY DESIGN

In the previous section we argue that bounding the
spectral gap of the dynamical semigroup is in many
relevant cases sufficient to get good estimates on the
mixing time of the process. Here, we study such a gap
by introducing a general mapping from a control
Liouvillian to a non-Hermitian many-body Hamiltonian,
and then study its mean-field solution. The mean-field
approach has already been successfully applied [15] to
estimate the convergence time of permutationally invariant
random quantum circuits, where at each step a gate from a
universal set is applied to a random pair of qubits.
Moreover, in Sec. IV we analyze an integrable example
via Bethe-ansatz techniques, from whose solution it
appears that the eigenstates with the smallest gap are
constructed from the steady states by changing the internal
state of a single unpaired particle. This fact shares several
similarities with what happens in bosonic condensates, and
in particular with their mean-field solution [48]. Motivated
by these two examples, it is natural to apply the mean-field
analysis to generic Hamiltonian evolutions with random
pulses. However, although the predictions of the mean-field
solution are consistent with several numerical simulations,
we clarify that this approach cannot be general by con-
structing explicit counterexamples via symmetry-breaking
arguments.

A. Mapping to a non-Hermitian
many-body Hamiltonian

A powerful method for estimating the spectral gap of the
Liouvillian is to map Eq. (8) to a many-body problem, and
then use powerful techniques developed in condensed-matter
systems to obtain the spectrum. In order to find this mapping,
we introduce a basis b,; = la) (B, a,p=1,...,d and call
By = b%]. These operators satisfy the SU(d) commutation
relation, [B,g, B,s] = B,s0s, — 6,5Bp,, and therefore define
a reducible representation of SU(d). Moreover, X®7 =

X @1-1@X%T =3 (X,sBl, — (XT),4B.,), where
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we set Bgﬂ =By ®1 and Biﬁ =1 ® B,s. Hence, the
Liouvillian can be written as

= _leﬂlﬁ af B/ia)

A5 ZV(I/)’ V;/5

aﬂy&

Bj,)(Bls—By,). (24)

The form Eq. (24) is a convenient starting point because it
depends only on the original d x d operators introduced in
Eq. (1), while the complicated action into the g-copy Hilbert
space is transferred into the basis operators B.

The operators B form a reducible representation of
SU(d) and can be decomposed in terms of irreducible
operators that act on different invariant subspaces of the
original (C?)®¢ Hilbert space. Indeed, because of the
Schur-Weyl duality, every irreducible representation of
(C4)®4 is decomposed as (C¥)®1 =®, P* ® U*, where
P* is an irreducible representation of the symmetric group
S, and U* an irreducible representation of SU(d). A
convenient expression for the fully symmetric and fully
antisymmetric subspaces is given by [49] B,; = alaﬂ,
where a, and a); are either bosonic or fermionic creation
and annihilation operators. Moreover, even a generic
(though reducible) representation can be constructed from
either bosonic or fermionic annihilation operators by add-
ing an extra index and writing B,z = Zualuaﬂu. From the
definition of B one realizes that in this generic representa-
tion there are exactly ¢ particles since

Zaluaau = ZBaa = qﬂ (25)

For convenience, we also perform the calculation in the
basis where V is diagonal. Therefore, Eq. (24) becomes

. t ¥
Ly==i> Hoplal ap — a), auy) (26)
afu
s Zvaavﬂﬂ<nauT aul)(nﬂvT - nﬂvi)v (27)

aﬂ uv

where n, = aiax. Thanks to this general representation, the
many-body Liouvillian has been mapped to a many-particle
Hubbard-like problem Eq. (27) where the hopping part is
anti-Hermitian. The original dependence on ¢ is mapped to
the number of particles, namely to the constraint Eq. (25)
that there are exactly ¢ particles in the “spin-up” and “spin-

2
down” states, aullaut = aulau| = qﬂ

B. Mean-field approach

We consider here the decomposition Eq. (12) where each
E}("C for different k is equivalent to a single-copy Liouvillian

L. From the above decomposition it is clear that if the gap
of £1°¢ = 3~ L} equals the gap of £, then the Liouvillian
gap A* is independent of g.

Extending the treatment of Sec. III A, we define a local

basis of operators Baﬁ =B! Sayp, +6"‘TﬁTBi1/3¢’ where

afr
@ = (a4, a,), and similarly for $, are multi indices running
from 1 to d?. Therefore, we can write the decomposition
Eq. (12) as

We assume that Eg’c is diagonalizable (with left and right
eigenvectors) as (L¢);5 = > Zajh, /}1 for a nonsingular

matrix Z, where j = 0 corresponds to the steady state. Then
we define new bosonic operators via the nonunitary
Bogoliubov  transformation &} = >, Zsas,
>°a(Z71),za5. These operators still satisfy the canonical
commutation relations [a;, a;'] = 5 j» though a;" # al. As
we show in Appendix G, in th1s language, the steady state of
the many-body Liouvillian Eq. (28) is therefore the boson
“condensate” |Q) = [(a)?/,/q!]|0), where [0) is the
bosonic vacuum. Elementary excitations with respect to
this state can be constructed with a Bogoliubov (mean-field)
approach by defining a variational wave function
W) = S wil(@0)*"//Ta = 1)1)a;{0), for j # 0 and opi-
mizing over the amplitudes y ;. These states are motivated by
the analytic solution of the integrable model considered in
Sec. IV, where the excited states with minimal gap have a
single quasiparticle excitation. Although mean-field tech-
niques have been highly studied mostly for Hamiltonian
systems [48], they can also be extended to non-normal
operators [50] where left and right eigenvectors form a bi-
orthonormal basis. Within this variational formalism, we
show in Appendix G that the four-body interaction in
Eq. (28) does not alter the eigenstates, which are therefore
exactly given by the bare single-particle eigenstates
Q) = [(ag)*"/+/(q —1)!]a;|0) with exact eigenvalue
A s for any g. This shows that the eigenvalues, at least in the
low-energy subspace, are not “renormalized” for larger
values of g. The obtained states |Q*°) are indeed the
symmetric combination of Eq. (15), which, as shown before,
are an exact eigenstate of £,. Within this simple mean-field
treatment there are no other eigenvalues with a smaller
gap than min|Re[4;]|. Therefore, the final outcome of the

gll':
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mean-field treatment is that, at least for fully symmetric
states, the Liouvillian gap is constant as a function of q.

C. Counterexample to the mean-field treatment

The mean-field treatment of the previous section, based
on single-particle excitations, predicts that the Liovillian
gap is independent of ¢, as long as the mean-field approach
is accurate. Also, the rigorous Bethe-ansatz treatment of
Sec. IV, valid for a particular integrable model, shows that
the Liouvillian gap is independent of g, by explicitly
showing that the states with minimal gap are made by
unpaired particles. That rigorous treatment thus justifies the
mean-field approach, at least for that particular model.
However, here we show that the predictions of the mean-
field theory cannot be general by finding a counterexample
where a state with two bounded particles (hence, appearing
for ¢ > 2) may have a lower gap.

We construct this counterexample via symmetry argu-
ments. Clearly, in the fully controllable case H and V must
not share a symmetry—otherwise only symmetric unitaries
can be obtained—but this lack of common symmetries is
not sufficient. Indeed, generically, in tensor copies there
may be other nontrivial symmetries but, because of the
Schur-Weyl duality, in the fully controllable case only the
permutation symmetries can remain. Suppose now that our
system is not controllable because there exists an operator
X, different from a permutation operator, such that
[H®? X] = [V®” X] =0 and that the solutions of
[H®4, X] = [V®4,X] =0 for ¢ < p are only permutation
operators. In this case, Eq. (11) would be valid for g < p,
but not when p = ¢, as the symmetry X introduces an extra
steady state. Then, suppose that we restore full control-
lability by adding a small O(e) term in either H or V such
that the operator X isnot a symmetry anymore (we say that

the symmetry X is explicitly broken). This splits the extra
steady state into an eigenvector with small O(¢) eigenvalue,
which, for small enough €, can be smaller than the gap,
obtained when ¢g < p. If this counterexample can be
constructed, then the gap for ¢ < p may be different from
the gap at ¢ = p. Below, we show that this construction is
indeed possible already with p =2 and that these extra
eigenstates correspond to bound particles in the many-body
framework.

As shown in Refs. [51,52], a rather surprising necessary
and sufficient condition for controllability is that there are
exactly two independent solutions of the equations
[H®2, X] = [V®2, X] = 0. Nonetheless, a simpler necessary
condition (though not sufficient [51]) is the absence of
nonzero solutions to the set of equations

QH" + HQ = QVT +VQ =0. (29)

Taking the complex conjugate of Eq. (29), we find that Q
satisfies Q*H + H'Q* = Q*V +VI'Q* =0, as H and V

are Hermitian. Because of this, QQ* commutes with both
H and V and, owing to Schur’s lemma, QQ* is proportional
to the identity. Reference [53] proved that QQ* = 1 when
Q is symmetric and QQ* = —1 when Q is antisymmetric.
If there are nonzero solutions of Eq. (29), then the system is
not controllable and there are extra steady states such as the
bosonic paired state for g = 2:

= Z(Q ® Q*)aﬁaf}agm). (30)

ap

|V’Q>

Indeed, for both Q symmetric and antisymmetric, Q ® Q*
is symmetric, thus justifying the bosonic approach. The
proof can be readily obtained from Eq. (28), indeed for both
X=HV:

Xyéa a6|l//Q y&a a&ZQaﬂ a ﬂ

=[(x0) ® Q* +(0XT) ® 0*+
-0 ® (X'0) - 0 ® (Q"X)];3alal|0),

so because of Eq. (29),

V~5a azlyo) = 0, namely, L,|y ) = 0. Hence, the extra
symmetry Q introduces a pairing between bosons in the
steady state, which is expressed by Eq. (30)—note that it is
indeed a pairing because [Q ® O], FEa QaQZ since Q is a
matrix.

As discussed before, we can restore controllability by
explicitly breaking the symmetry Eq. (29) with small terms:
OQHT + HQ = ey, QVT +VQ = ey, where at least one
between €y, or €y has to be nonzero, otherwise the system is
not controllable. In this case, |y ) is not a steady state but,
within first-order perturbation theory, can be used to create

we find H~5a azlwg) =

a state with eigenvalue 6 = O(ey, ey). In particular, one
can construct specific examples where ¢y and €y are much
smaller than the gap A* of £; so that § < A*. Therefore,
exploiting these broken symmetries we can construct
counterexamples where the gap changes as a function of
q. The simplest example is a two-spin system with H =
(cio3 + 6105 + 61) + €0io5 and V = o}, where 6§ are the
Pauli matrices acting on the spin j. For instance, for
e =0.1, the gap of L, is ~0.45, while the gap of L,
is ~0.05.

In spite of this counterexample, we observe that in
most numerical examples, performed for small values of
d and g with a random choice of H and V, the
Liouvillian gap is constant as a function of ¢. This
allows us to conjecture that “typically,” namely for most
choices of H and V, the Liouvillian has a constant gap,
as predicted by the mean-field approach. Since in
Eq. (12) each copy interacts with all the others, this
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conjecture is supported by the well-known validity (see,
e.g., Ref. [42]) of the mean-field solution in long-range
models.

IV. CONTROLLABLE QUANTUM WALK

We focus on a specific model that is of experimental
interest, namely, a single-particle hopping in a one-dimen-
sional lattice; see Fig. 1. This framework can describe
different physical systems, such as a spin impurity in a spin
chain, a single electronic excitation in quantum dot arrays,
and a photon traveling in a one-dimensional photonic chip.
The resulting gquantum walk can be modeled via the
Hamiltonian

H=

n=1

|n)(n+ 1| + H.c., (31)

where |n) represents the state in which the walker is in
position n and L is the length of the chain. This
Hamiltonian has found numerous applications in quantum
transport problems and remote entanglement generation in
spin chains [54-57].

Moreover, we consider a local control field on a single
site of the chain, namely the cth site, which is modeled by
the Hamiltonian term g(#)V, where V = |¢){c| and ¢(¢) is a
time-dependent control profile. One can show that the chain
is controllable provided that ¢ and L + 1 are co-prime
numbers [58,59]. For simplicity, in the following we set
¢ = 1. The above hopping Hamiltonian with local control
can be realized in many physical systems, for example, in
reconfigurable photonic chips [21,22], where the different
control pulses can be obtained by electrically tuned on-chip
heaters [23].

In the following we evaluate the Liouvillian gap for all
possible values of g in the strong-driving limit, namely,
when ¢ > 1. The opposite weak-driving limit is discussed

[}

FIG. 1. Depiction of a one-dimensional quantum walk, with a
local control at the bottom rung. Each site of the chain is
coherently coupled with its nearest neighbors. Random control
pulses are applied to the first site.

in Appendix C for the single-particle ¢ = 1 case. We start
by considering two important cases, namely, the fully
symmetric and fully antisymmetric representation where
Baﬁ = al,aﬁ for either bosonic or fermionic d.o.f. We then
extend our analysis to the general case.

A. Gap analysis: Fully symmetric representation

We consider first the fully symmetric representation
where B,; = alaﬂ, so one can omit the index u from
the equations of Sec. IIT A. Plugging the operators H and V
of the controllable chain into Eq. (27), one finds the
following Liouvillian:

L, = —iZ(a%aaH,T - a2¢aa+1,l +H.c.)

a

(n] —n{)(n] —n}). (32)

N[ Q

To diagonalize the above operator we assume that ¢ > 1

and we study the “low-energy” effective dynamics. In that

limit the dissipative part 6D = (0/2)(nI — n%)(nf — nf)

has either eigenvalue 0 or o> 1. With a perturbative
approach, discussed in Appendix D, we decouple the latter
“high-energy” subspace and obtain an effective Liouvillian
acting in the low-energy sector. From a first-order
expansion as a function of ¢~! the effective Liouvillian
is given by

. 2 2:d P
Ly = o o - 9[=2(agy gy drray +Hee.)
+ (g + figy + 1) (figy + gy + 1)), (33)

where gy = (2/L)sin*(zk/L), @z, = Y 5=1(2/L)sin?x
(mka/L)ag.4, and  a;y =ag. We now call
K; =alal,, Ky = (KN)', and Ki = (i + ity +1)/2
and note that these operators satisfy the SU(1, 1) commu-
tation relations:

K[ K7) = —2K;, (KD K] = £KF, (34)

K¢ KT =0, ifi#j. (35)

With these definitions, we find then

. 2 I L-1
L,==-=) " gK,- Ky (36)
o o —1

where K;-K;=—(K;K; +K;K[)/2+ K;K; is the
SU(1,1) invariant product, namely, the analogue of the
Heisenberg interaction. The model Eq. (36) is a SU(1, 1)
Gaudin model [60], which is known to be exactly solvable
with the Bethe-ansatz approach. We explicitly diagonalize
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it in Appendix E by applying Richardson’s method [61].
We find that the eigenvalues of the Liouvillian fq are

A= —% (zk:gknk + 4;&), (37)

where the non-negative integers n; parametrize the number
of unpaired particles in mode k (see the discussion in
Appendix E) and the E, are either zero or the solution of
the nonlinear set of equations

n,+1 1 1
—+—+2 =0, 38
Zk:wa—Zgzl—‘_a)k—i_ Za)a—a}ﬁ (38)

where E, = 1/w,. From that expression it is clear that the
steady state corresponds to £, = 0 and n, = 0, for each a
and k. Solutions to the above equations are known to be
related with the roots of Heine-Stieltjes polynomials (see,
e.g., Ref. [62]). By exploiting this relationship, one finds
that all the solutions @, of Eq. (38) are real, different from
each other, and different from the poles of Eq. (38).
Moreover, g, = g;_; so the sum in Eq. (38) can be
restricted to the first half where g, < g,.,;. The roots of
the Heine-Stieltjes polynomials also have the important
property that they lie inside the intervals 2g;}r1 < w, <
2g;! for some k, so that 2E, > mingg; = g;. This con-
straint allows us to rigorously find the gap of the
Liouvillian fq. Indeed, thanks to the latter inequality,
the paired states have a larger gap than the unpaired ones,
so we can focus only on the solutions where E, = 0. The
minimum gap is then obtained when n; =n;_; =1 and
n; = 0 otherwise. This is an allowed state (for L > 2) as it
satisfies all the constraints and provides the gap

8
gap = A" = o sin? <%) =O0(L™). (39)

This gap is exact in the strong-driving limit, can be
achieved already at ¢ = 1, and is the same for all higher
values of ¢, as we have shown that there are no smaller
nonzero eigenvalues. Therefore, we prove here explicitly
that in the strong-driving limit the gap is independent of the
number of copies g. In the following sections we extend
this result, which up to now is restricted to the fully
symmetric representation, to show that Eq. (39) is indeed
the gap, irrespective of the chosen representation.

B. Gap analysis: Antisymmetric representations

We first consider another particular case, namely, the
fully antisymmetric representation, that is used as a basis
for the general solution discussed in the next section. We

start from Eq. (27) and we write Bf; :ajaaja, with
fermionic creation and annihilation operators. Repeating

the effective Liouvillian description of the previous section,
we find

R 2 8 L-1
Eq:_;‘F;;ngO'Sk, (40)

where Sy - Sy = >, ,.S65¢ refers to the SU(2)-invariant
product, namely, the spin Heisenberg interaction
S;t =S5+ iS;f, and where we define S7 = a;a;,, S;r =
(87)" and S5 = (&;TE’/‘T + &L&N —1)/2. It is simple to
verify that the above operators satisfy the SU(2) commu-
tation relations on the same site, and commute on different
sites, so that Eq. (40) is equivalent to the central spin model
first studied by Gaudin [60]. The diagonalization of the
Gaudin Heisenberg Hamiltonian proceeds along the same
lines of the SU(1, 1) one. There are two main differences:
(i) the different sign in Egs. (40) and (36) and (ii) because of
the Pauli exclusion principle the number of particles n; per
mode k is limited to either O or 1. We find then that the
eigenvalues are given by Eq. (37), where the nonzero
energies E, are the solutions of

gk(”k_l)_z Ey

A 2Ea — Gk pta Ea - Eﬂ

=1. (41)

However, because of the different sign in Eq. (41), we
cannot relate the solutions of Eq. (41) to the roots of the
Heine-Stieltjes polynomials, so we cannot bound the gap
using the argument of the fully symmetric -case.
Nonetheless, in the next section we consider a more general
technique, valid for all the representations, where such a
bound can be obtained using physical arguments borrowed
from classical electrostatics.

C. General gap analysis

As we discuss in Sec. III A, a general representation of
the SU(L) algebra can can be obtained via extended

creation and annihilation operators [49], namely, B,; =

Zuaiu&/m for either bosonic or fermionic operators. We
use the fermionic representation for convenience, since our
derivation uses the particle-hole symmetry that is a non-
unitary operation in bosonic systems (see, e.g., Ref. [48]).
Because of the Pauli exclusion principle, in order to satisfy
the constrain »  B,, = ¢, the auxiliary index u has to run
from 1 to g. Performing the same perturbative approach of
Appendix D, valid in the strong-driving limit ¢ > 1, one
finds that the effective Liouvillian fq can be written in the
diagonal basis of the Hamiltonian as
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A

_ 1 T pt | pl | pl
L,=--— Z 9x(ByBly + BioBly + ByBly + BBy,
- 23&8& —2B}yBjy). (42)

The above Hermitian operator corresponds to the purely
dissipative Liouvillian,

. 2=l . -
Lip === a(VP V.S pl] + [V [V pl)).
k=1

where V, = |wy) (0o, with |,) = I=1(2/L)sin(zjk/L)?
|j+1) and |@,) = |1). One can check that the operators V
and their Hermitian conjugate form a controllable set, so
the steady state of the effective Liouvillian coincides with
the original one. We now perform two transformations. The
first one is the Jordan-Wigner transformation to obtain
proper fermionic d.o.f., namely, where creation and anni-
hilation operators with different indices 1 and | anticom-
mute. The second one is a particle-hole transformation in
the spin-down sector. These transformations are imple-

mented together by defining W =[] juei’};uT’}f'"T and setting

a4 = ajy and a]ui—Wa Equation (42) then

Jjut:
becomes
. 5 L-1
L, = ——Z gkz aollakaakﬂaoﬁ + akaa()aaoﬂakﬂ]
k=1
2q 4k
= +- Z %> Xy Xjo, (43)
k=1 af

where X( o = (ajaa,,; ,/;a ,)/2 and the Greek letters

refer to the multi-index composed by the auxiliary index
and the “effective spin” index, i.e., « = (us), where u =

1,...,qgand s = {1, | }. The traceless operators x4 3 satisfy

the SU(2¢)®L commutation relations,
[X((ljlg’ ( )] - 5 ( 255)5/3}’ 5/1)5(15)’ (44)

so that Eq. (43) represents a SU(2¢) version of the Gaudin
model. Indeed, Eq. (43) is invariant under the Bogoliubov
transofmation a;, — Zﬂ Ugpajp, where U is a unitary
(2g9) x (2g) matrix. SU(2¢q) has (2¢g)> — 1 generators, so
one operator in Eq, (44) is dependent of the others. This is
shown by the equation [)_, Xaa, ] = 0 foreach fand y.

Going back to the original representatlon namely perform-
ing back the particle-hole transformation, one finds that

NT ~ ~ ~
X(]) ijanT - aj)'Taij

(45a)

~ ~T ~T ~
5) _ GGy T 4y ix)
Xy = > . (45b)
) _
Xy = Ay Wty (45¢)
) T

The Gaudin-like model Eq. (43) has been solved for
different algebras [namely, not only the SU(1,1) and
SU(2) cases discussed before] in Refs. [63,64], while the
duality between the different models that can be obtained
by exploiting the auxiliary indices has different ramifica-
tions in mathematical physics (see, e.g., Ref. [65] and
references therein), especially due to its connections with
the Knizhnik-Zamolodchikov equation [65,66]. In
Appendix F, we exploit the general solution [63,64] of
the Gaudin model Eq. (43), valid when the operators X
define any semisimple Lie algebra, to obtain the eigenval-
ues of the Liouvillian Eq. (43) when the SU(2¢) operators
are defined via the fermionic representation Eq. (45). As in
the fully symmetric and fully antisymmetric case discussed
in the previous sections, the eigenvalues of Ziq are para-
metrized by non-negative integers n4; and n;, and are
given by

P = 1
A=—= {Z gr(n 4+ ny) + 42 } . (46)
(N ey o Pga

where w;, for j =1,...,2q — 1 are the solutions of
) Lol 1
BT B D
B Wjp—Wja  1=0%%k ~ Dja s YitLp o
1
3 (47)
zﬂ: Bj-1 = Dja

with zy =0, /4/—5(]], and, for k> 0, zk—ZQk and

ﬂj _5j,q(1 5n¢k>0 anTk>0) +5j,q+n¢k +5j.q—nlk- In EQ- (47)
we set @y = w,, 5 — —oo; namely, in other words, for
j=1lorj=2qg — 1 one of the two fractions in the second
line is zero.

Owing to the similarity between Eqs. (46) and (37), if we
can show that the solutions of Eq. (47) satisfy the inequality
Za);}, > g, for each a and k, then we can straightforwardly
apply the reasoning of Sec. IVA to prove that the gap is
indeed given by Eq. (39) for any representation. However,
the sign difference between Eqgs. (47) and (38) prevents us
from using the theory of Heine-Stieltjes polynomials to
prove that inequality, as we did in Sec. [V A. Here, we use a
different approach, used also in Ref. [63] for a different
purpose, which is based on mapping the mathematical
equation (47) to an electrostatic problem, and then use our
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classical physics intuition. Following Ref. [63] we define
the two-dimensional vector @ o Whose real components are
the real and imaginary part of wj, and interpret those
vectors as the positions of some particles with index a and
species j=1,...,2g — 1. Equation (47) can then be
interpreted as the conditions for an extremum of the
function W({w}) defined as

2g-1 2g-1
W({w}) == Z ZCU log |05ia - 6l_”j/3| - Z Zvi(ﬁia)a
ij=1 af i=1 «a
(48)
L-1
Vi(@) == uklog|d — Z. (49)
k=0

where 7 = (z4,0) and the Cartan matrix C;; has nonzero
components only on the diagonal, where C;; = 2, and for
li — j| = 1, where C;; = —1. This shows that the problem
of finding a solution to the system of equations (47) is
equivalent to the problem of finding the equilibrium
positions of a set of particles in a two-dimensional plane
interacting via the logarithmic potential Eq. (48). That
potential is analogous to the electrostatic potential since the
Coulomb interaction in 2D is logarithmic. Particles of the
same species repel each other, while particles with nearest-
neighbor species attract each other. Finding the equilibrium
positions of those particles is in general quite complicated,
although the problem can be solved explicitly in the
thermodynamic limit [67]. At first sight one may think
that the problem has no solutions since the potential
Eq. (49) is unstable. However, because of the Z, symmetry
(Im[w; ,| - —Im[w; ,]), due to the fact that the z;’s are real,
all the forces on the real line are longitudinal. This property
allows us to seek for solutions of Eq. (47) in the class of real
numbers [63]. On the real line, the problem becomes stable
and one dimensional. An example of this effective one-
dimensional potential is shown in Fig. 2 where one can see
the two unbounded regions for @ < min,z;, and for

w

FIG. 2. Example one-dimensional potential V;(w) from
Eq. (49) with three different values of z; and p¥ = 1.

@ > max;z;, where no solutions can exist. Therefore, this
electrostatic analogy shows that the only stable solutions
with finite w,, can be found only between poles of V;(w),
or, in other words, that the solutions of the nonlinear
set of equations (47) satisfy the constraint min;z; <
Wjo < Maxgz, i.e., 2wj, > mingg,. This, together with
the discussion of Sec. IV A, shows that Eq. (39) is indeed
the gap of the Liouvillian Zq in the strong-driving limit.

D. Numerical results for the controllable chain

In the previous sections we perform an extensive
theoretical analysis to show that, in a chain controlled
on one boundary, the Liouvillian gap in the strong-driving
limit is constant as a function of ¢ and scales as < L™ as a
function of the length L of the chain—this scaling is
consistent with what has been obtained in spin chains with
boundary dissipation [68]. The scaling o« L™ is obtained
also in the weak-driving limit discussed in Appendix C,
though that analysis is valid only for ¢ = 1. Nontheless, in
all our numerical experiments obtained for small values of
L and ¢, we find that the gap is constant as a function of ¢
over the whole range of . In Fig. 3, we study the
Liouvillian gap and show that the theoretical predictions
of the strong- and weak-driving limits are very accurate in
their respective limit of validity. Moreover, we find that the
accuracy of the strong-driving limit is not affected by the
length of the chain. This is shown indeed in the inset Fig. 3,
where one observes an almost constant behavior as a
function of L. In Fig. 4, on the other hand, we show that
the Liouvillian gap scales as L~ for different values of o.
This scaling has been predicted in the strong- and weak-
driving limits by Egs. (39) and (C12). However, Fig. 4
shows that such scaling is valid also for ¢ ~ 2 where neither

1072

L

Gap

""" Strong-driving limit
e Weak-driving limit
= Exact

1073

1 1 ]
1071 1 10 10?
o

FIG. 3. Liouvillian gap for a controllable chain of L = 10 as a
function of the noise strength o. Exact numerical results are
obtained with ¢ = 1. Strong-driving limit corresponds to
Eq. (39), while the weak-driving limit is from Eq. (C12). Inset:
Noise strength o, as a function of L such that, for ¢ > o, the
relative error between the exact gap and the strong-coupling
estimate is smaller than 1%.
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FIG. 4. Scaling of the Liouvillian gap obtained numerically for
g = 1 as a function of L and for different values of . Solid lines
correspond to fitting functions o L73.

the strong nor the weak coupling limit holds (compare, e.g.,
the values of Figs. 4 and 3). In Fig. 5, we study the
relationship between the Liouvillian gap and the gap s*(7)
in the singular values of e’“«, which is a good estimate of
the convergence time (see Sec. Il D). As expected, in both
the strong and weak coupling limit the s*(¢) converges to
¢! much earlier than mixing time scales. Therefore, in
these regimes, one finds that the convergence time is
basically 1/1*. On the other hand, for 6 = 2 the matching
between e™*’ and s*(t) happens only at longer times.
Therefore, as expected from the analysis of Sec. II D, in this
regime there is a correction to the mixing time due to the
norm of the left and right eigenvectors. Nonetheless,
similarly to the Liovillian gap, our numerical simulations
for small values of L and g show that also the singular value
gap is independent of ¢ over the whole range of o.
Therefore, we argue that it may be a general feature of
this model that the resulting convergence time is indepen-
dent of q.

Finally, we consider a stochastic simulation of the
evolution of a controllable chain with random fields: we

1.0
----- =02
0.8 —_— =9 B
—_— g =20
0.6 f B
=
< 04 H log[s(t) B
Ae—
At) = =
0.2 H 4
0.0 _L——__
0 At 22t
time ¢

FIG. 5. Convergence of the singular value s, (¢) of e'Ce’ to
e™™! where A, is the Liouvillian gap. The relative error A(%)
between 1, and —¢~! log s(¢) is plotted for the different values of
o; the time axis is rescaled between O and 24;'. In the
simulations, L = 10, g = 1.

generate several random driving functions Eq. (2) and, for
each function, we calculate the corresponding unitary
evolution and then study the statistics of the generated
unitary matrices. To test whether the resulting distribution
approximates the Haar measure, we decompose each
unitary into the L? angles introduced in Ref. [69]. Using
a simple reparametrization of these angles one can write the
Haar measure as

L?
dU(Q)], LERR) q)Lz) = qu)]’ (50)
j=1

namely, as a uniform distriution of the angles ¢; in the
range [0,2z]. Therefore, testing whether the resulting
distribution approximates a Haar measure is equivalent
to testing whether the angles ¢; are distributed as a
multinomial uniform distribution. In Fig. 6 we do a simple
test to verify the distribution of the angles ¢;: we divide the
interval [0, 2] into 25 bins and plot, as a 3D histrogram, the
matrix whose elements (i, j) are the number of times that
the angle ¢; is found in the jth bin. As Fig. 6 shows, the
distribution of the unitary matrices is far from uniform both
in the noncontrollable case and in the controllable case after
a short time (upper panel). Nonetheless, in spite of the finite
number of samples, after a long time (#=55) in the

FIG. 6. Uniformity check of generated random unitaries. We
consider the time evolution of a driven L = 5 chain with random
fields [Eq. (2)], where K = 100, g; is sampled uniformly in
[-0.5,0.5], while ¢, and w; are sampled in [-L, L]. The statistics
is done with 10* independent realizations. The discrete histro-
gram is computed according to the decomposition [69] as
described in the main text. (a) Noncontrollable case where noise
is applied on the central site for a time ¢ = 25. (b) Controllable
case where the noise is applied on the first site for a short time
t = 5. (c) Controllable case where the noise is applied on the first
site for a long time ¢ = 55.
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controllable case the angles’ distribution is almost flat
(lower panel), thus showing that the resulting unitary
matrices are approximately distributed according to the
Haar measure.

V. OTHER APPLICATIONS

A. Multipoint correlation functions
Here, we discuss some direct applications, beyond
g-design, of the main findings of our paper. In boson
sampling experiments the output probability is proportional
to [per(U) |, with per( U) the matrix permanent of the ¢ X ¢

matrix U where U is built from some columns and rows of
a L x L Haar-uniform matrix U [24-26]. Therefore,

|per(U Z H U”,, (51)

6,6 i,j=
= Tr[Z/{@q'q’CBs] , (52)

where 6,6 are permutations in the symmetric group S,
ICgs. is a suitable index contraction operator, and U®%9 =
U®? @ (U®%)* as in Eq. (4).

A similar expression arises in the evaluation of multi-
point correlation functions in quasifree particle-preserving
bosonic and fermionic models. If U is the L x L one-
particle evolution matrix from time O to time ¢ and
a;(t) = Y Uja,(0), then because of the Wick’s theorem,

(a;, (D)a; (1)...a} (D)a; (1))

where ICyp depends on the initial two-point correlation
functions (a] (0)a ;(0)). Expressions like Eq. (53) arise also
in XY spin chains, which can be mapped to a quasifree
fermionic model via the Jordan-Wigner transformation
[70]. For instance, the driven XY model,

= Tr[U®q'q’CMp], (53)

1 )
"2 [Z(UWH +oj05,) Ho(t)ei].  (54)

J

Hyy (1)

can be mapped, in the single-particle subspace, to the
driven quantum walk of Sec. IV. Calling U the resulting
single-particle evolution, then in any subspace long-range

spin operators S,“Sf , for a, p € {x,y} can be written as a
combination of fermion strings as in Eq. (53), where ¢ =
|i—j| for i# j. Therefore, with a suitable KCyy that
depends on the initial correlations, one can write the
dynamical long-range correlations between spin operators

in an XY chain as

(S4(1) 8%, (1)

for a, p € {x,y}. Similarly, (S7(7)S%(7))

= Tr[U®q'qxxy], (55)

= Tr[U®*2KF, ).

In all the above cases we can bound the convergence of
the random dynamics to the values expected from the Haar
distribution. Indeed, for any JC,

Tr[([EUU@M —/U®q’q,uHaar(dU)>K”

<e(uy.q)

(56)

where we use Eq. (4). Thanks to the analysis of Sec. II D,
and since the gap Eq. (39) for the controllable quantum
walk is independent of g, one can then bound the expected
errors in all the above cases. For boson sampling experi-
ments, this shows how the error depends on the number ¢
of bosons, while for XY spin chains it shows how the error
decays as a function of the distance g between spins.

B. Estimation of the control time

We show here that the mixing time, which is easy to
compute especially for ¢ = 1, can give an estimation of the
control time. Fixing H and V, for how long does one have
to drive the system in order to achieve a generic target gate?
If after the time T3, the random evolutions are Haar-
randomly distributed, then the control time to obtain a
certain gate U satisfies T.(U) < T%,. However, for
approximate g-design, 7™ provides only a rate of con-
vergence, rather than a sharp bound. This results in an error,
which may also be due to the fact that the target gate U is
not achievable yet at time 7. However, after a time 7 this
error probability exponentially decreases as a function of z.
We can thus regard 7% as an estimation for 7. An
estimation of the mixing time 7% can be easily obtained
for any choice of H and V via the inverse of the gap A*,
which depends on o (see, e.g., Fig. 3). Since T, does not
involve any specific properties (amplitudes, frequencies)
of the pulse one has to compare it with T7. =
min,T*(c) = T*(c = 2.5) ~ 0.055L°.

In order to estimate 7. we perform a numerical experi-
ment with the QuTip quantum control package [71]. We
consider the model Eq. (31) and, for each Ilength
L =10,...,20, we generate a Haar-random unitary U
and find the time 7', as the minimal time for which the
program converges. We find that 7. obtained in this way
scales as T, ~ 0.069L3. This shows two remarkable facts:
(i) the values of 7, and 7). are very close for
L =10, ...,20, and (ii) both T, and 77, exhibit the same
scaling w1th the length L, so it is expected that this close
relationship is maintained also for larger L. In view of our
findings, one can find an empirical upper bound on 7.
as 3T%. /2.

min

VI. CONCLUSIONS AND PERSPECTIVES

In this paper we study the quantum dynamics resulting
from a stochastic driving of quantum many-body systems,
and we answer the following questions: when, and how
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rapidly, the dynamics of a driven quantum system is
equivalent to a fully uniform random evolution, namely
under unitaries sampled from the Haar measure. The first
major finding is that, when the system is fully controllable
and the stochastic signal has finite correlation time, then its
random dynamics converges to the Haar distribution in the
“long-time” limit. The second major result is about the
estimation of the driving time 7*: this is done by studying
the deviations from the Haar distribution using the frame-
work of approximate g-design, and using second quantiza-
tion to map the problem into the estimation of the mixing
time in an open quantum many-body Liouvillian with 2¢
virtual particles.

We perform a thorough analysis of the Markovian limit
(e.g., white noise) using tools from the theory of dynamical
semigroups, and we find upper bounds on 7* in terms of the
gap of the Liouvillian operator. We study the mean-field
solution of the resulting many-body model, which predicts
a constant Liouvillian gap as a function of ¢, and we
show its limitations via symmetry-breaking arguments.
Nonetheless, we find that the mean-field predictions are
correct in a wide variety of different numerical studies,
obtained with random choices of H and V, and match with
the analytic solution of a particular model, namely, a one-
dimensional system with strong control on one of its
boundaries. The latter analytic solution is obtained by
mapping the effective Liovillian to an exactly solvable
model, and then using Bethe-ansatz techniques to explicitly
show that the excited states with the smallest gap are built
from unpaired quasiparticles, as in the mean-field treat-
ment. We then corroborate our predictions with numerical
simulations, giving strong evidence that the considered
one-dimensional model provides a quantum expander with
a constant mixing time as a function of g. Therefore, our
results show that certain driven physical systems can
provide a significant advantages over random quantum
circuits where the mixing time increases polynomially as a
function of ¢ [35].

The results we present in this paper have many appli-
cations. The first one, already discussed, is a physically
motivated approach to generate pseudouniform random
unitary operations, which have many applications in
quantum information processing protocols. The one-
dimensional system that is extensively analyzed in this
paper is motivated by the recent experiments with inte-
grated photonic circuits [21,22], where random unitary
operations have been used in the first small-scale exper-
imental observations of boson sampling [24-26]. The
results we present in this paper enable the implementation
of random operations in integrated photonic chips that,
being based on noisy quantum walks rather than carefully
designed multimode beam splitters and phase shifters, are
much simpler to fabricate for a larger number of modes.
Therefore, our results provide a new avenue to prove
quantum supremacy in boson sampling experiments.

Moreover, we consider other applications, such as the
dynamics of correlation functions in an XY spin chain, and
the estimation of the control time 7', one of the major open
problems for quantum control. Given a target unitary U and
the physical interactions described by H( and V, how can
we choose T'. such that U is achievable by driving the
system for a time 7.7 With numerical experiments,
performed on L-site chains, we find that both 7. and T,
are very close for L = 10, ...,20, and both scale as L3
Hence, the mixing time 7', under random signals provides
an easily computable estimation of 7., for any H, and V.

Finally, there are several applications in quantum many-
body physics, where the interplay between quantum many-
body effects and noise is currently a subject of intensive
study in many areas, such as spin glass [42], the fast
scrambling of quantum information [28,29], and many-
body localization [72,73]. The explicit one-dimensional
model discussed in Sec. IV is a single-particle model,
where many-body physics arises due to unitary g-design,
which introduces 2¢ virtual particles. An interesting future
perspective is the study of random driving in physical
interacting many-body systems (e.g., interacting spin sys-
tems and/or cold atom optical lattices). In fact, the com-
petition between physical many-body effects and those
arising from the unitary design, may give rise to novel
states of matters and phase transitions [68,74—77], produce
a large amount of entanglement [78], and give new insights
into the process of thermalization and equilibration [79].
Haar-random quantum states are known to have, typically,
an extensive amount of entanglement [80]. Since we show
that any controllable quantum system converges to a
maximally mixing dynamics, the real-time dynamics will
be very hard to simulate numerically in the many-body
settings, because of the large amount of entanglement
involved. Nonetheless, the controllability requirement pro-
vides a sufficient algebraic method to infer a priori whether
a randomly driven condensed-matter system is expected to
produce a lot of entanglement in the long-time limit.
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APPENDIX A: GAUSSIAN HARMONIC PULSES

To simplify the theoretical description, in this section we
consider only ¢ =1 and call &; the quantum channel
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resulting from the average evolution of the quantum
system:

Elp] = [E[Te—i j;'H(s)dspTei j;’H(s)ds]_
Extension to higher values of ¢ is straightforward. As
described in Sec. II, we now make two assumptions,
namely that g(7) is Gaussian and harmonic, where E[g(z +
$)g(t)] = c(s) is independent of ¢ and E[g(¢)] = 0. In view
of these assumptions, we can simplify Eq. (Al) by
expanding the exponentials into the Dyson series, then
using the Wick’s theorem to decompose the expectation
values, and finally resumming the series. The result in the
interaction picture is then [38,39]

(A1)

V[0 = Te~ Jo2We (1)

W,p = Asc(s—sﬂ[v(’)(s),[V<’>(s'>,pﬂds', (A2)

’

where (/) refers to the interaction picture with respect to H.
If the correlation time is finite, then there exists a suitably
large T such that Tc(T's) = (6/2)5(s), where § is the Dirac
delta function and o is a constant. In the long-time limit one
finds that

) = Texp (= [V V005, 11ds )

when ¢ > T, namely in the Schrédinger picture:

Elpl = e—t£p7

Lp = ~ilH.p] =S [V.[V.p]l.

APPENDIX B: SEMIGROUP
CONVERGENCE TIMES

There exist several measures to estimate convergence of
a semigroup of completely positive trace-preserving maps.
The one with the most natural operational interpretation is
trace norm convergence, as it reflects the likelihood that the
time-evolved state can be distinguished from the stationary
state at a given time ¢.

TPl < €(t), (B1)

Sup/)HetE(p) -
where T, = lim,_,e’*, and €(¢) is the distinguishability
error. A less stringent convergence requirement is to ask
whether e’*" is an expander for a given value of ¢. Then, we
want to estimate

e = Tl = [l = Too s (B2)

where a hat indicates that the completely positive trace-
preserving maps are represented as channels (see Ref. [81]

for more details on the representation of channels). Trace
norm convergence and “spectral convergence” are related,
by noting that

c L
e = Tllama < [lef

— Tl < dP[|e™ = Too s

(B3)

where d is the dimension of the Hilbert space, and recalling
that [[e" — T ||,y = sup,[[e™(p) = T (p)]]s-

In order to estimate the above norms it is important to
recall the spectral properties of quantum dynamical semi-
groups. The spectrum of a Liouvillian £ has a nonpositive
real part, and there always exists at least one eigenvalue of
magnitude zero, corresponding to a stationary state of the
semigroup: L(p) = 0. The rest of the spectrum comes in
complex conjugate pairs. The Liouvillian is called unital if
it annihilates the identity £(1) = 0. The Liouvillian in
Eq. (7) has this property A unital Liouvillian is called
reversible if £ = £, in which case its spectrum is real.
Unfortunately, Eq. (7) is not reversible. Convergence of a
nonreversible semigroup is governed by the singular values
of e'F rather than its eigenvalues. The singular spectrum of

£ is equal to the spectrum of V eLet'

It is not difficult to see that the 2 — 2 norm is related to
the singular spectrum. Let s5;(7) be the singular values
of e'*, ordered from largest to smallest. The largest
has magnitude one. We know that asymptotically
s*(f)=e™¥], where now 1; are the eigenvalues of £
written in decreasing (real part) order, and A* is the gap of
L, i.e., the smallest (in magnitude) nonzero real part of any
eigenvalue of L. To see this, note that, assuming it has no
Jordan blocks, the Liouvillian can be written in its spectral
decomposition as

Za Lit[R, (B4)
where R;, L; are a biorthonormal basis of operators: i.e.,
tr[LjT-Rk] = ;. Importantly, the norm of any given L;, R;
can be large, which prevents us from getting any rigorous

(universal) bounds between the singular values and the
eigenvalues. Then,

et —T

)
22

—sup( X s I RARN L))

(RjIR ) || wlL ) (L) )2 (BS)

.
i € (

Hence, for very large 7, the convergence is governed by the
gap, and s*(t) — e, In principle we do not know at what
scale ™ >> |(R[R;)||(w|L,;)(L;lw)|-
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We argue in the main text that for the specific model of a
controllable quantum walk, the prefactors do not contribute
to the asymptotics in the weak- or strong-coupling limits.

APPENDIX C: WEAK-DRIVING LIMIT

A convenient approximation for the long-time dynamics
in the weak-coupling limit 6 < 1 is the rotating wave
approximation (RWA) [82]. We consider the case ¢ = 1
and assume that V is a matrix of real numbers and call
D = —V? /2 the dissipative part in Eq. (8). Going to the
interaction picture with respect to the Hamiltonian part, one
finds that p;(r) = D;(t)p;(t), where in the eigenbasis of

O .
(0, D (D]wyr) = =7 eI Ry . (CL)
Riji = (@i V2]@p)8j + (@, V@) 8
= 2| V] (@;|V|w;), (C2)

where ;; J = w; — w;. The rotating wave approximation
consists in neglecting all the terms where w;; # @y,
because for large ¢ they are highly oscillating and average
out:

<wiwj|DRWA|wkwl> = Rijk15w,-_,,wk,- (C3)
This approximation is expected to hold when
13> max (o;; — o)™ (C4)

@ F0y

RWA is related to degenerate perturbation theory. Indeed,
the unperturbed (¢ = 0) eigenvalues of Eq. (8) are given by

|d>,(»jo»)) = Zkléa,ij_wk,a};ﬂwkw,) with eigenvalue —iw;;. From
degenerate first-order perturbation theory, we know that,
for small o, the eigenvalues of Eq. (8) are obtained by
diagonalizing DXWA, which is block diagonal where each
block acts on different degenerate subspaces The eigen-

vectors of DRWA provide the matrices o). Note that since

DRWVA is Hermitian, the states |®\ i ) form an orthonormal

basis that depends on both H (from the basis |wy)) and V
(via the diagonalization of DRWA). Moreover, the real
eigenvalues A;; of Eq. (C3) provide the first-order correc-
tion to the elgevectors of Eq. (8) that, to the first order in
o', are —iw;; + A;;. The Liouvillian gap is given by the
minimum nonzero value of —A;;. Similarly, one finds the
correction to the (right) eigenvector:

k/ 7 |Dle)))
d> = (I) q)
o) = ) -1 ofp) A2
”m‘“l,
RWA 0
= "o, (Cs)
where
D|d
5 = i3 fofy) PIPO8 g
o @mn
Since SRYA is a Hermitian operator, the new vectors in

Eq. (C5) do not form an orthonormal basis.

We now focus on the chain discussed in Sec. IV, where
wy, =2coskj, kj =mj/(L+1), V*=V, and we call
Wi = (0;|V|w;) = (2/L + 1) sink; sink;. To simplify
the equations we use the compact notation |i) = |w;)
and we use ¢ = 1, namely, we assume that the controlled
site is the first one. We note that the resonance condition
w; —w; = wy, — w; is achieved in three different cases:

j
Case l:i=kand j=1I:

.. .. o
<ZJ|DRWA|1J> = E( ii 2V11ij) (C7)
Case 2:i=j#k=1:
.. o
(ii| DRWA|kk) = E(—Zka). (C8)
Case 3: We note that w; + w; = 0, where i=L—i+1.

Therefore, if [ =i and k = j, the resonance condition is
achieved. To avoid double counting with case 1, we write

=4, k=7j i#j, i#], so

.. i 6
<l]|DRWA|] l> = 5( 2vljvjl) - (_2‘/%/')’ (C9)

I\)IQ

where we use the fact that V;; = V;
other elements are zero.

All the nonzero elements of are discussed in cases
1-3. Since most of the terms are zero, it is quite easy to find
the eigenvalues of DRWA. We call those eigenvalues
|S) = >_,;;S;]ij). From cases 1 and 3, one can see that
the off-diagonal states where S;; = 0 are decoupled from
the diagonal ones. Therefore, we consider these two cases
separately. Let |S,) = »,.;S;;]ij) be an off-diagonal state,
then the eigenvalue equation DRVA|S?) = 1|S°) written as
(kI|DRVA|SO) = ASy, for k # 1 is

DRWA

2
(Vik + Vi =2VuVi) S — 2V3,Siz = —;ﬂklskl, (C10)

when [ # k and

041015-17



BANCHI, BURGARTH, and KASTORYANO

PHYS. REV. X 7, 041015 (2017)

2
@Vi-2V3)Su =~ AaSe. (C1)
Therefore, for each pair &, [, Eq. (C10) is a 2 x 2 matrix
eigenvalue problem whose minimum (in absolute value)

eigenvalue is

. (o2
At = ) (Vie +Viu =4V V)
- _L;:—] <sm2kk + sin?k; — 1 sinzkksinzkl>-

On the other hand,
o
lp=—5 2V =2Vh)

2 2
= —L—:l <sin2k, I sin4kl>.

When L > 1 we can neglect the O(L~?) correction, and
since V;; is minimized for / = 1, we find that the gap is

201

T (C12)

gap = A4 R
We now show that the other “diagonal” eigenvalues
|84y = °,S;;]ii) have a larger gap. Writing the eigenvalue
equation, we find —(6/2)(2V;6;:Su — 2V2,:Si) = ASu;
namely, we have to find the eigenvalues of the matrix
Ry = o(Vydy — V3). Calling V¢ = odiagV and a; =
(2\/o/L + 1)sin’k;, then R=—-V¢+a’a. Using the
matrix determinant lemma in the eigenvalue equation,
we find

0 = det(41 + V¢ —aTa)

= det(11 + V) (1 —a’ (C13)

,111+Vd“>'

The first term in the above equation gives the solutions
A= -V, =—(26/L + 1)sin’k;, which have a higher gap.
On the other hand, the second term in Eq. (C13) provides
the equation

sin*k;
O:
L+ ZZ/H-LHsm 2k,

sin*k;
N L+ ZL“/H-sm

2 , L+1 sin’k;
L+1) ZI: <Sm e T sinzkl)

where in the last equation we use the identity
(1/a+b) = (1/a) — [b/a(a + b)]. Since > ;sin*k; =
(L +1)/2, we are left with the equation

sin’k;
0= AZ Ll ) + sin’k (€14)

A solution to that equation is clearly 4 = 0, namely, the
steady state. On the other hand, all the other solutions must
satisfy 4 < —(26/L + 1)sin?k; for some [, because other-
wise all the elements in the sum are positive and there is
clearly no solution. Therefore, all the solutions must satisfy
|A| > (26/L + 1)sin’k; > gap. This concludes the proof
that the gap is given by Eq. (C12).

APPENDIX D: STRONG-DRIVING LIMIT

We focus here on the derivation of the effective
Liouvillian Eq. (33). Let us then define P as the projector
onto the low-energy (eigenvalue zero) subspace of
D= %(nI —n})(n] — nt). This space is generated by all
the states such that an = n,i We also set Q = 1 —P and
call H the Hamiltonian part such that £, = —iH — ¢D. We
then also call Xpp = PXP, with similar definitions for
Xpo» Xop» Xgp- We can therefore write £, in the block
form:

c, = (‘f'””” (D1)

—lHPQ )
—lHQP —iHQQ - O'DQQ ’
where D||, and where we use the fact that
PD = DP = 0. The low-energy eigenvalues can then be
obtained using the determinant identity

A B
det( ) = det(D) det(A — BD'C);
Cc D

see also Refs. [46,83] for a related approach. Indeed, using
a first-order expansion for 6 — oo, it is simple to see that
the small eigenvalues are the eigenvalues of the effective
operator:

: 1 _
[,fo = —IHPP - ;HPQDQIQHQP (DZ)

The above effective operator can also be obtained with a
(possibly nonunitary) similarity transformation e5» to
decouple the “low-energy” and “high-energy” subspaces.
Namely, one can find S, such that

£eff 0
< 4 > = eSDqu_SD
0 O(o)

— L, +[Sp. L]+
+O(Spl)-

[Sp. [Sp. L]
2
(D3)

One finds that Eq. (D3) is valid up to the first order in ™!,
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with LT given by Eq. (D2), by choosing

§o="1422 4 0(7), (D4)
such that
S - ( 0 iHPQD§1Q>
—iDgyHop 0 ’

0 82,*
(2 %)
-5, 0

where S, , = HppHpoDgy — HpoDgpHooDgy- Note
that iS; is a Hermitian operator, unlike iS,.

We now obtain the effective operator explicitly. Since P
commutes with all the operators acting on all but the first
sites, one realizes that Hpy and Hp( are composed only by

the projections of a'{'iam and their complex conjugate.

Moreover,
Paj Q=2 > |npnig)(mynplaiyfmigmy)
nyy mppFEm
X (mmmu|

’

=gy m)(ng = 1.ny
ny

where |mn) is a shorthand notation for [(ah)’"(ah)"]/
[Vm!n!]|0). Similarly, we find

Paj,Q="> "/ |nj.n){n.n — 1], (DS)
Pay Q=" /ay |ny.ng){n + Ly, (D6)

Pay Q= \/n+1|n.n)(n.n +1. (D7)

Since in ‘Hyp the up and down states on the first site differ
for only one paritcle, it is Dy Hop = 2Hgp. Hence, the
effective operator is given by —iHpp — (2/06)HpoH gp.
This can be computed from

Pa},Qa, P = ny; P, (D8)
PayyQa}, P = (nyy + 1)P, (D9)
PaIT QahP = aITahP, (D10)

and their Hermitian conjugate (all the other terms are zero).
Moreover, ni4 P = n;’P. We find then

HPQHQP = —2(aTTaha2Ta2¢ +HC) + nm(nu + 1)
+nyy (npy +1) +ny) (nyy +1) + 1y (ny ) +1)
(D11)

= —2(aITaha2¢a2¢ +Hec) -1

+ (nyp + 1y + 1) (ngp +nyp +1). (D12)

In order to make further analytical progress we also use
the rotating wave approximation, which is consistent with
the perturbative treatment (see Appendix C) since L =
—iHpp — (2/0)HpoHpp and 2/c is small. We note that
Hpp = Zé:z(aZmaaH,T - a2¢aa+1,¢ + H.c.). The above
operator can be diagonalized with a Bogoliubov
transformation: ~ defining  the  operators  a;; =

L=1(2/L)sin*(nka/L)a,. 14, we find that Hpp =
> i1 2cos(km/L) (g — iy ). Because of this particular
form, the rotating wave approximation in Eq. (D12)
corresponds to expanding the operators a,y into the
diagonal basis a,y, neglecting the “oscillating” off-diago-
nal terms. In other terms, we can write

LT =L, + L3, (D13)

where ﬁq is the Hermitian Liouvillian in the rotating wave

A

approximation shown in Eq. (33), where O(L,) = O(¢7"),
while £, of order O(c”), is composed by the oscillating
terms that are neglected in the long-time limit. In particular,
from Eq. (C4) one finds that the RWA holds for ¢ > O(L?).
This approximation is therefore consistent with the results
of Sec. IV, where one finds a Liouvillian gap O(L£~?) that
provides a lower bound to the convergence time ¢ > O(L?).
However, while the eigenvalues depend only on the
Hermitian operator Zlq, the eigenvectors depend on the
oscillating terms via Eq. (C6). By mixing Eq. (C5) with
Eq. (D3), we find then that the eigenvalues with small
O(c7") real part have right eigenvectors given by

5|, (D14)
where |®@;) form an orthonormal basis (dependent on both
H and V), S~ Spwa +Sp + [Srwa.Sp]/2 = O(c7}),
but 5 # ¢S, The corresponding left eigenvectors are
then (®;]e~.

APPENDIX E: DIAGONALIZATION OF THE
RICHARDSON-GAUDIN MODEL

We perform explicitly the diagonalization of the
Richardson-Gaudin model Eq. (36) in the bosonic repre-
sentation discussed in Sec. IVA, where K; :ZliTail’

K = (K7)", and Ki = (i + iy +1)/2. We start by
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defining a trial eigenstate |€2,) with no pairing, namely such
that

Kz_|Qu> =0, Kf|9u> = Vi|9u>' (El)

These equations force the constraints

vi=(ny +n; +1)/2, nyn; =0;  (E2)
namely, there cannot be in the same site both up particles
and down particles. Moreover, vy = 1/2, because the
model has been obtained by projecting the Liouvillian into
the states where ngy = ng,. The eigenvalue of state |Q,) is
thus

‘CAq|Qv> = EO|Qv>7 (E3)
2 8 2 4
Ey=—==) guovk ==—= ) GiV (E4)
[0} [0} % (03 O %

q= Z,{‘:_()l njy =

Ly n;y, for a given set of allowed “quantum numbers”
vy, the number N of paired particles satisfies
>i(2v; — 1) + 2N = 2g; namely,

N:q—Z:(vi—%) (ES)

By defining the ansatz,

Since there are extra constraints,

N L
w)=T[cil).  C&=> u.kf. (E6)
a=1 Jj=0
one sees that
Lylw) = Eoly) + [£,. [ [cal1)
= Eoly) +Z(HC*> [£,. C5IQ,)
a y#a
Z(H c+> [£,.Cil.ChlR,).  (ET)
a#f Ny#ap
Moreover,
[‘C C+ ng Upg — uk(z)(K K KZKJr)
[£,.Ci1.Chl = ng Uoq — Uka) (op — Uis) Ko K.

(E8)

We now first consider the N =1 case and impose the

eigenvalue equation fq|w> = Aly), where we define

/1 — EO —_
then

(8/0)>_,E, The eigenvalue equation becomes

ng(”Oa = ga) (Kg vy = 1K)
k

= E(Z <M0aKg + ZukaKZr> .
k

From that equation we get the relationship

Vo Gk (Uog = Ukg) = UpEq; (E9)
namely,
VoGkUoa
=__Jke E10
Uka Vogi — Ea ( )
E E

Upg — Ukg = — all0a =-—= Upg- (Ell)

vogr — E Vo9k

By using the last equation, we find

Zk

E(lu()(l Eﬂu()ﬂ K+K+

L Ctl,
H vogk — Eqvogr — Eﬂ

8 EE,
= 01/0 E, Eﬁ Z UppUkg — MkﬁMOa)Ko Kk
8 E.Ep
- Cct— C+ K+
oL Ea - E/} (MOﬂ “ s uoa) 0
8

= ; (Ma[)’K(J)rC;; + M/J(IK(TC/J;)’

where M(lﬂ = (E(IE/)’/E(I - E/;)(MO/}/I/()). Using all the
above results, the eigenvalue equation becomes

Z(Hc >Z,,Q (E12)

a y#a

(Ly—D)lw) =

E
z, _ZM( KF — Ko

Vg — Eq
Ea (’ft0051<(1)L + ZukaKlJcr> . (E13)
k

- ZMﬂaKg -

pta

By evaluating Z, = 0, one gets the equations

Z Egkl/kEa + i Z

© Fa T Vo9k Vo iy

E,E;
E,—E; %

(E14)

fora=1,...,N, where N is given by Eq. (E5). Clearly,
E, = 0is a solution, while the solutions different from zero
are found by solving the equation
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ngl/k Eﬂ
12 — 1,
—2E, - g ;Ea—Eﬂ

(E15)

where we use the fact that vy = 1/2. In conclusion, the
eigenvalues of the Liouvillian £, are

q—E”k/z
8 2 :
i=B-2Y E =2 Yam+s 3 B
a k a=1

where n; =2y, — 1 and the E, are either zero or the
solution of Eq. (E15). From that expression it is clear that
the steady state corresponds to E, =0 and n; = 0. The
eigenvalues for larger values of ¢ are given by all the
previous solutions with smaller ¢ (this can be seen by
adding some Ej; = 0 for larger values of N) together with
new solutions due to the larger values of N and the larger
set of allowed configurations for 7.

APPENDIX F: SOLUTION OF THE
SU(2g)-INVARIANT GAUDIN MODEL

We describe here the algebraic approach to general
Gaudin models and then apply it to our general fermionic
representation introduced in Sec. IV C. We fix a basis h((;,’ )
of the Cartan subalgebra acting on the jth copy formed by

the diagonal operators XY, A state |Q,) which is a

simultaneous eigenvector of all the operators hgj ) is called

a weight vector. We write Y 1Q,) = 1;4|Q,), where vl is
called weight. On the other hand, in the Cartan-Weyl basis
the eigenvalue y of the adjoint transformation, namely,
[hé,ﬁ, e,] = xjue,, for a given e, in the representation, is
called a root. Because of Eq. (44) a root can only have
eigenvalue —1, 0, 1. If one fixes an ordering ¢, > ¢, and

writes h/) = 4Cahd ), then the eigenoperators of 1(/) with
positive eigenvalue are called the “raising operators.” They
correspond to X fl]ﬂ) forany a < f. A highest weight vector is
a weight vector [Q,) such that all the other vectors in an
irreducible representation can be obtained from |Q,) via
some lowering operators. As such, a highest weight vector
is annihilated by all the raising operators. We call y/
the simple roots of the algebra, and we fix an inner
product between roots (y/,y¥) = S rhy%, and write
1* = (¢/. x7). The matrix C;, = 2/, x*)/|x’|*] is called
the Cartan matrix. We also call Fj = (C71) ;. (2/[¥*]?).
Moreover, we call z, =0 and z;, = 29;1 for k > 0.
Thanks to the above definitions, and owing to the results

of Refs. [63,64], we can write the eigenvalues of the Gaudin
model Eq. (43) as

2q | 8 [ i Fig)
_q+_|:ZL+

[ o

Muy = =

2o
+ZZ%ZOZO,} (F1)

=1 a ja

=1 “k—Z0

where ;4{; are the eigenvalues of the Chevalley operators

) = /P rshl!, namely, H|@,) = u]|Q,) and
so ) = 2/ M) rky), and where the Bethe roots
satisfy the equations

L-1 k
A

Z Djq k= = ) (F2)

g Pip~ k=0 /a

The above expressions for the eigenvalues hold when-

ever the operators X((l’}

define any semisimple Lie algebra.
In the particular case discussed in Sec. IV C, those
operators define a SU(2¢)-invariant Gaudin model, in a
specific multifermion representation. For SU(2g), the
simple roots are y, =84j = Our1» SO /> =2, and
Cij =20, — (6,»’]-_1 +8;j+1), where i,j=1,...,2¢— 1.
Therefore, = > ,(2/2q)[sin(xit /2q) sin(zjt/2q)]/
2- ZCos(fﬂ/ 2q)] and the Chevalley operators are given
by HY) = fizl—X() We fix the ordering {({,1),

a+1l,a+1"
(1,2),....(1,1),(1,2), ...} so that

~T ~ ~T ~
01 Qa) T Gjatl) forl<a<g-1

aj’,a,raj.a,T —a;%m&j,aﬂﬁ forl<a—g<qg-1

1=a), a4, —a, ;.  fora=gq.
Because of the above equations, the raising operators are
given by a;,i,Taj,M’ with i > k, by a;,i,ia/’,ki with i < k,
and by a;;,a; . Therefore, the highest weight vectors
may contain in the same mode j either spin-1 particles
or spin-| particles, but not both. The only possible

highest weight states are then either [],”' aj'-,i.,?|0> or
I a; g—i+1,10). These states are parametrized by the
numbers n;; and n;| that satisfy njn; = 0. Therefore,

/'4? = 5j,q(1 - 5”Lk>0 - 5"Tk>0) + 5j.q+nTk + 6.f-‘1‘”¢k' (F3)

. By explicit calculation
= j/2. Therefore,

Moreover, ngy = ng, so u} =8, ,
for j<gq, one finds F,;=F
Eq. (F1) becomes

q.29—j
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L—
9k
/I{n} =T + [ZE <_ - n¢k>0 - 5n¢k>0)
k=

+ (q - nik) ny>0 + (C] - nTk)(SnTk>0>
2

-y é] (F4)

a

2 [ 1
SR SRR ER) P N
o k=1 a wq.a
where ®;, are the solutions of Eq. (F2), namely,

of Eq. (47).

APPENDIX G: EXPLICIT
MEAN-FIELD ANALYSIS

In this section, we perform explicitly the mean-field
calculations discussed in Sec. III B, and we closely follow
the notation of that section. We remind the reader that
Eq. (28) can be written as

L,= Zﬂia

where the A’s are ordered with decreasing (negative) real
part, 4o = 0, V=2zvz! , and we remind the reader that the
new bosonic creation operators are obtained via the
nonunitary Bogoliubov transformation a; = S Zoilh,
a; = > ,(Z71),,a, The steady state is therefore the boson
condensate |Q) = [(ag)?/+/4']|0), where |0) is the bosonic
vacuum. Indeed, clearly this state is annihilated by the
quadratic term. To see that even the second one annihilates,
it is important to remember that Sj) is the right eigenvector
of the steady state (corresponding to the steady state) and
the corresponding left eigenvalue S,y is the identity
operator. Therefore, V; = > apS

ZVUVkla aia;a;,  (Gl)

ljkl

- VasSso =0, since
> sVapSpo is a vectorization of the expression [V, 1].
Similarly, Vy; = 0. To study the elementary excitations
with respect to this state, one can use the Bogoliubov

(mean-field) approach starting from the variational states
W) = X wl(@)e/ /(g = 1)1 |0), for j # 0, and the
corresponding  {y'| = 3w/} {0l[(a)*""/\/(q = 1)!]a;,

where Zjl//;-l//j = 1. The variational Liouvillian then
becomes

LY = (y'|Lylw)

- Z/ljll/ Wj 2 ZVUVI(Z 4 |a aka (11|l//>
i,j.k1l

which, similarly to the Rayleigh-Ritz method, has to satisfy
9y LY = 0,/ LY = 0 with the constraint Y ;y/y; = 1 (see,

e.g., Ref. [50]). However, because ‘71'0 = ‘70,- = 0 for all i,
one can restrict the sum in the above equation to the values
i,j,k,1 > 0, but because there is only one particle in |y) in
the states i > 0, one finds that

£Y=> AW,
J

namely, that in the single-excitation subspace the varia-
tional Liouvillian is already diagonal. This shows that the
eigenvalues, at least in the low-energy subspace, are not
“renormalized” for larger values of q.
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