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Randomness is an essential tool in many disciplines of modern sciences, such as cryptography, black

hole physics, random matrix theory, and Monte Carlo sampling. In quantum systems, random operations

can be obtained via random circuits thanks to so-called q-designs and play a central role in condensed-

matter physics and in the fast scrambling conjecture for black holes. Here, we consider a more physically

motivated way of generating random evolutions by exploiting the many-body dynamics of a quantum

system driven with stochastic external pulses. We combine techniques from quantum control, open

quantum systems, and exactly solvable models (via the Bethe ansatz) to generate Haar-uniform random

operations in driven many-body systems. We show that any fully controllable system converges to a unitary

q-design in the long-time limit. Moreover, we study the convergence time of a driven spin chain by

mapping its random evolution into a semigroup with an integrable Liouvillian and finding its gap.

Remarkably, we find via Bethe-ansatz techniques that the gap is independent of q. We use mean-field

techniques to argue that this property may be typical for other controllable systems, although we explicitly

construct counterexamples via symmetry-breaking arguments to show that this is not always the case. Our

findings open up new physical methods to transform classical randomness into quantum randomness, via a

combination of quantum many-body dynamics and random driving.

DOI: 10.1103/PhysRevX.7.041015 Subject Areas: Quantum Physics,

Quantum Information,

Statistical Physics

I. INTRODUCTION

Randomness generating quantum operations play a

central role in our understanding of many various physical

phenomena [1]. Recently, with the development of quan-

tum information processing, random operations have found

new applications, not only as a theoretical tool but also in

practical protocols. Indeed, they are used in quantum

cryptography [2], quantum process tomography [3], fidelity

estimation [4], quantum communication and entanglement

sharing [5–7], quantum data hiding [2,8,9], and entangle-

ment generation [10–13]. Because of their crucial impor-

tance, several procedures have been developed to generate

either truly random or pseudorandom operations via

random quantum circuits [4,14–20]. However, from the

physical point of view, these protocols often have a

complexity comparable with universal quantum computa-

tion, being based on the application of a sufficiently large

set of quantum gates. Here, on the other hand, we consider

a more physically inspired approach, based on quantum

control, where the quantum system is controlled by random

classical pulses.

Quantum control is an established research field at the

overlap of control theory and quantum mechanics.

Essentially it provides a framework to steer a quantum

system through Hilbert space by applying time-dependent

fields. Controllability is a powerful algebraic tool to fully

characterize when any possible unitary evolution in the

system’s Hilbert space can be obtained from the

Schrödinger equation with a suitable choice of time-

dependent fields. The central question of this paper is

what happens when we apply random fields to a control-

lable system. We show, under some conditions, that after a

suitably long mixing time the corresponding random

unitary evolutions of the system converge to a uniformly

random set, as measured by the Haar measure. Therefore,

one of the central result of this paper is that driving a

controllable quantum system with stochastic control pulses

offers a natural approach to generate random unitary

operations with physical processes.

Within this picture, the estimation of the mixing time is

the crucial theoretical aspect. We use several tools from the

theory of open quantum systems and many-body physics,

such as low-energy effective Liouvillians, mean-field

Published by the American Physical Society under the terms of
the Creative Commons Attribution 4.0 International license.
Further distribution of this work must maintain attribution to
the author(s) and the published article’s title, journal citation,
and DOI.

PHYSICAL REVIEW X 7, 041015 (2017)

2160-3308=17=7(4)=041015(24) 041015-1 Published by the American Physical Society

https://doi.org/10.1103/PhysRevX.7.041015
https://doi.org/10.1103/PhysRevX.7.041015
https://doi.org/10.1103/PhysRevX.7.041015
https://doi.org/10.1103/PhysRevX.7.041015
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/


techniques, and the Bethe ansatz, to find an accurate

estimation of the mixing time in several situations. In

particular, we focus on a one-dimensional system with edge

control due to the availability of analytical tools, as well as

the intuitive interpretation available in such a system with

Lieb-Robinson bounds and spin waves. This particular case

is also motivated by the current experimental capabilities in

integrated photonic circuits [21,22], where different sto-

chastic control pulses can be simulated by changing the

spatial extent of the waveguides via electrically tuned on-

chip heaters [23]. In those systems a major recent result has

been the experimental measurement of boson sampling

[24–26], a problem that is believed to be hard to simulate

classically. Random unitary operations and higher-dimen-

sional systems are required in boson sampling to have a

convincing demonstration of quantum computational

supremacy [27]. Pseudorandom operations in those experi-

ments are currently obtained via a finely tuned network of

several beam splitters and phase shifters. The different

approach we present here is based on the simpler imple-

mentation of noisy quantum walks and, therefore, can offer

an advantage to perform boson sampling experiments on

larger scale.

A further motivation for this paper comes from quantum

control itself. The algebraic tools developed in quantum

control are typically not able to provide an estimation of

the control time needed to reach a given target operation.

In view of practical applications, this is a big handicap,

because noise will always limit the total time available to an

experimenter. It is therefore of interest to find estimates of

such times. The analytical expressions for the mixing time

obtained in this paper also provide an easily computable

upper bound for the control time. Indeed, by definition,

after the mixing time the system has already explored all

possible unitary evolutions with stochastic control pulses.

This implies that, apart from measure zero sets, at this time

any evolution is achievable with a suitable choice of the

control field.

Finally, another motivation for the present work is for the

problem of fast scrambling of quantum information. The

problem was first identified in the setting of black hole

physics [28,29], where it was conjectured that black holes

start evaporating information when most localized micro-

scopic degrees of freedom (d.o.f.) become inaccessible

without measuring a constant fraction of the whole system.

Unfortunately, identifying mechanisms for fast scrambling

has been challenging, and providing tools to rigorously

analyze scrambling times even more so. Moreover, explicit

constructions of fast scramblers [30] are not directly

inspired by physical models. Here, we describe a physically

motivated process that could lead to new insights in the

design and analysis of fast scrambling models.

The paper is organized as follows. In Sec. II, we show

how to obtain Haar-uniform unitary evolutions (i.e., a

unitary design) via quantum control techniques. We focus

on q-design, not only for its applications in quantum

information, but also to quantify the distance with the

target uniform distribution. We consider Markovian sto-

chastic control pulses and introduce some general tech-

niques for the estimation of the mixing time. In Sec. III, we

map the problem of unitary design to a general many-body

problem, studying its mean-field solution and discussing

the limitations of the latter approach via symmetry-break-

ing arguments. In Sec. IV, we focus on a specific one-

dimensional model controlled at one of its boundaries. We

show that this model in certain limits can be mapped to an

exactly solvable model and we study its analytic solution

via Bethe-ansatz techniques. A central result of this section

is that the mixing time for this particular model is

independent of the number of copies q. Intuitively, the q
independence implies that pseudorandom unitaries

obtained with random control pulses approximate all the

moments of the Haar distribution with the same accuracy.

These predictions are then corroborated with numerical

simulations. In Sec. V, we show other applications for

boson sampling, the decay of correlations in spin chains,

and the estimation of the control time. Conclusions and

perspectives are written in Sec. VI.

II. UNITARY DESIGNS VIA

QUANTUM CONTROL

Physical quantum systems are modeled via a

Hamiltonian operator H, which describes the interactions

between the components of the system. When external

control is applied to the system, its evolution is represented

by a time-dependent Hamiltonian,

ĤðtÞ ¼ H þ gðtÞV; ð1Þ

where gðtÞ is an external control pulse and V is an operator.

If d is the dimension of the Hilbert space, then H and V are

d × d Hermitian matrices while gðtÞ is a scalar function

depending on time t. For multiple pulses, ĤðtÞ ¼
H þ

P

igiðtÞVi. After some time T, the combined action

of the natural interactions and the external pulses is a

unitary operation U¼T exp½−i
R

T
0
ĤðsÞds�, where T rep-

resents the time order operator. In general, the amount of

different unitary operationsU that can be obtained from the

dynamics of the system is limited. However, if the system is

fully controllable, then any operation can be obtained with

a suitable engineering of the control pulse. In other terms,

given any U ∈ SUðdÞ, it is possible to find a control profile
gðtÞ such that U¼T exp½−i

R

T
0
ĤðsÞds�, where the control

time T depends on the target unitary U. There are many

powerful theorems to test controllability. In general, a

system described by the Hamiltonian as in Eq. (1) is

controllable [31] if H, V and their nested commutators

½A; ½B; ½C;…��� (where fA;B;C;…g ∈ fH;Vg) generate

the Lie algebra of SUðdÞ. Although the algebraic con-

ditions for controllability are well known, it is still an open
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problem in quantum control to estimate the control time T,
given also the knowledge of the target gate U and the

operators H and V. For fully controllable systems there

exists a minimal control time, generally unknown, such that

all target gates can be obtained exactly at that time [32]. For

small dimensional systems, analytic bounds of such uni-

versal control time may be found in terms of quantum

speed limits or Cartan decompositions of spin systems. In a

high-dimensional system, such tools become intractable. If

the system is drift free (H0 ¼ 0), control times are trivial or

determined only by energy bounds on the time-dependent

fields. We are instead interested in systems where the

controls need to work together with a drift to achieve full

control (so-called weak controllability). In such a case, the

time scale is bounded by the dynamics of the drift and

provides insights into the many-body physics triggered

by it.

We now consider the control pulse as a stochastic

process, namely where a certain profile gðtÞ can be applied

to the system with a probability pgðtÞ, and study the

distribution of the resulting unitary operations. Such a

random pulse can be obtained, for example, by considering

the Fourier expansion of the control signal,

gðtÞ ¼
X

K

k¼1

Ak cosðωktþ φkÞ; ð2Þ

where the amplitudes Ak, the phases φk, and possibly even

the frequencies ωk are random variables. We use the

notation E½·� to denote the average over those random

variables. Repeating the experiment with many random

signals, one obtains a distribution of unitary matrices,

where each matrix U is obtained with probability pU.

Random unitary operations play a central part in many

quantum information protocols. A pivotal role in many

applications is played by the uniform distribution, also

called the Haar distribution, which is invariant under the

action of the unitary group itself. In the following sections

we study when, and how rapidly, the distribution pU

converges to the Haar-uniform distribution.

A. Comparing random evolutions: Unitary q-design

Obtaining truly uniform random unitaries is a very

hard task, and normally one observes pseudouniform

distributions which approximate the uniform (Haar) mea-

sure up to some errors. Pseudouniform distributions can be

obtained with random quantum circuits [4,14–18], but

these circuits typically require many different gates that

make the implementation in physical systems demanding.

Recently, alternative protocols based on physically inspired

time-dependent Hamiltonians have been proposed [33,34].

Nonetheless, these approaches still require that all the

interactions inside the system should change in time, an

assumption that currently is beyond reach in many

experimental platforms. Here, on the other hand, we focus

on a general scheme which occurs in most quantum

systems, namely, when the natural and time-independent

interaction H experienced by the system is paired with an

external control, as in Eq. (1).

There are many ways of comparing the distance between

two quantum processes. When dealing with randomness

generating processes, it is often convenient and relevant to

work with approximate q-designs [35]. A unitary q-design
is a distribution of unitaries, possibly discrete, that gives the

same expectations of the Haar distribution for polynomial

functions of degree at most q (see, e.g., Ref. [36]). It is

often inaccessible experimentally to distinguish between

truly random processes and approximate q-designs.
Formally, approximate q-designs are defined by the

requirement that

kEU½U⊗qð·ÞU⊗q†� −
Z

U⊗qð·ÞU⊗q†μHaarðdUÞk
⋄

< ϵ;

ð3Þ

for suitably small ϵ, where k·k⋄ refers to the diamond norm,

EU denotes an average over some given distribution of

unitaries μU, and μHaarðdUÞ is the Haar measure. This is the

most stringent distinguishability measure between quantum

processes, and guarantees that no single (global) measure-

ment on the system and a possible ancilla can distinguish

between the two processes with probability larger than ϵ. A

related notion [18] is that of quantum expanders, which are

defined by

eðμU; qÞ ¼ kEU½U⊗q;q� −
Z

U⊗q;qμHaarðdUÞk
∞

< ϵ;

ð4Þ

where X⊗q;q¼X⊗q⊗ðX⊗qÞ�. Equation (4) can be regarded
as the vectorized version of Eq. (3): given an operator

X ¼
P

ijXijjiihjj, its vectorized form is jXii ¼
P

ijXijjiji.
However, it is strictly weaker, and the separation between

the two bounds can be exponential in the system size.

However, Eq. (4) is often much easier to work with in

practice [18]. It follows from the definition that jAXii ¼
A ⊗ 1jXii and jXAii ¼ 1 ⊗ AT jXii. Therefore, X⊗q;q is

the vectorization of the superoperator ρ ↦ X⊗qρX⊗q†.

Quantum expanders and q-design compare probability

distributions of unitary matrices by comparing the

“moments” of the distribution, namely, random processes

that depend polynomially on the random variable.

Two close distributions of unitary matrices have similar

moments, as shown in Ref. [14], eðμ; qÞ ≤ 2qWðμ; μHaarÞ,
for all measures μ, with W the Wasserstein distance [37],

Wðμ1; μ2Þ ¼ supfj
R

fðUÞ½μ1ðdUÞ − μ2ðdUÞ�j, where f is

a 1-Lipschitz function and U is a unitary matrix. The

Wasserstein distance is a measure between classical prob-

ability distributions, and hence one can use a number of
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classical Markov chain mixing tricks to bound it. However,

we do not use it, as we instead use tools from condensed-

matter physics to bound the mixing time.

In the quantum control setting, EU in Eqs. (3) and (4) is

the average over many unitary operations obtained after the

application of random pulses up to a certain time T.
Therefore,

EU½U⊗qρU⊗q†�

¼ E

h�

T e
−i
R

T

0
ĤðsÞds

�

⊗q
ρ
�

T e
i
R

T

0
ĤðsÞds

�

⊗q
i

: ð5Þ

To simplify the theoretical description of this problem we

make two assumptions. (i) We assume that the stochastic

process gðtÞ is Gaussian. This is a reasonable approxima-

tion in many cases and can be obtained, e.g., via Eq. (2)

when K ≫ 1, in view of the central limit theorem. (ii) We

assume also that gðtÞ is harmonic, namely, that E½gðtþ
sÞgðtÞ� ¼ cðsÞ is independent of t. Moreover, without loss

of generality, the harmonic process can be chosen such that

E½gðtÞ� ¼ 0. In view of these assumptions, exploiting the

results of Refs. [38,39], in Appendix A we find a closed-

form expression for Eq. (5). That expression can be

drastically simplified if we assume that the correlation

time is finite and there exists a suitably large T such that

TcðTsÞ≃ ðσ=2ÞδðsÞ, where δ is the Dirac delta function

and σ is a constant. In the long-time limit, t > T ≫

kHk; kVk, one finds then that

EU½U⊗qρU⊗q†�≃ e−tL
q

ρ; ð6Þ

where

Lqρ ¼ −i½H⊕q; ρ� − σ

2
½V⊕q; ½V⊕q; ρ��; ð7Þ

and X⊕q ¼ X ⊕ X ⊕ …, with ⊕ the Kronecker sum

X ⊕ Y ¼ X ⊗ 1þ 1 ⊗ Y. Therefore, with these three

approximations, the long-time dynamics of the stochastic

process is Markovian and described by the above Lindblad

equation [40,41], where the operator Lq is called

Liouvillian. Similarly to what happens with the replica

trick in statistical physics [42], the average over the noise

effectively couples the initially uncoupled copies.

Sometimes we use the more convenient vectorized form

of the above equation,

Lq ¼ −iH̊⊕q
−
σ

2

�

V̊⊕q
�

2
; ð8Þ

where X̊ ¼ X ⊗ 1 − 1 ⊗ XT is the vectorization of the

commutator ½X; ·�. If t → ∞, then EU½U⊗qρU⊗q†� con-

verges to one of the steady states of the Liouvillian Lq.

In the following section, we prove that the steady-state

manifold of Lq coincides with the state space after

averaging over the Haar measure, namely, that all the

moments of the random unitary evolution converge to the

averages over the uniform distribution for t → ∞.

Moreover, we study the mixing time via the gap of the

Liouvillian and show that, in several cases, the latter is

independent of q. Physically this is important, because it

implies that all the moments converge (in 2-norm) at the

same time, as given by the inverse of the Liouvillian gap,

and that, accordingly, we can use the latter to estimate the

mixing time of the random unitary evolutions.

B. Steady state of the Liouvillian evolution

We start by describing the steady state of Lq. In general,

the dimensionality of the steady state set is in one-to-one

relation with the conserved quantities of the Lindbladian

evolution [43]. Given an orthonormal basis fMμg of the

steady-state space, equipped with the standard Hilbert-

Schmidt product, there exists a dual operator set fJμg such

that Lq†Jμ ¼ 0, where Lq† is the Liouvillian operator

Eq. (7) after the substitution H → −H. The latter sub-

stitution does not change the dynamical algebra, so

algebraic considerations based on controllability hold also

for Lq†. From the conserved quantities Jμ and their dual

operators Mμ one finds the steady state as ρ∞ ¼
P

μMμTrðJμρ0Þ, where ρ0 is the initial state [43]. Since

the system is controllable, repeated commutators of H⊕q

and V⊕q give rise to the algebra suðdÞ⊕q. Therefore,

because of the Schur-Weyl duality [44], the only operators

that commute with both H⊕q and V⊕q, and more generally

with Eq. (5), are index permutation operators. Let Sq be the

group of permutations of the set 1;…; q and let Pσ , σ ∈ Sq
be the operator that permutes the index of the tensor copy

H⊗q, namely, the operator that maps ψ i1;i2;…;in
to

ψσði1Þ;σði2Þ;…;σðinÞ for each set of indices ij. It is simple to

show that PπPσ ¼ Pπσ and that these operators form a

unitary representation of the permutation group Sq.

The index permutation operators are the only conserved

quantities of the Liouvillian, LqðPρÞ ¼ Lq†ðPρÞ ¼ 0, so

ρ∞ ¼
P

σρσPσ . However, since the operators Pσ are not

orthonormal, one has

Tr½P†
σρ0� ¼ Tr½P†

σρ∞� ¼
X

π∈Sq

ρπTr½P†
σPπ�; ð9Þ

wherein the first equality holds because Pσ is a conserved

quantity. By inverting the above equation, we find that

ρ∞ ¼ lim
t→∞

etLqρ0 ¼
X

π;σ

ðM−1ÞπσTr½P†
σρ0�Pπ; ð10Þ

whereMσπ ¼ Tr½P†
σPπ�. It has been shown in Ref. [45] that

Mσπ ¼ dlðσ
−1πÞ, where lðσÞ is the number of cycles in the

cycle decomposition of σ. The dimensionality of the

steady-state manifold is then given by the matrix rank of
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M. One finds that the steady-state degeneracy is ∼eOðqÞ.
The right-hand side of Eq. (10) is exactly equal to the

integration over the Haar measure (see, e.g., Proposition 3

in Ref. [45]). Therefore, we show that

lim
t→∞

etL
q

ρ ¼
Z

dUU⊗qρU⊗q†; ð11Þ

namely, that the infinite time evolution of the system under

the Liouvillian Eq. (7) is equivalent to an integration over

the Haar measure.

In summary, we show that by driving a controllable

system with random control pulses Eq. (2), where the

stochastic process is Gaussian, harmonic, and has a finite

correlation time, the resulting average evolution of

the quantum system converges for t →∞ to a uniform

integration over the Haar measure.

C. Construction of excited states

Certain excited states of the Liouvillian Eq. (8) can be

built up directly from the excitations of the individual

quantum systems. It is convenient to separate Lq from

Eq. (8) into local termsLloc
k acting only on the kth copy, and

a nonlocal interaction. Indeed,

Lq ¼
X

q

k¼1

Lloc
k −

σ

2

X

q

k≠l¼1

V̊kV̊l; ð12Þ

Lloc
k ¼ −iH̊k −

σ

2
V̊2
k; ð13Þ

where H̊k, V̊k, and accordingly Lloc
k , act only on the kth

copy. Therefore, each Lloc
k for different k is equivalent

to a single-copy Liouvillian L1. We assume that the

operator L1 is diagonalizable (with right and left eigen-

vectors) and call

L1 ¼
X

i

λiΠðiÞ ð14Þ

its eigenvalue decomposition, where the eigenvalues λj are

ordered with decreasing real part (starting from zero) and

Πj are the corresponding eigenprojections. The operators

Π
ðiÞ
j ¼ Π

⊗ðj−1Þ
ð0Þ ⊗ ΠðiÞ ⊗ Π

ðq−jÞ
ð0Þ ð15Þ

are then eigenprojections of Lq, with eigenvalue λi. To

show this, we note indeed that Π
ðiÞ
j is proportional to the

vectorization of the identity operator in each copy, aside

from the jth one, sinceΠð0Þ is the projection onto the steady
state and, accordingly, Πð0ÞðXÞ ¼ ρ∞Tr½X�, which is pro-

portional to the identity operator. Therefore, V̊lΠ
ðiÞ
j ¼ 0

[because ½Vl;Π
ðiÞ
j ðXÞ� ¼ 0 for all X], as long as l ≠ j. On

the other hand, for l ¼ j, it is V̊kV̊lΠ
ðiÞ
j ¼ 0, since by

construction k ≠ j. This shows that Eq. (15) is a projector
on the eigenspace of Lq with eigenvalue λi. Moreover, from

the operators Eq. (15) one can also construct the eigenstates

of Lq that act on the irreducible representations of the

symmetric group—indeed, since the permutation operators

Pσ commute with the Liouvillian, then PσðΠðiÞ
j ÞP†

σ is an

eigenprojection of Lq for all σ.

In summary, the eigenstate of L1 with the lowest gap can

be used to construct some exact eigenstates of Lq, although

it remains to be shown that they have the smallest gap.

These eigenvalues have degeneracy at least as large as the

ground-state degeneracy, since PρΠ
ðiÞ
j is also an eigenvec-

tor with eigenvalue λj of L
q.

D. Convergence time

Given the results of the previous section, we want to

know how rapidly the semigroup converges to the uniform

distribution Eq. (11). In Appendix B, we provide a brief

introduction to the convergence theory of dynamical semi-

groups, and argue that when the generator is not reversible

(detailed balance), the convergence is governed by the

singular value gap of the channels rather than the spectral

gap of the generator. In general, we want to bound the

trace norm, but it is more convenient to analyze the 2 → 2

norm:

ketLq

− U∞jj1→1 ≤ d2qketLq

− U∞jj2→2; ð16Þ

where U∞ ¼ limt→∞e
tLq and d is the dimension of the local

Hilbert space. Let sjðtÞ be the singular values of etL,

ordered from largest to smallest. The largest has magnitude

one. Then the singular values of ðetL − U∞Þ are strictly

smaller than one, and

ketL − U∞k2→2 ¼ sup
ψ

jhψ jðetL̂etL̂†

− Û∞Þjψij: ð17Þ

If the Liouvillian were reversible, then the singular values

sjðtÞwould be given by etλj, where λj are the eigenvalues of
L. Unfortunately, the semigroups that we are working with

are not Hermitian. Nonetheless, from Eq. (B5), we find that

the 2→ 2 norm can be bounded in terms of the eigenvalues

and eigenvectors of Lq as

ketLq

− U∞k2→2 ≤
X

j∶λj≠0

etRe½λj�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

kRjkkLjk
q

; ð18Þ

where λj are the eigenvalues of L
q, and Rj, Lj are its right

and left eigenvectors, satisfying tr½L†
jRk� ¼ δjk.

In general it is very difficult to bound Eq. (18), since the

norms of the eigenvectors can be very large, and it is often
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difficult to get good bounds on the spectrum. Nonetheless,

in Appendices B–D, we study both the weak ðσ ¼ ϵ → 0Þ
and strong ðσ ¼ ϵ−1 →∞Þ coupling limits, and show the

following properties: (i) the spectral gap is OðϵÞ, in both

the strong and weak coupling limits—for strong driving,

the decrease of the gap for larger σ is consistent with the

general occurrence in open systems [46]; (ii) the eigen-

vectors satisfy jRji ¼ SjΦji and jLji ¼ S†;−1jΦji, for

some invertible matrix S and an orthonormal basis jΦji.
The condition number of S is κðSÞ≡ kSkkS−1k and

satisfies κðSÞ ¼ Oð1þ ϵÞ. Moreover, in Secs. III B and

IV we discuss some cases where the Liouvillian gap is

independent of q. Models whose mixing time is indepen-

dent of q have also been obtained in Ref. [34], at the

expense of more stringent requirements on the fluctuating

terms of the Hamiltonian.

We then get that

ketLq

− U∞k2→2 ≤ e−tλ
�
d2qκðSÞ2; ð19Þ

where λ� is the eigenvalue with the smallest nonzero real

part and κðSÞ ¼ Oð1þ ϵÞ. In terms of the trace norm, we

then get that

sup
ρ

ketLqðρÞ − U∞ðρÞk ≤ e−tλ
�
d4qκðSÞ2: ð20Þ

In the weak or strong coupling limits, the condition

number will be of order 1, yielding a mixing time of

T� ∼ 4q logðdÞ=λ�. We lose a lot in two steps of the bound,

both times involving a term of order d2q. In certain cases,

this is overly pessimistic. For instance, for a tensor product

of n semigroups, the mixing time is T� ∼ logðnÞT�
1, where

T�
1 is the mixing time of a single subsystem [47]. We might

ask whether the mixing time of Eq. (7) is also of the order

T� ∼ logðqÞT�
1, with T�

1 ¼ Oð1=λ�Þ.
We can see that this is not the case from the following

argument,

ketLq

− U∞k1→1 ≥ ketLq

− U∞k2→2 ð21Þ

≥
X

j∶Re½λj�¼−λ�
etRe½λj�; ð22Þ

since the lower bound is saturated when S ¼ 1, and we

have isolated the subspace with eigenvalue λ�. Now, in
Sec. II C we argue that if the gap of Lq is the same as the

gap of L1, then we can construct the eigenvectors with

minimal nonzero eigenvalue of Lq from those of L1. In

particular, the size of this subspace is at least as large as the

size of the ground-state subspace. But we know that the

ground-state subspace has dimension d0 ≥ eOðqÞ. Hence,
the first excited subspace does as well. Then,

ketLq

− U∞k1→1 ≥ eOðqÞe−tλ
�
: ð23Þ

Thus, the mixing time is at least T� ∼Oðq=λ�Þ, even in the

weak coupling limit.

Finally, we comment on the distinction between the

singular value gap of etL and the eigenvalue gap of L. We

know that as t → ∞, the singular value gap s�ðtÞ, namely,

the largest singular value sjðtÞ ≠ 1, converges to etλ
�
;

however, it is not clear how rapidly this occurs. This is

discussed in the numerical studies of Sec. IV, where we

show that, in both the strong and weak coupling limits, the

difference between the spectral gap and the singular value

gap vanishes on a time scale much smaller than 1=λ�.

III. MANY-BODY THEORY

OF UNITARY DESIGN

In the previous section we argue that bounding the

spectral gap of the dynamical semigroup is in many

relevant cases sufficient to get good estimates on the

mixing time of the process. Here, we study such a gap

by introducing a general mapping from a control

Liouvillian to a non-Hermitian many-body Hamiltonian,

and then study its mean-field solution. The mean-field

approach has already been successfully applied [15] to

estimate the convergence time of permutationally invariant

random quantum circuits, where at each step a gate from a

universal set is applied to a random pair of qubits.

Moreover, in Sec. IV we analyze an integrable example

via Bethe-ansatz techniques, from whose solution it

appears that the eigenstates with the smallest gap are

constructed from the steady states by changing the internal

state of a single unpaired particle. This fact shares several

similarities with what happens in bosonic condensates, and

in particular with their mean-field solution [48]. Motivated

by these two examples, it is natural to apply the mean-field

analysis to generic Hamiltonian evolutions with random

pulses. However, although the predictions of the mean-field

solution are consistent with several numerical simulations,

we clarify that this approach cannot be general by con-

structing explicit counterexamples via symmetry-breaking

arguments.

A. Mapping to a non-Hermitian

many-body Hamiltonian

A powerful method for estimating the spectral gap of the

Liouvillian is to map Eq. (8) to a many-body problem, and

then use powerful techniques developed in condensed-matter

systems to obtain the spectrum. In order to find this mapping,

we introduce a basis bαβ ¼ jαihβj, α; β ¼ 1;…; d and call

Bαβ ¼ b
⊕q
αβ . These operators satisfy the SUðdÞ commutation

relation, ½Bαβ; Bγδ� ¼ Bαδδβγ − δαδBβγ , and therefore define

a reducible representation of SUðdÞ. Moreover, X̊⊕q ¼
X⊕q ⊗ 1−1⊗X⊕qT ¼

P

αβðXαβB
↑
αβ − ðXTÞαβB↓

αβÞ, where
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we set B
↑
αβ ¼ Bαβ ⊗ 1 and B

↓
αβ ¼ 1 ⊗ Bαβ. Hence, the

Liouvillian can be written as

Lq ¼ −i
X

αβ

HαβðB↑
αβ − B

↓
βαÞ

−
σ

2

X

αβγδ

VαβVγδðB↑
αβ − B

↓
βαÞðB

↑
γδ − B

↓
δγÞ: ð24Þ

The form Eq. (24) is a convenient starting point because it

depends only on the original d × d operators introduced in

Eq. (1), while the complicated action into the q-copy Hilbert
space is transferred into the basis operators B.
The operators B form a reducible representation of

SUðdÞ and can be decomposed in terms of irreducible

operators that act on different invariant subspaces of the

original ðCdÞ⊗q Hilbert space. Indeed, because of the

Schur-Weyl duality, every irreducible representation of

ðCdÞ⊗q is decomposed as ðCdÞ⊗q ¼⊗λ P
λ ⊗ Uλ, where

Pλ is an irreducible representation of the symmetric group

Sq and Uλ an irreducible representation of SUðdÞ. A

convenient expression for the fully symmetric and fully

antisymmetric subspaces is given by [49] Bαβ ¼ a†αaβ,

where aα and a†α are either bosonic or fermionic creation

and annihilation operators. Moreover, even a generic

(though reducible) representation can be constructed from

either bosonic or fermionic annihilation operators by add-

ing an extra index and writing Bαβ ¼
P

ua
†
αuaβu. From the

definition of B one realizes that in this generic representa-

tion there are exactly q particles since

X

αu

a†αuaαu ¼
X

α

Bαα ¼ q1: ð25Þ

For convenience, we also perform the calculation in the

basis where V is diagonal. Therefore, Eq. (24) becomes

Lq ¼ −i
X

αβu

Hαβða†αu↑aβu↑ − a†βu↓aαu↓Þ ð26Þ

−
σ

2

X

αβuv

VααVββðnαu↑ − nαu↓Þðnβv↑ − nβv↓Þ; ð27Þ

where nx ¼ a†xax. Thanks to this general representation, the
many-body Liouvillian has been mapped to a many-particle

Hubbard-like problem Eq. (27) where the hopping part is

anti-Hermitian. The original dependence on q is mapped to

the number of particles, namely to the constraint Eq. (25)

that there are exactly q particles in the “spin-up” and “spin-

down” states,
P

αunαu↑ ¼
P

αunαu↓ ¼ q1.

B. Mean-field approach

We consider here the decomposition Eq. (12) where each

Lloc
k for different k is equivalent to a single-copy Liouvillian

L1. From the above decomposition it is clear that if the gap

of Lloc ¼
P

kL
loc
k equals the gap of Lq, then the Liouvillian

gap λ� is independent of q.
Extending the treatment of Sec. III A, we define a local

basis of operators ~B
~α ~β

¼ B
↑
α↑β↑

δα↓β↓ þ δα↑β↑B
↓
α↓β↓

, where

~α ¼ ðα↑; α↓Þ, and similarly for ~β, are multi indices running

from 1 to d2. Therefore, we can write the decomposition

Eq. (12) as

Lq ¼
X

~α; ~β

ðLloc
1 Þ

~α ~β
~B
~α ~β

−
σ

2

X

~α; ~β;~γ;~δ

V̊
~α ~β
V̊

~γ ~δð ~B ~α ~β
~B
~γ ~δ −

~B
~α ~δ
~δ~β ~γÞ;

and, writing ~B
~α ~β

¼ a†
~αa ~β

with bosonic operators, then

Lq ¼
X

~α; ~β

ðLloc
1 Þ

~α ~β
a†
~αa ~β

−
σ

2

X

~α; ~β;~γ;~δ

V̊
~α ~β
V̊

~γ ~δa
†

~αa
†

~γa~β
a~δ: ð28Þ

We assume that Lloc
q is diagonalizable (with left and right

eigenvectors) as ðLloc
q Þ

~α ~β
¼ P

jZ ~αjλjZ
−1

j ~β
for a nonsingular

matrix Z, where j ¼ 0 corresponds to the steady state. Then

we define new bosonic operators via the nonunitary

Bogoliubov transformation ~a0i ¼
P

~αZ ~αia
†

~α, ~ai ¼
P

~αðZ−1Þi ~αa ~α. These operators still satisfy the canonical

commutation relations ½ ~ai; ~aj0� ¼ ~δij, though ~ai
0 ≠ ~a†i . As

we show in Appendix G, in this language, the steady state of

the many-body Liouvillian Eq. (28) is therefore the boson

“condensate” jΩi ¼ ½ð ~a00Þq=
ffiffiffi

q
p

!�j0i, where j0i is the

bosonic vacuum. Elementary excitations with respect to

this state can be constructed with a Bogoliubov (mean-field)

approach by defining a variational wave function

jψi ¼
P

jψ j½ð ~a00Þq−1=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðq − 1Þ!
p

�ajj0i, for j ≠ 0 and opti-

mizing over the amplitudesψ j. These states aremotivated by

the analytic solution of the integrable model considered in

Sec. IV, where the excited states with minimal gap have a

single quasiparticle excitation. Although mean-field tech-

niques have been highly studied mostly for Hamiltonian

systems [48], they can also be extended to non-normal

operators [50] where left and right eigenvectors form a bi-

orthonormal basis. Within this variational formalism, we

show in Appendix G that the four-body interaction in

Eq. (28) does not alter the eigenstates, which are therefore

exactly given by the bare single-particle eigenstates

jΩexc
j i ¼ ½ð ~a00Þq−1=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðq − 1Þ!
p

�ajj0i with exact eigenvalue

λj, for any q. This shows that the eigenvalues, at least in the

low-energy subspace, are not “renormalized” for larger

values of q. The obtained states jΩexc
j i are indeed the

symmetric combination of Eq. (15), which, as shown before,

are an exact eigenstate of Lq. Within this simple mean-field

treatment there are no other eigenvalues with a smaller

gap than minjjRe½λj�j. Therefore, the final outcome of the
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mean-field treatment is that, at least for fully symmetric

states, the Liouvillian gap is constant as a function of q.

C. Counterexample to the mean-field treatment

The mean-field treatment of the previous section, based

on single-particle excitations, predicts that the Liovillian

gap is independent of q, as long as the mean-field approach

is accurate. Also, the rigorous Bethe-ansatz treatment of

Sec. IV, valid for a particular integrable model, shows that

the Liouvillian gap is independent of q, by explicitly

showing that the states with minimal gap are made by

unpaired particles. That rigorous treatment thus justifies the

mean-field approach, at least for that particular model.

However, here we show that the predictions of the mean-

field theory cannot be general by finding a counterexample

where a state with two bounded particles (hence, appearing

for q ≥ 2) may have a lower gap.

We construct this counterexample via symmetry argu-

ments. Clearly, in the fully controllable case H and V must

not share a symmetry—otherwise only symmetric unitaries

can be obtained—but this lack of common symmetries is

not sufficient. Indeed, generically, in tensor copies there

may be other nontrivial symmetries but, because of the

Schur-Weyl duality, in the fully controllable case only the

permutation symmetries can remain. Suppose now that our

system is not controllable because there exists an operator
~X, different from a permutation operator, such that

½H⊕p; ~X� ¼ ½V⊕p; ~X� ¼ 0 and that the solutions of

½H⊕q; X� ¼ ½V⊕q; X� ¼ 0 for q < p are only permutation

operators. In this case, Eq. (11) would be valid for q < p,

but not when p ¼ q, as the symmetry ~X introduces an extra

steady state. Then, suppose that we restore full control-

lability by adding a small OðϵÞ term in either H or V such

that the operator ~X is not a symmetry anymore (we say that

the symmetry ~X is explicitly broken). This splits the extra

steady state into an eigenvector with smallOðϵÞ eigenvalue,
which, for small enough ϵ, can be smaller than the gap,

obtained when q < p. If this counterexample can be

constructed, then the gap for q < p may be different from

the gap at q ¼ p. Below, we show that this construction is

indeed possible already with p ¼ 2 and that these extra

eigenstates correspond to bound particles in the many-body

framework.

As shown in Refs. [51,52], a rather surprising necessary

and sufficient condition for controllability is that there are

exactly two independent solutions of the equations

½H⊕2; X� ¼ ½V⊕2; X� ¼ 0. Nonetheless, a simpler necessary

condition (though not sufficient [51]) is the absence of

nonzero solutions to the set of equations

QHT þHQ ¼ QVT þ VQ ¼ 0: ð29Þ

Taking the complex conjugate of Eq. (29), we find that Q

satisfies Q�H þHTQ� ¼ Q�V þ VTQ� ¼ 0, as H and V

are Hermitian. Because of this, QQ� commutes with both

H and V and, owing to Schur’s lemma,QQ� is proportional
to the identity. Reference [53] proved that QQ� ¼ 1 when

Q is symmetric and QQ� ¼ −1 when Q is antisymmetric.

If there are nonzero solutions of Eq. (29), then the system is

not controllable and there are extra steady states such as the

bosonic paired state for q ¼ 2:

jψQi ¼
X

~α ~β

ðQ ⊗ Q�Þ
~α ~β
a†
~αa

†

~β
j0i: ð30Þ

Indeed, for both Q symmetric and antisymmetric, Q ⊗ Q�

is symmetric, thus justifying the bosonic approach. The

proof can be readily obtained from Eq. (28), indeed for both

X ¼ H, V:

X̊
~γ ~δa

†

~γa~δjψQi ¼ X̊
~γ ~δa

†

~γa~δ

X

~α ~β

Q
~α ~β
a†
~αa

†

~β
j0i

¼ ½ðXQÞ ⊗ Q� þ ðQXTÞ ⊗ Q�þ
−Q ⊗ ðXTQ�Þ −Q ⊗ ðQ�XÞ�

~γ ~δa
†

~γa
†

~δ
j0i;

so because of Eq. (29), we find H̊
~γ ~δa

†

~γa~δjψQi ¼
V̊

~γ ~δa
†

~γa~δjψQi ¼ 0, namely, L2jψQi ¼ 0. Hence, the extra

symmetry Q introduces a pairing between bosons in the

steady state, which is expressed by Eq. (30)—note that it is

indeed a pairing because ½Q ⊗ Q��
~α ~β

≠ Q ~αQ
�
~β
since Q is a

matrix.

As discussed before, we can restore controllability by

explicitly breaking the symmetry Eq. (29) with small terms:

QHT þHQ ¼ ϵH, QVT þ VQ ¼ ϵV , where at least one

between ϵV or ϵH has to be nonzero, otherwise the system is

not controllable. In this case, jψQi is not a steady state but,

within first-order perturbation theory, can be used to create

a state with eigenvalue ~δ ¼ OðϵV ; ϵHÞ. In particular, one

can construct specific examples where ϵV and ϵH are much

smaller than the gap λ� of L1 so that ~δ < λ�. Therefore,
exploiting these broken symmetries we can construct

counterexamples where the gap changes as a function of

q. The simplest example is a two-spin system with H ¼
ðσx1σx2 þ σ

y
1σ

y
2 þ σx1Þ þ ϵσz1σ

z
2 and V ¼ σ

y
1, where σ

α
j are the

Pauli matrices acting on the spin j. For instance, for

ϵ ¼ 0.1, the gap of L1 is ≈0.45, while the gap of L2

is ≈0.05.

In spite of this counterexample, we observe that in

most numerical examples, performed for small values of

d and q with a random choice of H and V, the

Liouvillian gap is constant as a function of q. This

allows us to conjecture that “typically,” namely for most

choices of H and V, the Liouvillian has a constant gap,

as predicted by the mean-field approach. Since in

Eq. (12) each copy interacts with all the others, this
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conjecture is supported by the well-known validity (see,

e.g., Ref. [42]) of the mean-field solution in long-range

models.

IV. CONTROLLABLE QUANTUM WALK

We focus on a specific model that is of experimental

interest, namely, a single-particle hopping in a one-dimen-

sional lattice; see Fig. 1. This framework can describe

different physical systems, such as a spin impurity in a spin

chain, a single electronic excitation in quantum dot arrays,

and a photon traveling in a one-dimensional photonic chip.

The resulting quantum walk can be modeled via the

Hamiltonian

H ¼
X

L−1

n¼1

jnihnþ 1j þ H:c:; ð31Þ

where jni represents the state in which the walker is in

position n and L is the length of the chain. This

Hamiltonian has found numerous applications in quantum

transport problems and remote entanglement generation in

spin chains [54–57].

Moreover, we consider a local control field on a single

site of the chain, namely the cth site, which is modeled by

the Hamiltonian term gðtÞV, where V ¼ jcihcj and gðtÞ is a
time-dependent control profile. One can show that the chain

is controllable provided that c and Lþ 1 are co-prime

numbers [58,59]. For simplicity, in the following we set

c ¼ 1. The above hopping Hamiltonian with local control

can be realized in many physical systems, for example, in

reconfigurable photonic chips [21,22], where the different

control pulses can be obtained by electrically tuned on-chip

heaters [23].

In the following we evaluate the Liouvillian gap for all

possible values of q in the strong-driving limit, namely,

when σ ≫ 1. The opposite weak-driving limit is discussed

in Appendix C for the single-particle q ¼ 1 case. We start

by considering two important cases, namely, the fully

symmetric and fully antisymmetric representation where

Bαβ ¼ a†αaβ for either bosonic or fermionic d.o.f. We then

extend our analysis to the general case.

A. Gap analysis: Fully symmetric representation

We consider first the fully symmetric representation

where Bαβ ¼ a†αaβ, so one can omit the index u from

the equations of Sec. III A. Plugging the operatorsH and V
of the controllable chain into Eq. (27), one finds the

following Liouvillian:

Lq ¼ −i
X

α

ða†
α↑aαþ1;↑ − a†

α↓aαþ1;↓ þ H:c:Þ

−
σ

2
ðn↑1 − n

↓
1 Þðn

↑
1 − n

↓
1 Þ: ð32Þ

To diagonalize the above operator we assume that σ ≫ 1

and we study the “low-energy” effective dynamics. In that

limit the dissipative part σD ¼ ðσ=2Þðn↑1 − n
↓
1 Þðn

↑
1 − n

↓
1 Þ

has either eigenvalue 0 or σ ≫ 1. With a perturbative

approach, discussed in Appendix D, we decouple the latter

“high-energy” subspace and obtain an effective Liouvillian

acting in the low-energy sector. From a first-order

expansion as a function of σ−1 the effective Liouvillian

is given by

L̂q ¼
2

σ
−
2

σ

X

L−1

k¼1

gk½−2ð ~a†0↑ ~a
†

0↓ ~ak↑ ~ak↓ þ H:c:Þ

þ ð ~n0↑ þ ~n0↓ þ 1Þð ~nk↑ þ ~nk↓ þ 1Þ�; ð33Þ

where gk ¼ ð2=LÞsin2ðπk=LÞ, ~ak↕ ¼
P

L−1
α¼1ð2=LÞsin2×

ðπkα=LÞaαþ1;↕, and a1↕ ≡ ~a0↕. We now call

Kþ
i ¼ ~a†i↑ ~a

†

i↓, K−
i ¼ ðKþ

i Þ†, and Kz
i ¼ ð ~ni↑ þ ~ni↓ þ 1Þ=2

and note that these operators satisfy the SUð1; 1Þ commu-

tation relations:

½Kþ
i ; K

−
i � ¼ −2Kz

i ; ½Kz
i ; K

�
i � ¼ �K�

i ; ð34Þ

½Kα
i ; K

β
j � ¼ 0; if i ≠ j: ð35Þ

With these definitions, we find then

L̂q ¼
2

σ
−
8

σ

X

L−1

k¼1

gkK0 · Kk; ð36Þ

where Ki · Kj ≡ −ðKþ
i K

−
j þ K−

i K
þ
j Þ=2þ Kz

iK
z
j is the

SUð1; 1Þ invariant product, namely, the analogue of the

Heisenberg interaction. The model Eq. (36) is a SUð1; 1Þ
Gaudin model [60], which is known to be exactly solvable

with the Bethe-ansatz approach. We explicitly diagonalize

FIG. 1. Depiction of a one-dimensional quantum walk, with a

local control at the bottom rung. Each site of the chain is

coherently coupled with its nearest neighbors. Random control

pulses are applied to the first site.
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it in Appendix E by applying Richardson’s method [61].

We find that the eigenvalues of the Liouvillian L̂q are

λ ¼ −
2

σ

�

X

k

gknk þ 4
X

α

Eα

�

; ð37Þ

where the non-negative integers nk parametrize the number

of unpaired particles in mode k (see the discussion in

Appendix E) and the Eα are either zero or the solution of

the nonlinear set of equations

X

k

nk þ 1

ωα − 2g−1k
þ 1

ωk

þ 2
X

β≠α

1

ωα − ωβ

¼ 0; ð38Þ

where Eα ¼ 1=ωα. From that expression it is clear that the

steady state corresponds to Eα ¼ 0 and nk ¼ 0, for each α

and k. Solutions to the above equations are known to be

related with the roots of Heine-Stieltjes polynomials (see,

e.g., Ref. [62]). By exploiting this relationship, one finds

that all the solutions ωα of Eq. (38) are real, different from

each other, and different from the poles of Eq. (38).

Moreover, gk ¼ gL−k so the sum in Eq. (38) can be

restricted to the first half where gk < gkþ1. The roots of

the Heine-Stieltjes polynomials also have the important

property that they lie inside the intervals 2g−1kþ1 < ωα <

2g−1k for some k, so that 2Eα > minkgk ¼ g1. This con-

straint allows us to rigorously find the gap of the

Liouvillian L̂q. Indeed, thanks to the latter inequality,

the paired states have a larger gap than the unpaired ones,

so we can focus only on the solutions where Eα ¼ 0. The

minimum gap is then obtained when n1 ¼ nL−1 ¼ 1 and

nk ¼ 0 otherwise. This is an allowed state (for L > 2) as it

satisfies all the constraints and provides the gap

gap≡ λ� ¼ 8

σL
sin2

�

π

L

�

¼ OðL−3Þ: ð39Þ

This gap is exact in the strong-driving limit, can be

achieved already at q ¼ 1, and is the same for all higher

values of q, as we have shown that there are no smaller

nonzero eigenvalues. Therefore, we prove here explicitly

that in the strong-driving limit the gap is independent of the

number of copies q. In the following sections we extend

this result, which up to now is restricted to the fully

symmetric representation, to show that Eq. (39) is indeed

the gap, irrespective of the chosen representation.

B. Gap analysis: Antisymmetric representations

We first consider another particular case, namely, the

fully antisymmetric representation, that is used as a basis

for the general solution discussed in the next section. We

start from Eq. (27) and we write Bα
ij ¼ a†iαajα, with

fermionic creation and annihilation operators. Repeating

the effective Liouvillian description of the previous section,

we find

L̂q ¼ −
2

σ
þ 8

σ

X

L−1

k¼1

gkS0 · Sk; ð40Þ

where S0 · Sk ¼
P

α¼x;y;zS
α
0S

α
k refers to the SUð2Þ-invariant

product, namely, the spin Heisenberg interaction

S�j ¼ Sxj � iS
y
j , and where we define S−j ¼ ~aj↑ ~aj↓, S

þ
j ¼

ðS−j Þ† and Szj ¼ ð ~a†j↑ ~aj↑ þ ~a†j↓ ~aj↓ − 1Þ=2. It is simple to

verify that the above operators satisfy the SU(2) commu-

tation relations on the same site, and commute on different

sites, so that Eq. (40) is equivalent to the central spin model

first studied by Gaudin [60]. The diagonalization of the

Gaudin Heisenberg Hamiltonian proceeds along the same

lines of the SUð1; 1Þ one. There are two main differences:

(i) the different sign in Eqs. (40) and (36) and (ii) because of

the Pauli exclusion principle the number of particles nk per
mode k is limited to either 0 or 1. We find then that the

eigenvalues are given by Eq. (37), where the nonzero

energies Eα are the solutions of

X

k

gkðnk − 1Þ
2Eα − gk

− 2
X

β≠α

Eβ

Eα − Eβ

¼ 1: ð41Þ

However, because of the different sign in Eq. (41), we

cannot relate the solutions of Eq. (41) to the roots of the

Heine-Stieltjes polynomials, so we cannot bound the gap

using the argument of the fully symmetric case.

Nonetheless, in the next section we consider a more general

technique, valid for all the representations, where such a

bound can be obtained using physical arguments borrowed

from classical electrostatics.

C. General gap analysis

As we discuss in Sec. III A, a general representation of

the SUðLÞ algebra can can be obtained via extended

creation and annihilation operators [49], namely, Bαβ ¼
P

u ~a
†
αu ~aβu for either bosonic or fermionic operators. We

use the fermionic representation for convenience, since our

derivation uses the particle-hole symmetry that is a non-

unitary operation in bosonic systems (see, e.g., Ref. [48]).

Because of the Pauli exclusion principle, in order to satisfy

the constrain
P

αBαα ¼ q, the auxiliary index u has to run

from 1 to q. Performing the same perturbative approach of

Appendix D, valid in the strong-driving limit σ ≫ 1, one

finds that the effective Liouvillian L̂q can be written in the

diagonal basis of the Hamiltonian as
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L̂q ¼ −
2

σ

X

L−1

k¼1

gkðB↑
0kB

↑
k0 þ B

↑
k0B

↑
0k þ B

↓
0kB

↓
k0 þ B

↓
k0B

↓
0k

− 2B
↑
0kB

↓
0k − 2B

↑
k0B

↓
k0Þ: ð42Þ

The above Hermitian operator corresponds to the purely

dissipative Liouvillian,

L̂qρ ¼ −
2

σ

X

L−1

k¼1

gkð½ ~V⊕q
k ; ½ ~V†⊕q

k ; ρ�� þ ½ ~V†⊕q
k ; ½ ~V⊕q

k ; ρ��Þ;

where ~Vk¼jωkihω0j, with jωki¼
P

L−1
j¼1 ð2=LÞsinðπjk=LÞ2

jjþ1i and jω0i ¼ j1i. One can check that the operators ~Vk

and their Hermitian conjugate form a controllable set, so

the steady state of the effective Liouvillian coincides with

the original one. We now perform two transformations. The

first one is the Jordan-Wigner transformation to obtain

proper fermionic d.o.f., namely, where creation and anni-

hilation operators with different indices ↑ and ↓ anticom-

mute. The second one is a particle-hole transformation in

the spin-down sector. These transformations are imple-

mented together by defining W ¼ Q

jue
i ~a†

ju↑
~aju↑ and setting

aju↑ ¼ ~aju↑ and aju↓ ¼ W ~a†ju↑. Equation (42) then

becomes

L̂q ¼ −
2

σ

X

L−1

k¼1

gk
X

αβ

½a†0αakαa†kβa0β þ a†kαa0αa
†

0βakβ�

¼ −
2q

σ
þ 4

σ

X

L−1

k¼1

gk
X

αβ

X
ð0Þ
αβ X

ðkÞ
βα ; ð43Þ

where X
ðjÞ
αβ ¼ ða†jαajβ − ajβa

†
jαÞ=2 and the Greek letters

refer to the multi-index composed by the auxiliary index

and the “effective spin” index, i.e., α ¼ ðusÞ, where u ¼
1;…; q and s ¼ f↑;↓g. The traceless operators XðjÞ

αβ satisfy

the SUð2qÞ⊕L commutation relations,

½XðjÞ
αβ ; X

ðkÞ
γδ � ¼ δjkðXðjÞ

αδ δβγ − X
ðjÞ
γβ δαδÞ; ð44Þ

so that Eq. (43) represents a SUð2qÞ version of the Gaudin

model. Indeed, Eq. (43) is invariant under the Bogoliubov

transofmation ajα →
P

βUα;βajβ, where U is a unitary

ð2qÞ × ð2qÞ matrix. SUð2qÞ has ð2qÞ2 − 1 generators, so

one operator in Eq, (44) is dependent of the others. This is

shown by the equation ½PαX
ðjÞ
αα ; X

ðkÞ
βγ � ¼ 0 for each β and γ.

Going back to the original representation, namely perform-

ing back the particle-hole transformation, one finds that

X
ðjÞ
ðx;↑Þ;ðy;↑Þ ¼

~a†jx↑ ~ajy↑ − ~ajy↑ ~a
†

jx↑

2
; ð45aÞ

X
ðjÞ
ðx;↓Þ;ðy;↓Þ ¼

~ajx↓ ~a
†

jy↓ − ~a†jy↓ ~ajx↓

2
; ð45bÞ

X
ðjÞ
ðx;↑Þ;ðy;↓Þ ¼ ~a†jx↑W ~a†jy↓; ð45cÞ

X
ðjÞ
ðx;↓Þ;ðy;↑Þ ¼ ~ajx↓W ~ajy↑: ð45dÞ

The Gaudin-like model Eq. (43) has been solved for

different algebras [namely, not only the SUð1; 1Þ and

SU(2) cases discussed before] in Refs. [63,64], while the

duality between the different models that can be obtained

by exploiting the auxiliary indices has different ramifica-

tions in mathematical physics (see, e.g., Ref. [65] and

references therein), especially due to its connections with

the Knizhnik-Zamolodchikov equation [65,66]. In

Appendix F, we exploit the general solution [63,64] of

the Gaudin model Eq. (43), valid when the operators X
define any semisimple Lie algebra, to obtain the eigenval-

ues of the Liouvillian Eq. (43) when the SUð2qÞ operators
are defined via the fermionic representation Eq. (45). As in

the fully symmetric and fully antisymmetric case discussed

in the previous sections, the eigenvalues of L̂q are para-

metrized by non-negative integers n↑j and n↓j, and are

given by

λ ¼ −
2

σ

�

X

L−1

k¼1

gkðn↓k þ n↑kÞ þ 4
X

α

1

ωq;α

�

; ð46Þ

where ωj;α for j ¼ 1;…; 2q − 1 are the solutions of

X

β

2

ωj;β − ωj;α

¼
X

L−1

k¼0

μkj

zk − ωj;α

þ
X

β

1

ωjþ1;β − ωj;α

þ
X

β

1

ωj−1;β − ωj;α

; ð47Þ

with z0 ¼ 0, μ0j ¼ δqj, and, for k > 0, zk ¼ 2g−1k and

μkj¼δj;qð1−δn↓k>0−δn↑k>0Þþδj;qþn↑k
þδj;q−n↓k . In Eq. (47)

we set ω0;β ¼ ω2q;β → −∞; namely, in other words, for

j ¼ 1 or j ¼ 2q − 1 one of the two fractions in the second

line is zero.

Owing to the similarity between Eqs. (46) and (37), if we

can show that the solutions of Eq. (47) satisfy the inequality

2ω−1
q;α > gk for each α and k, then we can straightforwardly

apply the reasoning of Sec. IVA to prove that the gap is

indeed given by Eq. (39) for any representation. However,

the sign difference between Eqs. (47) and (38) prevents us

from using the theory of Heine-Stieltjes polynomials to

prove that inequality, as we did in Sec. IVA. Here, we use a

different approach, used also in Ref. [63] for a different

purpose, which is based on mapping the mathematical

equation (47) to an electrostatic problem, and then use our
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classical physics intuition. Following Ref. [63] we define

the two-dimensional vector ω⃗jα whose real components are

the real and imaginary part of ωjα and interpret those

vectors as the positions of some particles with index α and

species j ¼ 1;…; 2q − 1. Equation (47) can then be

interpreted as the conditions for an extremum of the

function WðfωgÞ defined as

WðfωgÞ ¼−
X

2q−1

i;j¼1

X

αβ

Cij log jω⃗iα − ω⃗jβj−
X

2q−1

i¼1

X

α

Viðω⃗iαÞ;

ð48Þ

Viðω⃗Þ ¼ −
X

L−1

k¼0

μki log jω⃗ − z⃗kj; ð49Þ

where z⃗k ¼ ðzk; 0Þ and the Cartan matrix Cij has nonzero

components only on the diagonal, where Cii ¼ 2, and for

ji − jj ¼ 1, where Cij ¼ −1. This shows that the problem

of finding a solution to the system of equations (47) is

equivalent to the problem of finding the equilibrium

positions of a set of particles in a two-dimensional plane

interacting via the logarithmic potential Eq. (48). That

potential is analogous to the electrostatic potential since the

Coulomb interaction in 2D is logarithmic. Particles of the

same species repel each other, while particles with nearest-

neighbor species attract each other. Finding the equilibrium

positions of those particles is in general quite complicated,

although the problem can be solved explicitly in the

thermodynamic limit [67]. At first sight one may think

that the problem has no solutions since the potential

Eq. (49) is unstable. However, because of the Z2 symmetry

(Im½ωj;α� → −Im½ωj;α�), due to the fact that the zk’s are real,
all the forces on the real line are longitudinal. This property

allows us to seek for solutions of Eq. (47) in the class of real

numbers [63]. On the real line, the problem becomes stable

and one dimensional. An example of this effective one-

dimensional potential is shown in Fig. 2 where one can see

the two unbounded regions for ω < minkzk and for

ω > maxkzk, where no solutions can exist. Therefore, this

electrostatic analogy shows that the only stable solutions

with finite ωiα can be found only between poles of ViðωÞ,
or, in other words, that the solutions of the nonlinear

set of equations (47) satisfy the constraint minkzk <

ωjα < maxkzk, i.e., 2ω−1
jα > minkgk. This, together with

the discussion of Sec. IVA, shows that Eq. (39) is indeed

the gap of the Liouvillian L̂q in the strong-driving limit.

D. Numerical results for the controllable chain

In the previous sections we perform an extensive

theoretical analysis to show that, in a chain controlled

on one boundary, the Liouvillian gap in the strong-driving

limit is constant as a function of q and scales as ∝ L−3 as a

function of the length L of the chain—this scaling is

consistent with what has been obtained in spin chains with

boundary dissipation [68]. The scaling ∝ L−3 is obtained

also in the weak-driving limit discussed in Appendix C,

though that analysis is valid only for q ¼ 1. Nontheless, in

all our numerical experiments obtained for small values of

L and q, we find that the gap is constant as a function of q
over the whole range of σ. In Fig. 3, we study the

Liouvillian gap and show that the theoretical predictions

of the strong- and weak-driving limits are very accurate in

their respective limit of validity. Moreover, we find that the

accuracy of the strong-driving limit is not affected by the

length of the chain. This is shown indeed in the inset Fig. 3,

where one observes an almost constant behavior as a

function of L. In Fig. 4, on the other hand, we show that

the Liouvillian gap scales as L−3 for different values of σ.

This scaling has been predicted in the strong- and weak-

driving limits by Eqs. (39) and (C12). However, Fig. 4

shows that such scaling is valid also for σ ≈ 2where neither

FIG. 2. Example one-dimensional potential ViðωÞ from

Eq. (49) with three different values of zk and μki ¼ 1.

FIG. 3. Liouvillian gap for a controllable chain of L ¼ 10 as a

function of the noise strength σ. Exact numerical results are

obtained with q ¼ 1. Strong-driving limit corresponds to

Eq. (39), while the weak-driving limit is from Eq. (C12). Inset:

Noise strength σs as a function of L such that, for σ > σs, the

relative error between the exact gap and the strong-coupling

estimate is smaller than 1%.
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the strong nor the weak coupling limit holds (compare, e.g.,

the values of Figs. 4 and 3). In Fig. 5, we study the

relationship between the Liouvillian gap and the gap s�ðtÞ
in the singular values of etLq , which is a good estimate of

the convergence time (see Sec. II D). As expected, in both

the strong and weak coupling limit the s�ðtÞ converges to
e−λ

�t much earlier than mixing time scales. Therefore, in

these regimes, one finds that the convergence time is

basically 1=λ�. On the other hand, for σ ¼ 2 the matching

between e−λ
�t and s�ðtÞ happens only at longer times.

Therefore, as expected from the analysis of Sec. II D, in this

regime there is a correction to the mixing time due to the

norm of the left and right eigenvectors. Nonetheless,

similarly to the Liovillian gap, our numerical simulations

for small values of L and q show that also the singular value

gap is independent of q over the whole range of σ.

Therefore, we argue that it may be a general feature of

this model that the resulting convergence time is indepen-

dent of q.
Finally, we consider a stochastic simulation of the

evolution of a controllable chain with random fields: we

generate several random driving functions Eq. (2) and, for

each function, we calculate the corresponding unitary

evolution and then study the statistics of the generated

unitary matrices. To test whether the resulting distribution

approximates the Haar measure, we decompose each

unitary into the L2 angles introduced in Ref. [69]. Using

a simple reparametrization of these angles one can write the

Haar measure as

dUðφ1;…;φL2Þ ¼
Y

L2

j¼1

dφj; ð50Þ

namely, as a uniform distriution of the angles φj in the

range ½0; 2π�. Therefore, testing whether the resulting

distribution approximates a Haar measure is equivalent

to testing whether the angles φj are distributed as a

multinomial uniform distribution. In Fig. 6 we do a simple

test to verify the distribution of the angles φj: we divide the

interval ½0; 2π� into 25 bins and plot, as a 3D histrogram, the

matrix whose elements ði; jÞ are the number of times that

the angle φi is found in the jth bin. As Fig. 6 shows, the

distribution of the unitary matrices is far from uniform both

in the noncontrollable case and in the controllable case after

a short time (upper panel). Nonetheless, in spite of the finite

number of samples, after a long time (t ≈ 55) in the

FIG. 4. Scaling of the Liouvillian gap obtained numerically for

q ¼ 1 as a function of L and for different values of σ. Solid lines

correspond to fitting functions ∝ L−3.

FIG. 5. Convergence of the singular value s�ðtÞ of etLetL
†

to

e−λ�t, where λ� is the Liouvillian gap. The relative error ΔðtÞ
between λ� and −t−1 log sðtÞ is plotted for the different values of

σ; the time axis is rescaled between 0 and 2λ−1� . In the

simulations, L ¼ 10, q ¼ 1.

FIG. 6. Uniformity check of generated random unitaries. We

consider the time evolution of a driven L ¼ 5 chain with random

fields [Eq. (2)], where K ¼ 100, gk is sampled uniformly in

½−0.5; 0.5�, while ϕk and ωk are sampled in ½−L; L�. The statistics
is done with 104 independent realizations. The discrete histro-

gram is computed according to the decomposition [69] as

described in the main text. (a) Noncontrollable case where noise

is applied on the central site for a time t ¼ 25. (b) Controllable

case where the noise is applied on the first site for a short time

t ¼ 5. (c) Controllable case where the noise is applied on the first

site for a long time t ¼ 55.
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controllable case the angles’ distribution is almost flat

(lower panel), thus showing that the resulting unitary

matrices are approximately distributed according to the

Haar measure.

V. OTHER APPLICATIONS

A. Multipoint correlation functions

Here, we discuss some direct applications, beyond

q-design, of the main findings of our paper. In boson

sampling experiments the output probability is proportional

to jperð ~UÞj2, with perð ~UÞ the matrix permanent of the q × q

matrix ~U, where ~U is built from some columns and rows of

a L × L Haar-uniform matrix U [24–26]. Therefore,

jperð ~UÞj2 ¼
X

σ;σ0

Y

q

i;j¼1

~Ui;σðiÞ ~U
�
j;σ0ðjÞ ð51Þ

¼ Tr½U⊗q;qKBS�; ð52Þ

where σ; σ0 are permutations in the symmetric group Sq,

KBS. is a suitable index contraction operator, and U⊗q;q ¼
U⊗q ⊗ ðU⊗qÞ� as in Eq. (4).

A similar expression arises in the evaluation of multi-

point correlation functions in quasifree particle-preserving

bosonic and fermionic models. If U is the L × L one-

particle evolution matrix from time 0 to time t and

ajðtÞ ¼
P

kUjkakð0Þ, then because of the Wick’s theorem,

ha†i1ðtÞaj1ðtÞ…a†iqðtÞajqðtÞi ¼ Tr½U⊗q;qKMP�; ð53Þ

where KMP depends on the initial two-point correlation

functions ha†i ð0Þajð0Þi. Expressions like Eq. (53) arise also
in XY spin chains, which can be mapped to a quasifree

fermionic model via the Jordan-Wigner transformation

[70]. For instance, the driven XY model,

HXYðtÞ ¼
1

2

�

X

j

ðσxjσxjþ1 þ σ
y
jσ

y
jþ1Þ þ gðtÞσz1

�

; ð54Þ

can be mapped, in the single-particle subspace, to the

driven quantum walk of Sec. IV. Calling U the resulting

single-particle evolution, then in any subspace long-range

spin operators Sαi S
β
j , for α; β ∈ fx; yg can be written as a

combination of fermion strings as in Eq. (53), where q ¼
ji − jj for i ≠ j. Therefore, with a suitable KXY that

depends on the initial correlations, one can write the

dynamical long-range correlations between spin operators

in an XY chain as

hSαi ðtÞS
β
iþqðtÞi ¼ Tr½U⊗q;qKXY �; ð55Þ

for α; β ∈ fx; yg. Similarly, hSzi ðtÞSzjðtÞi ¼ Tr½U⊗2;2K
zz
XY �.

In all the above cases we can bound the convergence of

the random dynamics to the values expected from the Haar

distribution. Indeed, for any K,

	

	

	

	

Tr

��

EUU
⊗q;q −

Z

U⊗q;qμHaarðdUÞ
�

K

�	

	

	

	

< eðμU; qÞkKk1; ð56Þ

where we use Eq. (4). Thanks to the analysis of Sec. II D,

and since the gap Eq. (39) for the controllable quantum

walk is independent of q, one can then bound the expected

errors in all the above cases. For boson sampling experi-

ments, this shows how the error depends on the number q
of bosons, while for XY spin chains it shows how the error

decays as a function of the distance q between spins.

B. Estimation of the control time

We show here that the mixing time, which is easy to

compute especially for q ¼ 1, can give an estimation of the

control time. Fixing H and V, for how long does one have

to drive the system in order to achieve a generic target gate?

If after the time T�
ex the random evolutions are Haar-

randomly distributed, then the control time to obtain a

certain gate U satisfies TcðUÞ < T�
ex. However, for

approximate q-design, T� provides only a rate of con-

vergence, rather than a sharp bound. This results in an error,

which may also be due to the fact that the target gate U is

not achievable yet at time T�. However, after a time τT� this
error probability exponentially decreases as a function of τ.

We can thus regard T� as an estimation for Tc. An

estimation of the mixing time T� can be easily obtained

for any choice of H and V via the inverse of the gap λ�,
which depends on σ (see, e.g., Fig. 3). Since Tc does not

involve any specific properties (amplitudes, frequencies)

of the pulse, one has to compare it with T�
min ¼

minσT
�ðσÞ≃ T�ðσ ≃ 2.5Þ ≈ 0.055L3.

In order to estimate Tc we perform a numerical experi-

ment with the QuTip quantum control package [71]. We

consider the model Eq. (31) and, for each length

L ¼ 10;…; 20, we generate a Haar-random unitary U
and find the time Tc as the minimal time for which the

program converges. We find that Tc obtained in this way

scales as Tc ≈ 0.069L3. This shows two remarkable facts:

(i) the values of Tc and T�
min are very close for

L ¼ 10;…; 20, and (ii) both Tc and T�
min exhibit the same

scaling with the length L, so it is expected that this close

relationship is maintained also for larger L. In view of our

findings, one can find an empirical upper bound on Tc

as 3T�
min=2.

VI. CONCLUSIONS AND PERSPECTIVES

In this paper we study the quantum dynamics resulting

from a stochastic driving of quantum many-body systems,

and we answer the following questions: when, and how
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rapidly, the dynamics of a driven quantum system is

equivalent to a fully uniform random evolution, namely

under unitaries sampled from the Haar measure. The first

major finding is that, when the system is fully controllable

and the stochastic signal has finite correlation time, then its

random dynamics converges to the Haar distribution in the

“long-time” limit. The second major result is about the

estimation of the driving time T�: this is done by studying

the deviations from the Haar distribution using the frame-

work of approximate q-design, and using second quantiza-

tion to map the problem into the estimation of the mixing

time in an open quantum many-body Liouvillian with 2q
virtual particles.

We perform a thorough analysis of the Markovian limit

(e.g., white noise) using tools from the theory of dynamical

semigroups, and we find upper bounds on T� in terms of the

gap of the Liouvillian operator. We study the mean-field

solution of the resulting many-body model, which predicts

a constant Liouvillian gap as a function of q, and we

show its limitations via symmetry-breaking arguments.

Nonetheless, we find that the mean-field predictions are

correct in a wide variety of different numerical studies,

obtained with random choices of H and V, and match with

the analytic solution of a particular model, namely, a one-

dimensional system with strong control on one of its

boundaries. The latter analytic solution is obtained by

mapping the effective Liovillian to an exactly solvable

model, and then using Bethe-ansatz techniques to explicitly

show that the excited states with the smallest gap are built

from unpaired quasiparticles, as in the mean-field treat-

ment. We then corroborate our predictions with numerical

simulations, giving strong evidence that the considered

one-dimensional model provides a quantum expander with

a constant mixing time as a function of q. Therefore, our

results show that certain driven physical systems can

provide a significant advantages over random quantum

circuits where the mixing time increases polynomially as a

function of q [35].

The results we present in this paper have many appli-

cations. The first one, already discussed, is a physically

motivated approach to generate pseudouniform random

unitary operations, which have many applications in

quantum information processing protocols. The one-

dimensional system that is extensively analyzed in this

paper is motivated by the recent experiments with inte-

grated photonic circuits [21,22], where random unitary

operations have been used in the first small-scale exper-

imental observations of boson sampling [24–26]. The

results we present in this paper enable the implementation

of random operations in integrated photonic chips that,

being based on noisy quantum walks rather than carefully

designed multimode beam splitters and phase shifters, are

much simpler to fabricate for a larger number of modes.

Therefore, our results provide a new avenue to prove

quantum supremacy in boson sampling experiments.

Moreover, we consider other applications, such as the

dynamics of correlation functions in an XY spin chain, and

the estimation of the control time Tc, one of the major open

problems for quantum control. Given a target unitaryU and

the physical interactions described by H0 and V, how can

we choose Tc such that U is achievable by driving the

system for a time Tc? With numerical experiments,

performed on L-site chains, we find that both Tc and T�
are very close for L ¼ 10;…; 20, and both scale as L3.

Hence, the mixing time T� under random signals provides

an easily computable estimation of Tc, for any H0 and V.
Finally, there are several applications in quantum many-

body physics, where the interplay between quantum many-

body effects and noise is currently a subject of intensive

study in many areas, such as spin glass [42], the fast

scrambling of quantum information [28,29], and many-

body localization [72,73]. The explicit one-dimensional

model discussed in Sec. IV is a single-particle model,

where many-body physics arises due to unitary q-design,
which introduces 2q virtual particles. An interesting future

perspective is the study of random driving in physical

interacting many-body systems (e.g., interacting spin sys-

tems and/or cold atom optical lattices). In fact, the com-

petition between physical many-body effects and those

arising from the unitary design, may give rise to novel

states of matters and phase transitions [68,74–77], produce

a large amount of entanglement [78], and give new insights

into the process of thermalization and equilibration [79].

Haar-random quantum states are known to have, typically,

an extensive amount of entanglement [80]. Since we show

that any controllable quantum system converges to a

maximally mixing dynamics, the real-time dynamics will

be very hard to simulate numerically in the many-body

settings, because of the large amount of entanglement

involved. Nonetheless, the controllability requirement pro-

vides a sufficient algebraic method to infer a prioriwhether

a randomly driven condensed-matter system is expected to

produce a lot of entanglement in the long-time limit.
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APPENDIX A: GAUSSIAN HARMONIC PULSES

To simplify the theoretical description, in this section we

consider only q ¼ 1 and call Et the quantum channel
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resulting from the average evolution of the quantum

system:

Et½ρ� ¼ E½T e
−i
R

t

0
HðsÞds

ρT e
i
R

t

0
HðsÞds�: ðA1Þ

Extension to higher values of q is straightforward. As

described in Sec. II, we now make two assumptions,

namely that gðtÞ is Gaussian and harmonic, where E½gðtþ
sÞgðtÞ� ¼ cðsÞ is independent of t and E½gðtÞ� ¼ 0. In view

of these assumptions, we can simplify Eq. (A1) by

expanding the exponentials into the Dyson series, then

using the Wick’s theorem to decompose the expectation

values, and finally resumming the series. The result in the

interaction picture is then [38,39]

E
ðIÞ
t ½ρðIÞ� ¼ T e

−

R

t

0
dsWsρðIÞ;

Wsρ ¼
Z

s

0

cðs − s0Þ½VðIÞðsÞ; ½VðIÞðs0Þ; ρ��ds0; ðA2Þ

where (I) refers to the interaction picture with respect to H.

If the correlation time is finite, then there exists a suitably

large T such that TcðTsÞ≃ ðσ=2ÞδðsÞ, where δ is the Dirac
delta function and σ is a constant. In the long-time limit one

finds that

E
ðIÞ
t ½ρðIÞ�≃ T exp

�

−c

Z

t

0

½VðIÞðsÞ; ½VðIÞðsÞ; ·��ds
�

ρðIÞ;

when t > T, namely in the Schrödinger picture:

Et½ρ�≃ e−tLρ;

Lρ ¼ −i½H; ρ� − σ

2
½V; ½V; ρ��: ðA3Þ

APPENDIX B: SEMIGROUP

CONVERGENCE TIMES

There exist several measures to estimate convergence of

a semigroup of completely positive trace-preserving maps.

The one with the most natural operational interpretation is

trace norm convergence, as it reflects the likelihood that the

time-evolved state can be distinguished from the stationary

state at a given time t.

supρketLðρÞ − T∞ðρÞk1 ≤ ϵðtÞ; ðB1Þ

where T∞ ¼ limt→∞e
tL, and ϵðtÞ is the distinguishability

error. A less stringent convergence requirement is to ask

whether etL
q

is an expander for a given value of t. Then, we
want to estimate

ketL − T∞k2→2 ¼ ketL̂q

− T̂∞k∞; ðB2Þ

where a hat indicates that the completely positive trace-

preserving maps are represented as channels (see Ref. [81]

for more details on the representation of channels). Trace

norm convergence and “spectral convergence” are related,

by noting that

ketL − T∞k2→2 ≤ ketL − T∞k1→1 ≤ d2ketL − T∞k2→2;

ðB3Þ

where d is the dimension of the Hilbert space, and recalling

that ketL − T∞k1→1 ¼ supρketLðρÞ − T∞ðρÞk1.
In order to estimate the above norms it is important to

recall the spectral properties of quantum dynamical semi-

groups. The spectrum of a Liouvillian L has a nonpositive

real part, and there always exists at least one eigenvalue of

magnitude zero, corresponding to a stationary state of the

semigroup: LðρÞ ¼ 0. The rest of the spectrum comes in

complex conjugate pairs. The Liouvillian is called unital if

it annihilates the identity Lð1Þ ¼ 0. The Liouvillian in

Eq. (7) has this property. A unital Liouvillian is called

reversible if L̂ ¼ L̂
†, in which case its spectrum is real.

Unfortunately, Eq. (7) is not reversible. Convergence of a

nonreversible semigroup is governed by the singular values

of etL rather than its eigenvalues. The singular spectrum of

etL is equal to the spectrum of
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

etL̂etL̂
†

p

.

It is not difficult to see that the 2 → 2 norm is related to

the singular spectrum. Let sjðtÞ be the singular values

of etL, ordered from largest to smallest. The largest

has magnitude one. We know that asymptotically

s�ðtÞ¼etRe½λ
��, where now λj are the eigenvalues of L

written in decreasing (real part) order, and λ� is the gap of

L, i.e., the smallest (in magnitude) nonzero real part of any

eigenvalue of L. To see this, note that, assuming it has no

Jordan blocks, the Liouvillian can be written in its spectral

decomposition as

LðρÞ ¼
X

j

λjL
†
j tr½Rjρ�; ðB4Þ

where Rj, Lj are a biorthonormal basis of operators: i.e.,

tr½L†
jRk� ¼ δjk. Importantly, the norm of any given Lj, Rj

can be large, which prevents us from getting any rigorous

(universal) bounds between the singular values and the

eigenvalues. Then,













etL − T∞













2→2

¼ sup
ψ

�

X

j∶λj≠0
e2tRe½λj�jhRjjRjijjhψ jLjihLjjψij

�

1=2

≈t→∞ etλ
�ðjhRjjRji













hψ jLjihLjjψijÞ1=2: ðB5Þ

Hence, for very large t, the convergence is governed by the

gap, and s�ðtÞ→ etλ
�
. In principle we do not know at what

scale e−tλ
�
≫ jhRjjRjijjhψ jLjihLjjψij.
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We argue in the main text that for the specific model of a

controllable quantum walk, the prefactors do not contribute

to the asymptotics in the weak- or strong-coupling limits.

APPENDIX C: WEAK-DRIVING LIMIT

A convenient approximation for the long-time dynamics

in the weak-coupling limit σ ≪ 1 is the rotating wave

approximation (RWA) [82]. We consider the case q ¼ 1

and assume that V is a matrix of real numbers and call

D ¼ −σV̊2=2 the dissipative part in Eq. (8). Going to the

interaction picture with respect to the Hamiltonian part, one

finds that _ρIðtÞ ¼ DIðtÞρIðtÞ, where in the eigenbasis of

H ¼ P

jωjjωjihωjj it is

hωiωjjDIðtÞjωkωli ¼ −
σ

2
e−itðωij−ωklÞRijkl; ðC1Þ

Rijkl ¼ hωijV2jωkiδjl þ hωjjV2jωliδik
− 2hωijVjωkihωjjVjωli; ðC2Þ

where ωij ¼ ωi − ωj. The rotating wave approximation

consists in neglecting all the terms where ωij ≠ ωkl,

because for large t they are highly oscillating and average

out:

hωiωjjDRWAjωkωli ¼ Rijklδωij;ωkl
: ðC3Þ

This approximation is expected to hold when

t ≫ max
ωij≠ωkl

ðωij − ωklÞ−1: ðC4Þ

RWA is related to degenerate perturbation theory. Indeed,

the unperturbed (σ ¼ 0) eigenvalues of Eq. (8) are given by

jΦð0Þ
ij i ¼

P

klδωij;ωkl
α
ij
kljωkωli with eigenvalue −iωij. From

degenerate first-order perturbation theory, we know that,

for small σ, the eigenvalues of Eq. (8) are obtained by

diagonalizing DRWA, which is block diagonal where each

block acts on different degenerate subspaces. The eigen-

vectors of DRWA provide the matrices α
ij
kl. Note that since

DRWA is Hermitian, the states jΦð0Þ
ij i form an orthonormal

basis that depends on both H (from the basis jωki) and V

(via the diagonalization of DRWA). Moreover, the real

eigenvalues Δij of Eq. (C3) provide the first-order correc-

tion to the eigevectors of Eq. (8) that, to the first order in

σ−1, are −iωij þ Δij. The Liouvillian gap is given by the

minimum nonzero value of −Δij. Similarly, one finds the

correction to the (right) eigenvector:

jΦð1Þ
ij i ¼ jΦð0Þ

ij i − i
X

kl
ωkl≠ωij

jΦð0Þ
kl i

hΦð0Þ
kl jDjΦð0Þ

ij i
ωkl − ωij

≃ eS
RWA jΦð0Þ

ij i; ðC5Þ

where

SRWA ¼ −i
X

klmn
ωkl≠ωij

jΦð0Þ
kl i

hΦð0Þ
kl jDjΦð0Þ

mni
ωkl − ωmn

hΦð0Þ
mnj: ðC6Þ

Since SRWA is a Hermitian operator, the new vectors in

Eq. (C5) do not form an orthonormal basis.

We now focus on the chain discussed in Sec. IV, where

ωkj
¼ 2 cos kj, kj ¼ πj=ðLþ 1Þ, V2 ¼ V, and we call

Wij ¼ hωijVjωji ¼ ð2=Lþ 1Þ sin ki sin kj. To simplify

the equations we use the compact notation jii≡ jωii
and we use c ¼ 1, namely, we assume that the controlled

site is the first one. We note that the resonance condition

ωi − ωj ¼ ωk − ωl is achieved in three different cases:

Case 1: i ¼ k and j ¼ l:

hijjDRWAjiji ¼ σ

2
ðVii þ Vjj − 2ViiVjjÞ: ðC7Þ

Case 2: i ¼ j ≠ k ¼ l:

hiijDRWAjkki ¼ σ

2
ð−2V2

ikÞ: ðC8Þ

Case 3: We note that ωi þ ωī ¼ 0, where ī ¼ L − iþ 1.

Therefore, if l ¼ ī and k ¼ j̄, the resonance condition is

achieved. To avoid double counting with case 1, we write

l ¼ ī, k ¼ j̄, i ≠ j, i ≠ j̄, so

hijjDRWAjj̄ īi ¼ σ

2
ð−2Vij̄VjīÞ ¼

σ

2
ð−2V2

ijÞ; ðC9Þ

where we use the fact that Vij ¼ Vji ¼ V īj ¼ Vjī. All the

other elements are zero.

All the nonzero elements ofDRWA are discussed in cases

1–3. Since most of the terms are zero, it is quite easy to find

the eigenvalues of DRWA. We call those eigenvalues

jSi ¼
P

ijSijjiji. From cases 1 and 3, one can see that

the off-diagonal states where Sii ¼ 0 are decoupled from

the diagonal ones. Therefore, we consider these two cases

separately. Let jSoi ¼
P

i≠jSijjiji be an off-diagonal state,

then the eigenvalue equation DRWAjSoi ¼ λjSoi written as

hkljDRWAjSoi ¼ λSkl for k ≠ l is

ðVkk þ Vll − 2VkkVllÞSkl − 2V2
klSl̄ k̄ ¼ −

2

σ
λklSkl; ðC10Þ

when l ≠ k̄ and
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ð2Vkk − 2V2
kkÞSkk̄ ¼ −

2

σ
λkk̄Skk̄: ðC11Þ

Therefore, for each pair k, l, Eq. (C10) is a 2 × 2 matrix

eigenvalue problem whose minimum (in absolute value)

eigenvalue is

λmin
kl ¼ −

σ

2
ðVkk þ Vll − 4VkkVklÞ

¼ −
σ

Lþ 1

�

sin2kk þ sin2kl −
8

Lþ 1
sin2kksin

2kl

�

:

On the other hand,

λll̄ ¼ −
σ

2
ð2Vll − 2V2

llÞ

¼ −
2σ

Lþ 1

�

sin2kl −
2

Lþ 1
sin4kl

�

:

When L ≫ 1 we can neglect the OðL−2Þ correction, and

since Vll is minimized for l ¼ 1, we find that the gap is

gap ¼ −λ11̄ ≈
2σπ

L3
: ðC12Þ

We now show that the other “diagonal” eigenvalues

jSdi ¼
P

iSiijiii have a larger gap. Writing the eigenvalue

equation, we find −ðσ=2Þð2VkiδkiSkk − 2V2
kiSiiÞ ¼ λSkk;

namely, we have to find the eigenvalues of the matrix

Rik ¼ σðVikδik − V2
ikÞ. Calling Vd ¼ σdiagV and ai ¼

ð2 ffiffiffi

σ
p

=Lþ 1Þsin2ki, then R ¼ −Vd þ aTa. Using the

matrix determinant lemma in the eigenvalue equation,

we find

0 ¼ detðλ1þ Vd − aTaÞ

¼ detðλ1þ VdÞ
�

1 − aT
1

λ1þ Vd
a

�

: ðC13Þ

The first term in the above equation gives the solutions

λ ¼ −Vll ¼ −ð2σ=Lþ 1Þsin2kl, which have a higher gap.

On the other hand, the second term in Eq. (C13) provides

the equation

0 ¼ 1 −
4σ

ðLþ 1Þ2
X

l

sin4kl

λþ 2σ
Lþ1

sin2kl

¼ 1 −
2

ðLþ 1Þ
X

l

sin4kl
Lþ1
2σ

λþ sin2kl

¼ 1 −
2

ðLþ 1Þ
X

l

�

sin2kl þ
Lþ 1

2σ
λ

sin2kl
Lþ1
2σ

λþ sin2kl

�

;

where in the last equation we use the identity

ð1=aþ bÞ ¼ ð1=aÞ − ½b=aðaþ bÞ�. Since
P

l sin
2 kl ¼

ðLþ 1Þ=2, we are left with the equation

0 ¼ λ
X

l

sin2kl
Lþ1
2σ

λþ sin2kl
: ðC14Þ

A solution to that equation is clearly λ ¼ 0, namely, the

steady state. On the other hand, all the other solutions must

satisfy λ < −ð2σ=Lþ 1Þsin2kl for some l, because other-

wise all the elements in the sum are positive and there is

clearly no solution. Therefore, all the solutions must satisfy

jλj > ð2σ=Lþ 1Þsin2k1 > gap. This concludes the proof

that the gap is given by Eq. (C12).

APPENDIX D: STRONG-DRIVING LIMIT

We focus here on the derivation of the effective

Liouvillian Eq. (33). Let us then define P as the projector

onto the low-energy (eigenvalue zero) subspace of

D ¼ 1
2
ðn↑1 − n

↓
1 Þðn

↑
1 − n

↓
1 Þ. This space is generated by all

the states such that n
↑
1 ¼ n

↓
1 . We also set Q ¼ 1 − P and

callH the Hamiltonian part such that Lq ¼ −iH − σD. We

then also call XPP ¼ PXP, with similar definitions for

XPQ, XQP, XQQ. We can therefore write Lq in the block

form:

Lq ¼
�

−iHPP −iHPQ

−iHQP −iHQQ − σDQQ

�

; ðD1Þ

where σ ≫ kHk; kDk, and where we use the fact that

PD ¼ DP ¼ 0. The low-energy eigenvalues can then be

obtained using the determinant identity

det

�

A B

C D

�

¼ detðDÞ detðA − BD−1CÞ;

see also Refs. [46,83] for a related approach. Indeed, using

a first-order expansion for σ → ∞, it is simple to see that

the small eigenvalues are the eigenvalues of the effective

operator:

Leff
q ¼ −iHPP −

1

σ
HPQD

−1
QQHQP: ðD2Þ

The above effective operator can also be obtained with a

(possibly nonunitary) similarity transformation eSD to

decouple the “low-energy” and “high-energy” subspaces.

Namely, one can find SD such that

�

Leff
q 0

0 OðσÞ

�

¼ eSDLqe
−SD

¼ Lq þ ½SD;Lq� þ
½SD; ½SD;Lq��

2

þOðkSDk3Þ: ðD3Þ

One finds that Eq. (D3) is valid up to the first order in σ−1,
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with Leff
q given by Eq. (D2), by choosing

SD ¼ S1

σ
þ S2

σ2
þOðσ−3Þ; ðD4Þ

such that

S1 ¼
�

0 iHPQD
−1
QQ

−iD−1
QQHQP 0

�

;

S2 ¼
�

0 S2;�

−S
†

2;� 0

�

;

where S2;� ¼ HPPHPQD
−2
QQ −HPQD

−1
QQHQQD

−1
QQ. Note

that iS1 is a Hermitian operator, unlike iS2.

We now obtain the effective operator explicitly. Since P

commutes with all the operators acting on all but the first

sites, one realizes thatHPQ andHPQ are composed only by

the projections of a†
1↕a2↕ and their complex conjugate.

Moreover,

Pa†
1↑Q ¼

X

n1↑

X

m1↑≠m1↓

jn1↑n1↑ihn1↑n1↑ja†1↑jm1↑m1↓i

× hm1↑m1↓j
¼

X

n1

ffiffiffiffiffi

n1
p jn1; n1ihn1 − 1; n1j;

where jmni is a shorthand notation for ½ða†
1↑Þmða

†

1↓Þn�=
½

ffiffiffiffiffiffiffiffiffiffi

m!n!
p

�j0i. Similarly, we find

Pa†
1↓Q ¼

X

n1

ffiffiffiffiffi

n1
p jn1; n1ihn1; n1 − 1j; ðD5Þ

Pa1↑Q ¼
X

n1

ffiffiffiffiffi

n1
p jn1; n1ihn1 þ 1; n1j; ðD6Þ

Pa1↓Q ¼
X

n1

ffiffiffiffiffiffiffiffiffiffiffiffiffi

n1 þ 1
p

jn1; n1ihn1; n1 þ 1j: ðD7Þ

Since in HQP the up and down states on the first site differ

for only one paritcle, it is D−1
QQHQP ¼ 2HQP. Hence, the

effective operator is given by −iHPP − ð2=σÞHPQHQP.

This can be computed from

Pa†
1↕Qa1↕P ¼ n1↕P; ðD8Þ

Pa1↕Qa†
1↕P ¼ ðn1↕ þ 1ÞP; ðD9Þ

Pa†
1↑Qa†

1↓P ¼ a†
1↑a

†

1↓P; ðD10Þ

and their Hermitian conjugate (all the other terms are zero).

Moreover, n1↑P ¼ n1↓P. We find then

HPQHQP ¼−2ða†
1↑a

†

1↓a2↑a2↓þH:c:Þþn1↑ðn2↓þ 1Þ
þn1↓ðn2↑þ 1Þþn2↓ðn1↑þ 1Þþn2↑ðn1↓þ 1Þ

ðD11Þ

¼ −2ða†
1↑a

†

1↓a2↑a2↓ þ H:c:Þ − 1

þ ðn1↑ þ n1↓ þ 1Þðn2↑ þ n2↓ þ 1Þ: ðD12Þ

In order to make further analytical progress we also use

the rotating wave approximation, which is consistent with

the perturbative treatment (see Appendix C) since Leff
q ¼

−iHPP − ð2=σÞHPQHQP and 2=σ is small. We note that

HPP ¼ P

L
α¼2ða†α↑aαþ1;↑ − a†

α↓aαþ1;↓ þ H:c:Þ. The above

operator can be diagonalized with a Bogoliubov

transformation: defining the operators ~ak↕ ¼
P

L−1
α¼1ð2=LÞsin2ðπkα=LÞaαþ1;↕, we find that HPP ¼

P

L
k¼1 2 cosðkπ=LÞð ~nk↑ − ~nk↓Þ. Because of this particular

form, the rotating wave approximation in Eq. (D12)

corresponds to expanding the operators a2↕ into the

diagonal basis ~ak↕, neglecting the “oscillating” off-diago-

nal terms. In other terms, we can write

Leff
q ¼ L̂q þ Losc

q ; ðD13Þ

where L̂q is the Hermitian Liouvillian in the rotating wave

approximation shown in Eq. (33), whereOðL̂qÞ ¼ Oðσ−1Þ,
while Losc

q , of order Oðσ0Þ, is composed by the oscillating

terms that are neglected in the long-time limit. In particular,

from Eq. (C4) one finds that the RWA holds for t ≫ OðL2Þ.
This approximation is therefore consistent with the results

of Sec. IV, where one finds a Liouvillian gap OðL−3Þ that
provides a lower bound to the convergence time t > OðL3Þ.
However, while the eigenvalues depend only on the

Hermitian operator L̂q, the eigenvectors depend on the

oscillating terms via Eq. (C6). By mixing Eq. (C5) with

Eq. (D3), we find then that the eigenvalues with small

Oðσ−1Þ real part have right eigenvectors given by

eSjΦii; ðD14Þ

where jΦii form an orthonormal basis (dependent on both

H and V), S ≈ SRWA þ SD þ ½SRWA;SD�=2 ¼ Oðσ−1Þ,
but eS† ≠ e−S. The corresponding left eigenvectors are

then hΦije−S.

APPENDIX E: DIAGONALIZATION OF THE

RICHARDSON-GAUDIN MODEL

We perform explicitly the diagonalization of the

Richardson-Gaudin model Eq. (36) in the bosonic repre-

sentation discussed in Sec. IVA, where K−
i ¼ ~ai↑ ~ai↓,

Kþ
i ¼ ðK−

i Þ†, and Kz
i ¼ ð ~ni↑ þ ~ni↓ þ 1Þ=2. We start by
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defining a trial eigenstate jΩνiwith no pairing, namely such

that

K−
i jΩνi ¼ 0; Kz

i jΩνi ¼ νijΩνi: ðE1Þ

These equations force the constraints

νi ¼ ðni↑ þ ni↓ þ 1Þ=2; ni↑ni↓ ¼ 0; ðE2Þ

namely, there cannot be in the same site both up particles

and down particles. Moreover, ν0 ≡ 1=2, because the

model has been obtained by projecting the Liouvillian into

the states where n0↑ ¼ n0↓. The eigenvalue of state jΩνi is
thus

L̂qjΩνi ¼ E0jΩνi; ðE3Þ

E0 ¼
2

σ
−
8

σ

X

k

gkν0νk ¼
2

σ
−
4

σ

X

k

gkνk: ðE4Þ

Since there are extra constraints, q ¼
P

L−1
i¼0 ni↑ ¼

P

L−1
i¼0 ni↓, for a given set of allowed “quantum numbers”

vk, the number N of paired particles satisfies
P

ið2vi − 1Þ þ 2N ¼ 2q; namely,

N ¼ q −
X

i

�

vi −
1

2

�

: ðE5Þ

By defining the ansatz,

jψi ¼
Y

N

α¼1

Cþ
α jΩνi; Cþ

α ¼
X

L

j¼0

ujαK
þ
j ; ðE6Þ

one sees that

L̂qjψi ¼ E0jψi þ ½L̂q;
Y

α

Cþ
α �jΩνi

¼ E0jψi þ
X

α

�

Y

γ≠α

Cþ
γ

�

½L̂q; C
þ
α �jΩνi

þ 1

2

X

α≠β

�

Y

γ≠α;β

Cþ
γ

�

½½L̂q; C
þ
α �; Cþ

β �jΩνi: ðE7Þ

Moreover,

½L̂q; C
þ
α � ¼ −

8

σ

X

k

gkðu0α − ukαÞðKþ
0 K

z
k − Kz

0K
þ
k Þ;

½½L̂q; C
þ
α �; Cþ

β � ¼
8

σ

X

k

gkðu0α − ukαÞðu0β − ukβÞKþ
0 K

þ
k :

ðE8Þ

We now first consider the N ¼ 1 case and impose the

eigenvalue equation L̂qjψi ¼ λjψi, where we define

λ ¼ E0 − ð8=σÞPαEα. The eigenvalue equation becomes

then

X

k

gkðu0α − ukαÞðKþ
0 νk − ν0K

þ
k Þ

¼ Eα

�

u0αK
þ
0 þ

X

k

ukαK
þ
k

�

:

From that equation we get the relationship

−ν0gkðu0α − ukαÞ ¼ ukαEα; ðE9Þ

namely,

ukα ¼
ν0gku0α

ν0gk − Eα

; ðE10Þ

u0α − ukα ¼ −
Eαu0α

ν0gk − Eα

¼ −
Eα

ν0gk
ukα: ðE11Þ

By using the last equation, we find

½½L̂q; C
þ
α �; Cþ

β � ¼
8

σ

X

k

gk
Eαu0α

ν0gk − Eα

Eβu0β

ν0gk − Eβ

Kþ
0 K

þ
k

¼ 8

σν0

EαEβ

Eα − Eβ

X

k

ðu0βukα − ukβu0αÞKþ
0 K

þ
k

¼ 8

σν0

EαEβ

Eα − Eβ

ðu0βCþ
α − Cþ

β u0αÞKþ
0

¼ 8

σ
ðMαβK

þ
0 C

þ
α þMβαK

þ
0 C

þ
β Þ;

where Mαβ ¼ ðEαEβ=Eα − EβÞðu0β=ν0Þ. Using all the

above results, the eigenvalue equation becomes

ðL̂q − λÞjψi ¼ −
8

σ

X

α

�

Y

γ≠α

Cþ
γ

�

ZαjΩνi; ðE12Þ

Zα ¼
X

k

gkEαu0α

ν0gk − Eα

ðν0Kþ
k − Kþ

0 νkÞ

−
X

β≠α

MβαK
þ
0 − Eα

�

u0αK
þ
0 þ

X

k

ukαK
þ
k

�

: ðE13Þ

By evaluating Zα ¼ 0, one gets the equations

X

k

gkνkEα

Eα − ν0gk
þ 1

ν0

X

β≠α

EαEβ

Eα − Eβ

¼ Eα; ðE14Þ

for α ¼ 1;…; N, where N is given by Eq. (E5). Clearly,

Eα ¼ 0 is a solution, while the solutions different from zero

are found by solving the equation
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X

k

2gkνk

2Eα − gk
þ 2

X

β≠α

Eβ

Eα − Eβ

¼ 1; ðE15Þ

where we use the fact that ν0 ¼ 1=2. In conclusion, the

eigenvalues of the Liouvillian L̂q are

λ ¼ E0 −
8

σ

X

α

Eα ¼ −
2

σ

0

B

B

@

X

k

gknk þ 4
X

q−
P

k

nk=2

α¼1

Eα

1

C

C

A

;

where nk ¼ 2νk − 1 and the Eα are either zero or the

solution of Eq. (E15). From that expression it is clear that

the steady state corresponds to Eα ¼ 0 and nk ¼ 0. The

eigenvalues for larger values of q are given by all the

previous solutions with smaller q (this can be seen by

adding some Eβ ¼ 0 for larger values of N) together with

new solutions due to the larger values of N and the larger

set of allowed configurations for nk.

APPENDIX F: SOLUTION OF THE

SUð2qÞ-INVARIANT GAUDIN MODEL

We describe here the algebraic approach to general

Gaudin models and then apply it to our general fermionic

representation introduced in Sec. IV C. We fix a basis h
ðjÞ
α

of the Cartan subalgebra acting on the jth copy formed by

the diagonal operators X
ðjÞ
αα . A state jΩνi which is a

simultaneous eigenvector of all the operators h
ðjÞ
α is called

a weight vector. We write h
ðjÞ
α jΩνi ¼ νjαjΩνi, where ν

j
α is

called weight. On the other hand, in the Cartan-Weyl basis

the eigenvalue χ of the adjoint transformation, namely,

½hðjÞα ; eχ � ¼ χjαeχ , for a given eχ in the representation, is

called a root. Because of Eq. (44) a root can only have

eigenvalue −1, 0, 1. If one fixes an ordering cα > cαþ1 and

writes hðjÞ ¼
P

αcαh
ðjÞ
α , then the eigenoperators of hðjÞ with

positive eigenvalue are called the “raising operators.” They

correspond to X
ðjÞ
αβ for any α < β. A highest weight vector is

a weight vector jΩνi such that all the other vectors in an

irreducible representation can be obtained from jΩνi via

some lowering operators. As such, a highest weight vector

is annihilated by all the raising operators. We call χj

the simple roots of the algebra, and we fix an inner

product between roots ðχj; χkÞ ¼ P

αχ
j
αχ

k
α, and write

jχjj2 ¼ ðχj; χjÞ. The matrix Cjk ¼ ½2ðχj; χkÞ=jχjj2� is called
the Cartan matrix. We also call Fjk ¼ ðC−1Þjkð2=jχkj2Þ.
Moreover, we call z0 ¼ 0 and zk ¼ 2g−1k for k > 0.

Thanks to the above definitions, and owing to the results

of Refs. [63,64], we can write the eigenvalues of the Gaudin

model Eq. (43) as

λfμg ¼ −
2q

σ
þ 8

σ

�

X

L−1

k¼1

P

ijμ
0
iFijμ

k
j

zk − z0
þ

þ
X

2q−1

j¼1

X

α

jχjj2
2

μ0j

z0 − ωjα

�

; ðF1Þ

where μ
j
k are the eigenvalues of the Chevalley operators

H
ðjÞ
k ¼ ð2=jχkj2Þ

P

αχ
k
αh

ðjÞ
α , namely,H

ðjÞ
k jΩνi ¼ μ

j
kjΩνi and

so μ
j
k ¼ ð2=jχkj2Þ

P

αχ
k
αν

j
k, and where the Bethe roots

satisfy the equations

X

iβ

Cij

ωiβ − ωjα

¼
X

L−1

k¼0

μkj

zk − ωjα

: ðF2Þ

The above expressions for the eigenvalues hold when-

ever the operators X
ðjÞ
αβ define any semisimple Lie algebra.

In the particular case discussed in Sec. IV C, those

operators define a SUð2qÞ-invariant Gaudin model, in a

specific multifermion representation. For SUð2qÞ, the

simple roots are χ
j
α ¼ δαj − δαþ1;j, so jχjj2 ¼ 2, and

Cij ¼ 2δij − ðδi;j−1 þ δi;jþ1Þ, where i; j ¼ 1;…; 2q − 1.

Therefore, Fij ¼
P

l
ð2=2qÞ½sinðπil=2qÞ sinðπjl=2qÞ�=

½2 − 2 cosðlπ=2qÞ�, and the Chevalley operators are given

by H
ðjÞ
α ¼ X

ðjÞ
α;α − X

ðjÞ
αþ1;αþ1. We fix the ordering fð↓; 1Þ;

ð↓; 2Þ;…; ð↑; 1Þ; ð↑; 2Þ;…g so that

H
j
α ¼

8

>

>

>

<

>

>

>

:

− ~a†j;α;↓ ~aj;α;↓þ ~a†j;αþ1;↓ ~aj;αþ1;↓ for 1≤ α≤ q−1

~a†j;α;↑ ~aj;α;↑− ~a†j;αþ1;↑ ~aj;αþ1;↑ for 1≤ α−q≤ q−1

1− ~a†j;q;↓ ~aj;q;↓− ~a†j;1;↑ ~aj;1;↑ for α¼ q:

Because of the above equations, the raising operators are

given by a†j;i;↑aj;k;↑, with i > k, by a†j;i;↓aj;k;↓ with i < k,

and by aj;i;σaj;k;σ. Therefore, the highest weight vectors

may contain in the same mode j either spin-↑ particles

or spin-↓ particles, but not both. The only possible

highest weight states are then either
Qnj↑

i a†j;i;↑j0i or
Qnj↓

i a†j;q−iþ1;↓j0i. These states are parametrized by the

numbers nj↑ and nj↓ that satisfy nj↑nj↓ ¼ 0. Therefore,

μkj ¼ δj;qð1 − δn↓k>0 − δn↑k>0Þ þ δj;qþn↑k
þ δj;q−n↓k : ðF3Þ

Moreover, n0↑ ¼ n0↓, so μ0j ¼ δj;q. By explicit calculation

for j ≤ q, one finds Fqj ¼ Fq;2q−j ¼ j=2. Therefore,

Eq. (F1) becomes
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λfng ¼ −
2q

σ
þ 8

σ

�

X

L−1

k¼1

gk

2

�

q

2
ð1 − δn↓k>0 − δn↑k>0Þ

þ
ðq − n↓kÞδn↓k>0 þ ðq − n↑kÞδn↑k>0

2

�

−
X

α

1

ωq;α

�

ðF4Þ

¼ −
2

σ

�

X

L−1

k¼1

gkðn↓k þ n↑kÞ þ 4
X

α

1

ωq;α

�

; ðF5Þ

where ωj;α are the solutions of Eq. (F2), namely,

of Eq. (47).

APPENDIX G: EXPLICIT

MEAN-FIELD ANALYSIS

In this section, we perform explicitly the mean-field

calculations discussed in Sec. III B, and we closely follow

the notation of that section. We remind the reader that

Eq. (28) can be written as

Lq ¼
X

i

λi ~a
0
i ~ai −

σ

2

X

i;j;k;l

~Vij
~Vkl ~a

0
i ~a

0
k ~aj ~al; ðG1Þ

where the λ’s are ordered with decreasing (negative) real

part, λ0 ¼ 0, V̊ ¼ Z ~VZ−1, and we remind the reader that the

new bosonic creation operators are obtained via the

nonunitary Bogoliubov transformation ~a0i ¼
P

αZαia
†
α,

~ai ¼
P

αðZ−1Þiαaα. The steady state is therefore the boson

condensate jΩi ¼ ½ð ~a00Þq=
ffiffiffi

q
p

!�j0i, where j0i is the bosonic
vacuum. Indeed, clearly this state is annihilated by the

quadratic term. To see that even the second one annihilates,

it is important to remember that S−10α is the right eigenvector

of the steady state (corresponding to the steady state) and

the corresponding left eigenvalue Sα0 is the identity

operator. Therefore, ~Vi0 ¼
P

αβS
−1
jα V̊αβSβ0 ¼ 0, since

P

βV̊αβSβ0 is a vectorization of the expression ½V; 1�.
Similarly, ~V0i ¼ 0. To study the elementary excitations

with respect to this state, one can use the Bogoliubov

(mean-field) approach starting from the variational states

jψi ¼
P

jψ j½ð ~a00Þq−1=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðq − 1Þ!
p

�a0jj0i, for j ≠ 0, and the

corresponding hψ 0j ¼
P

jψ
0
jh0j½ð ~a0Þq−1=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðq − 1Þ!
p

�aj,
where

P

jψ
0
jψ j ¼ 1. The variational Liouvillian then

becomes

LV ¼ hψ 0jLqjψi

¼
X

j

λjψ
0
jψ j −

σ

2

X

i;j;k;l

~Vij
~Vklhψ 0j ~a0i ~a0k ~aj ~aljψi;

which, similarly to the Rayleigh-Ritz method, has to satisfy

∂ψL
V ¼ ∂ψ 0LV ¼ 0 with the constraint

P

jψ
0
jψ j ¼ 1 (see,

e.g., Ref. [50]). However, because ~Vi0 ¼ ~V0i ¼ 0 for all i,
one can restrict the sum in the above equation to the values

i; j; k; l > 0, but because there is only one particle in jψi in
the states i > 0, one finds that

LV ¼
X

j

λjψ
0
jψ j;

namely, that in the single-excitation subspace the varia-

tional Liouvillian is already diagonal. This shows that the

eigenvalues, at least in the low-energy subspace, are not

“renormalized” for larger values of q.

[1] T. Guhr, A. Müller-Groeling, and H. A. Weidenmüller,

Random-Matrix Theories in Quantum Physics: Common

Concepts, Phys. Rep. 299, 189 (1998).

[2] P. Hayden, D. Leung, P. W. Shor, and A. Winter, Random-

izing Quantum States: Constructions and Applications,

Commun. Math. Phys. 250, 371 (2004).

[3] A. Bendersky, F. Pastawski, and J. P. Paz, Selective and

Efficient Estimation of Parameters for Quantum Process

Tomography, Phys. Rev. Lett. 100, 190403 (2008).

[4] C. Dankert, R. Cleve, J. Emerson, and E. Livine, Exact

and Approximate Unitary 2-Designs and Their Applica-

tion to Fidelity Estimation, Phys. Rev. A 80, 012304

(2009).

[5] A. Harrow, P. Hayden, and D. Leung, Superdense Coding of

Quantum States, Phys. Rev. Lett. 92, 187901 (2004).

[6] A. Abeyesinghe, I. Devetak, P. Hayden, and A. Winter, in

Proceedings of the Royal Society of London A: Math-

ematical, Physical and Engineering Sciences (The Royal

Society, London, 2009), p. rspa20090202.

[7] M. B. Hastings, Superadditivity of Communication

Capacity Using Entangled Inputs, Nat. Phys. 5, 255

(2009).

[8] D. P. DiVincenzo, D. W. Leung, and B. M. Terhal, Quantum

Data Hiding, IEEE Trans. Inf. Theory 48, 580 (2002).

[9] M. Piani, V. Narasimhachar, and J. Calsamiglia, Quantum-

ness of Correlations, Quantumness of Ensembles and

Quantum Data Hiding, New J. Phys. 16, 113001 (2014).

[10] R. Oliveira, O. C. O. Dahlsten, and M. B. Plenio, Generic

Entanglement Can Be Generated Efficiently, Phys. Rev.

Lett. 98, 130502 (2007).

[11] M. Žnidarič, Exact Convergence Times for Generation of

Random Bipartite Entanglement, Phys. Rev. A 78, 032324

(2008).

[12] A. Hamma, S. Santra, and P. Zanardi, Quantum Entangle-

ment in Random Physical States, Phys. Rev. Lett. 109,

040502 (2012).

[13] P. Zanardi, Local Random Quantum Circuits: Ensemble

Completely Positive Maps and Swap Algebras, J. Math.

Phys. (N.Y.) 55, 082204 (2014).

[14] F. G. S. L. Brandao, A. W. Harrow, and M. Horodecki,

Local Random Quantum Circuits Are Approximate

Polynomial-Designs, Commun. Math. Phys. 346, 397

(2016).

BANCHI, BURGARTH, and KASTORYANO PHYS. REV. X 7, 041015 (2017)

041015-22

https://doi.org/10.1016/S0370-1573(97)00088-4
https://doi.org/10.1007/s00220-004-1087-6
https://doi.org/10.1103/PhysRevLett.100.190403
https://doi.org/10.1103/PhysRevA.80.012304
https://doi.org/10.1103/PhysRevA.80.012304
https://doi.org/10.1103/PhysRevLett.92.187901
https://doi.org/10.1038/nphys1224
https://doi.org/10.1038/nphys1224
https://doi.org/10.1109/18.985948
https://doi.org/10.1088/1367-2630/16/11/113001
https://doi.org/10.1103/PhysRevLett.98.130502
https://doi.org/10.1103/PhysRevLett.98.130502
https://doi.org/10.1103/PhysRevA.78.032324
https://doi.org/10.1103/PhysRevA.78.032324
https://doi.org/10.1103/PhysRevLett.109.040502
https://doi.org/10.1103/PhysRevLett.109.040502
https://doi.org/10.1063/1.4891604
https://doi.org/10.1063/1.4891604
https://doi.org/10.1007/s00220-016-2706-8
https://doi.org/10.1007/s00220-016-2706-8


[15] W. G. Brown and L. Viola, Convergence Rates for Arbitrary

Statistical Moments of Random Quantum Circuits, Phys.

Rev. Lett. 104, 250501 (2010).

[16] J. Emerson, Y. S. Weinstein, M. Saraceno, S. Lloyd,

and D. G. Cory, Pseudo-Random Unitary Operators for

Quantum Information Processing, Science 302, 2098

(2003).

[17] D. Gross, K. Audenaert, and J. Eisert, Evenly Distributed

Unitaries: On the Structure of Unitary Designs, J. Math.

Phys. (N.Y.) 48, 052104 (2007).

[18] A.W. Harrow and R. A. Low, Approximation, Randomi-

zation, and Combinatorial Optimization. Algorithms and

Techniques (Springer, New York, 2009), pp. 548–561.

[19] P. S. Turner and D. Markham, Derandomizing Quantum

Circuits with Measurement-Based Unitary Designs, Phys.

Rev. Lett. 116, 200501 (2016).

[20] R. N. Alexander, P. S. Turner, and S. D. Bartlett, Random-

ized Benchmarking in Measurement-Based Quantum Com-

puting, Phys. Rev. A 94, 032303 (2016).

[21] A. Perez-Leija, R. Keil, A. Kay, H. Moya-Cessa, S. Nolte,

L.-C. Kwek, B. M. Rodríguez-Lara, A. Szameit, and D. N.

Christodoulides, Coherent Quantum Transport in Photonic

Lattices, Phys. Rev. A 87, 012309 (2013).

[22] I. Pitsios, L. Banchi, A. S. Rab, M. Bentivegna, D. Caprara,

A. Crespi, N. Spagnolo, S. Bose, P. Mataloni, R. Osellame

et al., Photonic Simulation of Entanglement Growth after a

Spin Chain Quench, arXiv:1603.02669.

[23] J. Carolan, C. Harrold, C. Sparrow, E. Martín-López, N. J.

Russell, J. W. Silverstone, P. J. Shadbolt, N. Matsuda, M.

Oguma, M. Itoh et al., Universal Linear Optics, Science

349, 711 (2015).

[24] M. A. Broome, A. Fedrizzi, S. Rahimi-Keshari, J. Dove,

S. Aaronson, T. C. Ralph, and A. G. White, Photonic

Boson Sampling in a Tunable Circuit, Science 339, 794

(2013).

[25] J. B. Spring, B. J. Metcalf, P. C. Humphreys, W.

Steven Kolthammer, X.-M. Jin, M. Barbieri, A. Datta,

N. Thomas-Peter, N. K. Langford, D. Kundys et al.,

Boson Sampling on a Photonic Chip, Science 339, 798

(2013).

[26] A. Crespi, R. Osellame, R. Ramponi, D. J. Brod, E. F.

Galvão, N. Spagnolo, C. Vitelli, E. Maiorino, P. Mataloni,

and F. Sciarrino, Integrated Multimode Interferometers

with Arbitrary Designs for Photonic Boson Sampling,

Nat. Photonics 7, 545 (2013).

[27] S. Aaronson and A. Arkhipov, in Proceedings of the Forty-

Third Annual ACM Symposium on Theory of Computing

(Association for Computing Machinery, New York, 2011),

pp. 333–342.

[28] P. Hayden and J. Preskill, Black Holes as Mirrors: Quantum

Information in Random Subsystems, J. High Energy Phys.

09 (2007) 120.

[29] Y. Sekino and L. Susskind, Fast Scramblers, J. High Energy

Phys. 10 (2008) 065.

[30] N. Lashkari, D. Stanford, M. Hastings, T. Osborne, and P.

Hayden, Towards the Fast Scrambling Conjecture, J. High

Energy Phys. 04 (2013) 022.

[31] D. D’Alessandro, Introduction to Quantum Control and

Dynamics (CRC Press, Boca Raton, FL, 2007).

[32] V. Jurdjevic and H. J. Sussmann, Control Systems on Lie

Groups, J. Differ. Equations 12, 313 (1972).

[33] Y. Nakata, C. Hirche, M. Koashi, and A. Winter,

Efficient Quantum Pseudorandomness with Nearly Time-

Independent Hamiltonian Dynamics, Phys. Rev. X 7,

021006 (2017).

[34] E. Onorati, O. Buerschaper, M. Kliesch, W. Brown, A. H.

Werner, and J. Eisert, Mixing Properties of Stochastic

Quantum Hamiltonians, Commun. Math. Phys. 355, 905

(2017).

[35] F. G. S. L. Brandao, A. W. Harrow, and M. Horodecki,

Local Random Quantum Circuits Are Approximate

Polynomial-Designs, Commun. Math. Phys. 346, 397

(2016).

[36] R. A. Low, Pseudo-Randomness and Learning in

Quantum Computation, Ph.D. thesis, University of Bristol,

2010.

[37] R. I. Oliveira, On the Convergence to Equilibrium of Kac’s

Random Walk on Matrices, Ann. Appl. Probab. 19, 1200

(2009).

[38] A. Ishizaki and G. R. Fleming, Unified Treatment of

Quantum Coherent and Incoherent Hopping Dynamics in

Electronic Energy Transfer: Reduced Hierarchy Equation

Approach, J. Chem. Phys. 130, 234111 (2009).

[39] L. Banchi, G. Costagliola, A. Ishizaki, and P. Giorda, An

Analytical Continuation Approach for Evaluating Emission

Lineshapes of Molecular Aggregates and the Adequacy of

Multichromophoric Förster Theory, J. Chem. Phys. 138,

184107 (2013).

[40] G. Lindblad, On the Generators of Quantum Dynamical

Semigroups, Commun. Math. Phys. 48, 119 (1976).

[41] V. Gorini and A. Kossakowski, N-Level System in Contact

with a Singular Reservoir, J. Math. Phys. (N.Y.) 17, 1298

(1976).

[42] M. Mézard, G. Parisi, and M. Virasoro, Spin Glass Theory

and Beyond: An Introduction to the Replica Method and

Its Applications (World Scientific Publishing Co, Inc,

Singapore, 1987), Vol. 9.

[43] V. V. Albert and L. Jiang, Symmetries and Conserved

Quantities in Lindblad Master Equations, Phys. Rev. A

89, 022118 (2014).

[44] R. Goodman and N. R. Wallach, Representations and

Invariants of the Classical Groups, Vol. 68 (Cambridge

University Press, Cambridge, England, 2000).

[45] F. G. S. L. Brandão, P. Ćwikliński, M. Horodecki, P.

Horodecki, J. K. Korbicz, and M. Mozrzymas, Convergence

to Equilibrium under a Random Hamiltonian, Phys. Rev. E

86, 031101 (2012).

[46] P. Zanardi, J. Marshall, and L. C. Venuti, Dissipative

Universal Lindbladian Simulation, Phys. Rev. A 93,

022312 (2016).

[47] M. J. Kastoryano, D. Reeb, and M.M. Wolf, A Cutoff

Phenomenon for Quantum Markov Chains, J. Phys. A

45, 075307 (2012).

[48] J.-P. Blaizot and G. Ripka, Quantum Theory of Finite

Systems, Vol. 3 (MIT Press, Cambridge, MA, 1986).

[49] D. J. Rowe, M. J. Carvalho, and J. Repka, Dual Pairing of

Symmetry and Dynamical Groups in Physics, Rev. Mod.

Phys. 84, 711 (2012).

DRIVEN QUANTUM DYNAMICS: WILL IT BLEND? PHYS. REV. X 7, 041015 (2017)

041015-23

https://doi.org/10.1103/PhysRevLett.104.250501
https://doi.org/10.1103/PhysRevLett.104.250501
https://doi.org/10.1126/science.1090790
https://doi.org/10.1126/science.1090790
https://doi.org/10.1063/1.2716992
https://doi.org/10.1063/1.2716992
https://doi.org/10.1103/PhysRevLett.116.200501
https://doi.org/10.1103/PhysRevLett.116.200501
https://doi.org/10.1103/PhysRevA.94.032303
https://doi.org/10.1103/PhysRevA.87.012309
http://arXiv.org/abs/1603.02669
https://doi.org/10.1126/science.aab3642
https://doi.org/10.1126/science.aab3642
https://doi.org/10.1126/science.1231440
https://doi.org/10.1126/science.1231440
https://doi.org/10.1126/science.1231692
https://doi.org/10.1126/science.1231692
https://doi.org/10.1038/nphoton.2013.112
https://doi.org/10.1088/1126-6708/2007/09/120
https://doi.org/10.1088/1126-6708/2007/09/120
https://doi.org/10.1088/1126-6708/2008/10/065
https://doi.org/10.1088/1126-6708/2008/10/065
https://doi.org/10.1007/JHEP04(2013)022
https://doi.org/10.1007/JHEP04(2013)022
https://doi.org/10.1016/0022-0396(72)90035-6
https://doi.org/10.1103/PhysRevX.7.021006
https://doi.org/10.1103/PhysRevX.7.021006
https://doi.org/10.1007/s00220-017-2950-6
https://doi.org/10.1007/s00220-017-2950-6
https://doi.org/10.1007/s00220-016-2706-8
https://doi.org/10.1007/s00220-016-2706-8
https://doi.org/10.1214/08-AAP550
https://doi.org/10.1214/08-AAP550
https://doi.org/10.1063/1.3155372
https://doi.org/10.1063/1.4803694
https://doi.org/10.1063/1.4803694
https://doi.org/10.1007/BF01608499
https://doi.org/10.1063/1.523057
https://doi.org/10.1063/1.523057
https://doi.org/10.1103/PhysRevA.89.022118
https://doi.org/10.1103/PhysRevA.89.022118
https://doi.org/10.1103/PhysRevE.86.031101
https://doi.org/10.1103/PhysRevE.86.031101
https://doi.org/10.1103/PhysRevA.93.022312
https://doi.org/10.1103/PhysRevA.93.022312
https://doi.org/10.1088/1751-8113/45/7/075307
https://doi.org/10.1088/1751-8113/45/7/075307
https://doi.org/10.1103/RevModPhys.84.711
https://doi.org/10.1103/RevModPhys.84.711


[50] A. Laestadius and S. Kvaal, Analysis of the Extended

Coupled-Cluster Method in Quantum Chemistry, arXiv:

1702.04317.

[51] R. Zeier and T. Schulte-Herbrüggen, Symmetry Principles in

Quantum Systems Theory, J. Math. Phys. (N.Y.) 52, 113510

(2011).

[52] Z. Zimborás, R. Zeier, T. Schulte-Herbrüggen, and D.

Burgarth, Symmetry Criteria for Quantum Simulability

of Effective Interactions, Phys. Rev. A 92, 042309

(2015).

[53] M. Obata, On Subgroups of the Orthogonal Group, Trans.

Am. Math. Soc. 87, 347 (1958).

[54] G. M. Nikolopoulos, I. Jex et al., Quantum State Transfer

and Network Engineering (2014), http://www.springer.com/

us/book/9783642399367.

[55] L. Banchi, T. J. G. Apollaro, A. Cuccoli, R. Vaia, and

P. Verrucchi, Long Quantum Channels for High-Quality

Entanglement Transfer, New J. Phys. 13, 123006 (2011).

[56] D. Burgarth and S. Bose, Conclusive and Arbitrarily Perfect

Quantum-State Transfer Using Parallel Spin-Chain Chan-

nels, Phys. Rev. A 71, 052315 (2005).

[57] L. Banchi, A. Bayat, P. Verrucchi, and S. Bose, Non-

perturbative Entangling Gates between Distant Qubits

Using Uniform Cold Atom Chains, Phys. Rev. Lett. 106,

140501 (2011).

[58] X. Wang, P. Pemberton-Ross, and S. G. Schirmer, Symmetry

and Subspace Controllability for Spin Networks with a

Single-Node Control, IEEE Trans. Autom. Control 57, 1945

(2012).

[59] D. Burgarth, D. D’Alessandro, L. Hogben, S. Severini, and

M. Young, Zero Forcing, Linear and Quantum Control-

lability for Systems Evolving on Networks, IEEE Trans.

Autom. Control 58, 2349 (2013).

[60] M. Gaudin, Diagonalisation d’une Classe d’Hamiltoniens

de Spin, J. Phys. (Paris) 37, 1087 (1976).

[61] R. W. Richardson, Exactly Solvable Many-Boson Model,

J. Math. Phys. (N.Y.) 9, 1327 (1968).

[62] G. Szegö, in Orthogonal Polynomials, American Math-

ematical Society Colloquium Vol. 23 (American Math-

ematical Society, Providence, 1959).

[63] A. G. Ushveridze, Quasi-Exactly Solvable Models in Quan-

tum Mechanics (CRC Press, Boca Raton, FL, 1994).

[64] F. Falceto and K. Gawędzki, Unitarity of the Knizhnik-

Zamolodchikov-Bernard Connection and the Bethe Ansatz

for the Elliptic Hitchin Systems, Commun. Math. Phys. 183,

267 (1997).

[65] E. Mukhin, V. Tarasov, and A. Varchenko, Bispectral and

ðglN; glMÞ Dualities, Discrete versus Differential, Adv.

Math. 218, 216 (2008).

[66] B. Feigin, E. Frenkel, and N. Reshetikhin, Gaudin Model,

Bethe Ansatz and Critical Level, Commun. Math. Phys.

166, 27 (1994).

[67] J. M. Roman, G. Sierra, and J. Dukelsky, Large-N Limit

of the Exactly Solvable BCS Model: Analytics versus

Numerics, Nucl. Phys. B634, 483 (2002).

[68] M. Žnidarič, Relaxation Times of Dissipative Many-Body

Quantum Systems, Phys. Rev. E 92, 042143 (2015).

[69] C. Spengler, M. Huber, and B. C. Hiesmayr, Composite

Parameterization and Haar Measure for All Unitary and

Special Unitary Groups, J. Math. Phys. (N.Y.) 53, 013501

(2012).

[70] E. Lieb, T. Schultz, and D. Mattis, Two Soluble Models

of an Antiferromagnetic Chain, Ann. Phys. (N.Y.) 16, 407

(1961).

[71] J. R. Johansson, P. D. Nation, and F. Nori, QuTip: An

Open-Source PYTHON Framework for the Dynamics of

Open Quantum Systems, Comput. Phys. Commun. 183,

1760 (2012).

[72] A. Pal and D. A. Huse, Many-Body Localization Phase

Transition, Phys. Rev. B 82, 174411 (2010).

[73] P. Ponte, Z. Papić, F. Huveneers, and D. A. Abanin,

Many-Body Localization in Periodically Driven Systems,

Phys. Rev. Lett. 114, 140401 (2015).

[74] M. V. Medvedyeva, F. H. L. Essler, and T. Prosen,

Exact Bethe Ansatz Spectrum of a Tight-Binding Chain

with Dephasing Noise, Phys. Rev. Lett. 117, 137202

(2016).

[75] L. Banchi, P. Giorda, and P. Zanardi, Quantum Information-

Geometry of Dissipative Quantum Phase Transitions, Phys.

Rev. E 89, 022102 (2014).

[76] S. Diehl, E. Rico, M. A. Baranov, and P. Zoller, Topology by

Dissipation in Atomic Quantum Wires, Nat. Phys. 7, 971

(2011).

[77] T. Prosen and I. Pižorn,Quantum Phase Transition in a Far-

from-Equilibrium Steady State of an XY Spin Chain, Phys.

Rev. Lett. 101, 105701 (2008).

[78] A. Nahum, J. Ruhman, S. Vijay, and J. Haah, Quantum

Entanglement Growth under Random Unitary Dynamics,

Phys. Rev. X 7, 031016 (2017).

[79] J. Eisert, M. Friesdorf, and C. Gogolin, Quantum Many-

Body Systems Out of Equilibrium, Nat. Phys. 11, 124

(2015).

[80] P. Hayden, D.W. Leung, and A. Winter, Aspects of

Generic Entanglement, Commun. Math. Phys. 265, 95

(2006).

[81] M.M. Wolf, Quantum Channels and Operations

Guided Tour, http://www-m5.ma.tum.de/foswiki/pub/M5/

Allgemeines/MichaelWolf/QChannelLecture.pdf.

[82] C. Fleming, N. I. Cummings, C. Anastopoulos, and B. L.

Hu, The Rotating-Wave Approximation: Consistency and

Applicability from an Open Quantum System Analysis,

J. Phys. A 43, 405304 (2010).

[83] P. Zanardi and L. C. Venuti, Coherent Quantum Dynamics

in Steady-State Manifolds of Strongly Dissipative Systems,

Phys. Rev. Lett. 113, 240406 (2014).

BANCHI, BURGARTH, and KASTORYANO PHYS. REV. X 7, 041015 (2017)

041015-24

http://arXiv.org/abs/1702.04317
http://arXiv.org/abs/1702.04317
https://doi.org/10.1063/1.3657939
https://doi.org/10.1063/1.3657939
https://doi.org/10.1103/PhysRevA.92.042309
https://doi.org/10.1103/PhysRevA.92.042309
https://doi.org/10.1090/S0002-9947-1958-0095205-6
https://doi.org/10.1090/S0002-9947-1958-0095205-6
http://www.springer.com/us/book/9783642399367
http://www.springer.com/us/book/9783642399367
http://www.springer.com/us/book/9783642399367
http://www.springer.com/us/book/9783642399367
https://doi.org/10.1088/1367-2630/13/12/123006
https://doi.org/10.1103/PhysRevA.71.052315
https://doi.org/10.1103/PhysRevLett.106.140501
https://doi.org/10.1103/PhysRevLett.106.140501
https://doi.org/10.1109/TAC.2012.2202057
https://doi.org/10.1109/TAC.2012.2202057
https://doi.org/10.1109/TAC.2013.2250075
https://doi.org/10.1109/TAC.2013.2250075
https://doi.org/10.1051/jphys:0197600370100108700
https://doi.org/10.1063/1.1664719
https://doi.org/10.1007/BF02506407
https://doi.org/10.1007/BF02506407
https://doi.org/10.1016/j.aim.2007.11.022
https://doi.org/10.1016/j.aim.2007.11.022
https://doi.org/10.1007/BF02099300
https://doi.org/10.1007/BF02099300
https://doi.org/10.1016/S0550-3213(02)00317-6
https://doi.org/10.1103/PhysRevE.92.042143
https://doi.org/10.1063/1.3672064
https://doi.org/10.1063/1.3672064
https://doi.org/10.1016/0003-4916(61)90115-4
https://doi.org/10.1016/0003-4916(61)90115-4
https://doi.org/10.1016/j.cpc.2012.02.021
https://doi.org/10.1016/j.cpc.2012.02.021
https://doi.org/10.1103/PhysRevB.82.174411
https://doi.org/10.1103/PhysRevLett.114.140401
https://doi.org/10.1103/PhysRevLett.117.137202
https://doi.org/10.1103/PhysRevLett.117.137202
https://doi.org/10.1103/PhysRevE.89.022102
https://doi.org/10.1103/PhysRevE.89.022102
https://doi.org/10.1038/nphys2106
https://doi.org/10.1038/nphys2106
https://doi.org/10.1103/PhysRevLett.101.105701
https://doi.org/10.1103/PhysRevLett.101.105701
https://doi.org/10.1103/PhysRevX.7.031016
https://doi.org/10.1038/nphys3215
https://doi.org/10.1038/nphys3215
https://doi.org/10.1007/s00220-006-1535-6
https://doi.org/10.1007/s00220-006-1535-6
http://www-m5.ma.tum.de/foswiki/pub/M5/Allgemeines/MichaelWolf/QChannelLecture.pdf
http://www-m5.ma.tum.de/foswiki/pub/M5/Allgemeines/MichaelWolf/QChannelLecture.pdf
http://www-m5.ma.tum.de/foswiki/pub/M5/Allgemeines/MichaelWolf/QChannelLecture.pdf
http://www-m5.ma.tum.de/foswiki/pub/M5/Allgemeines/MichaelWolf/QChannelLecture.pdf
http://www-m5.ma.tum.de/foswiki/pub/M5/Allgemeines/MichaelWolf/QChannelLecture.pdf
http://www-m5.ma.tum.de/foswiki/pub/M5/Allgemeines/MichaelWolf/QChannelLecture.pdf
https://doi.org/10.1088/1751-8113/43/40/405304
https://doi.org/10.1103/PhysRevLett.113.240406

