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Abstract—Driver decisions and behaviors are essential factors
that can affect the driving safety. To understand the driver
behaviors, a driver activities recognition system is designed based
on the deep convolutional neural networks (CNN) in this study.
Specifically, seven common driving activities are identified, which
are the normal driving, right mirror checking, rear mirror
checking, left mirror checking, using in-vehicle radio device,
texting, and answering the mobile phone, respectively. Among
these activities, the first four are regarded as normal driving
tasks, while the rest three are classified into the distraction group.
The experimental images are collected using a low-cost camera,
and ten drivers are involved in the naturalistic data collection.
The raw images are segmented using the Gaussian mixture model
(GMM) to extract the driver body from the background before
training the behavior recognition CNN model. To reduce the
training cost, transfer learning method is applied to fine tune
the pre-trained CNN models. Three different pre-trained CNN
models, namely, AlexNet, GoogLeNet, and ResNet50 are adopted
and evaluated. The detection results for the seven tasks achieved
an average of 81.6% accuracy using the AlexNet, 78.6% and
74.9% accuracy using the GoogLeNet and ResNet50, respectively.
Then, the CNN models are trained for the binary classification
task and identify whether the driver is being distracted or not.
The binary detection rate achieved 91.4% accuracy, which shows
the advantages of using the proposed deep learning approach.
Finally, the real-world application are analysed and discussed.

Index Terms—Driver Behaviour, driver distraction, convolu-
tional neural network, transfer learning.

I. INTRODUCTION

A. Motivations

DRIVER is in the center of the Road-Vehicle-Driver

(RVD) loop. Driver decision and behaviors are the major

aspects that can affect driving safety. It is reported that more
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than 90% light vehicle accidents are caused by human driver

misbehavior in the United States, and the accident rate can

be reduced by 10% to 20% with a precise driver behavior

monitoring system [1]-[5]. Therefore, the recognition of driver

behaviors is becoming one of the most important tasks for

intelligent vehicles. For the conventional advanced driver

assistance systems (ADAS), the driver is in the center of the

RVD loop. The understanding of driver behavior enables the

ADAS to generate the optimal vehicle control strategies which

is suitable for the current driver states [6]-[9]. Regarding the

intelligent and highly automated vehicles, such as the Level-3

automated vehicles (according to the definition in Society of

Automotive Engineers standard J3016), the driver is respon-

sible for taking over the vehicle control under emergencies.

At this moment, the real-time driver behavior and activity

monitoring system has to decide whether the driver can take

over or not.

Therefore, in this study, a deep learning-based driver activi-

ties recognition system is proposed to monitor and understand

the driver behaviors continuously. The recognition models are

trained to identify seven common driving-related tasks and

also to determine whether the driver is being distracted or not.

With this end-to-end approach, intelligent vehicles can better

interact with human drivers and properly making decisions and

generating human-like driving strategies.

B. Related Works

Driver behaviors have been widely studied over the past two

decades. Previous studies mainly focus on the driver attention

[42] and distraction (either physical distraction or cognitive

distraction) [37], driver intention [8] [10], driver styles [43],

driver drowsiness and fatigue detection [11]-[13], etc. The

National Highway Traffic Safety Administration (NHTSA)

defined driver distraction as a process that the driver shifts their

attention away from the driving tasks. Four types of distraction

are clarified by the NHTSA, which are the visual distraction,

auditory distraction, biomechanical distraction, and cognitive

distraction [38]. To understand the driver behaviors, most of

the studies require capturing the driver status information, such

as the head pose [14], eye gaze [9], hand motion [15], foot

dynamics [16], and even the physiological signals [17] [18].

Specifically, in [19], the video information for the driver

head movement along with the audio signals was collected

to identify the secondary driving tasks. In [20], the drivers

head pose, eye gaze direction, and hand movement were

combined to identify driver activities. In [21], the driver’s
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head poses estimation was proposed and applied to the rear-

end crash avoidance system. Despite the vision-based feature

extraction methods, the physiological signals, such as the

electroencephalogram (EEG) and electrooculography (EOG)

are also widely used for real-time driver status monitoring. In

[22], EEG signals were collected to predict the driver braking

intention. In [23], the EEG and EOG signals were used to

estimate the driver drowsiness and fatigue status. The EEG

signals are proved to be closely related to the driver behaviors

and can illustrate an earlier response to the human mental

states compared with the outer physical behaviors.

However, as aforementioned, most of the existing driver

behavior studies require extracting specific features in advance,

such as the head pose angle, gaze direction, EEG, and the

position of hand and body joints [24]. These features are not

always easy to be obtained, and some even require specific

hardware devices, which will increase either the temporal

or the financial cost. Therefore, in this work, an end-to-

end driver activity recognition system is proposed based on

the deep CNN models, which is accurate and easy to be

implemented. To study the driver distraction behaviors, visual

distraction, auditory distraction, and biomechanical distraction

are involved. While the cognitive distraction is not considered

since it has been well studied in [39] [40], which can be

effectively detected with a non-vision-based approach.

Regarding the current development of deep learning tech-

niques, significant progress has been made in the computer

vision area dues to the development of deeper CNN models,

parallel computing hardware, and the large-scale annotated

dataset. Deep CNN models have achieved the state-of-art

results in object detection, classification, generation, and seg-

mentation tasks. Meanwhile, it has been successfully applied

to some driver monitoring tasks [25] [26]. In this work, three

different CNN models will be evaluated for driver activities

recognition and distraction detection tasks. The only sensor

required in this study is a low-cost RGB camera. Based on

the report in [27], seven most common in-vehicle activities

for both manual driving and automated driving vehicles are

selected, which contains normal driving activities as well as

secondary tasks. The CNN models take the processed images

directly without any manual feature extraction procedure. By

applying the transfer learning scheme, the pre-trained CNN

models can be efficiently fine-tuned to satisfy the behaviors

detection task.

C. Contribution

The contribution of this study can be summarized as fol-

lows. First, a novel deep learning-based approach is applied

to identify driver behaviors. Unlike existing studies that require

complex algorithms to estimate the driver status information,

the proposed algorithm takes merely the color images as the

input and directly outputs the driver behavior information.

With the deep CNN models, the manually feature extraction

process can be replaced by an automatic feature learning

process.

Second, transfer learning is applied to fine-tune the pre-

trained deep CNN models. The models are trained to deal

with both the multiple classification tasks and the binary

classification task. The algorithm is proved as a practical

solution for non-intrusive driver behavior detection. Besides,

this study also shows that transfer learning can successfully

transfer the domain knowledge that learned from the large-

scale dataset to the small-scale driver behavior recognition

task.

Finally, an unsupervised GMM-based segmentation method

is applied to process the raw images and extract the driver

body region from the background. It is found that by applying

a segmentation model prior to the behavior detection network,

the detection accuracy on the driving activities recognition can

increase significantly.

D. Paper Organization

The remainder of this paper is organized as follows. Section

II introduces the experiment setup and data collection. Section

III proposes the deep convolutional neural network models

and transfer learning schemes for driving tasks recognition.

Then, the tasks recognition results and model evaluation are

performed in Section IV. Section V presents the discussions

and future works. Finally, this paper is concluded in Section

VI.

II. EXPERIMENT AND DATA COLLECTION

This section describes the experimental design and data

processing for driver behavior recognition. Fig. 1. illustrates

the general system architecture. First, raw RGB images are

collected using the Kinect camera. Then, the cropped images

are segmented using the GMM algorithm. Finally, the CNN

model is adopted for the activities recognition task. Specifical-

ly, driver behavior images are collected with a Kinect camera.

The Kinect enables the collection of multi-modal signals, such

as the color image, depth image, and audio signals. It was

initially designed for indoor human-computer-interaction and

has been successfully used for driver monitoring systems [28]

[29]. As mentioned in [24], the drivers’ head poses, and upper

body joints also can be detected using the Kinect. While in

this study, only the RGB images are used.

According to the Kinect application requirements [?], it was

mounted in the middle of the front window, facing the upper

body of the driver so that not to interfere the drivers field

of view while driving. The device setup is shown in Fig.

2. The sampling rate for the image collection is 25 frames

per seconds. According to the study in [19], short-term driver

behaviors like mirror checking can last from 0.5 to 1 second.

Therefore, the sampling rate is fast enough to capture these

behaviors. The data are recorded with an Intel Core i7 2.5GHz

CPU, and the codes are written in C++ based on the Windows

Kinect SDK and OpenCV. To store the images, the raw images

are compressed to 640 ˆ 360 ˆ 3 format to increase the

computation efficiency.

Ten drivers are involved in the experiment. They were asked

to perform seven activities, which consist of four normal

driving tasks (normal driving, left mirror checking, right mirror

checking, and rear mirror checking) and three secondary tasks

(using in-vehicle radio/video device, answering mobile phone,
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Fig. 1. Overall System Architecture.

Fig. 2. Experiment setup. The Kinect is mounted on the middle of the front
window and data are collected using a laptop.

Fig. 3. Illustration of the collected dataset. The left part shows the number
of images for each tasks. The right part shows the general data distribution
between the normal driving group and the secondary tasks.

and texting). It took about 20 to 30 minutes for each driver

to finish all these tasks, and about 34 thousands images were

captured in total. In this experiment, five drivers were asked to

perform these tasks during driving in a testing field, while the

rest five drivers were asked to mimic the driving tasks and not

drive the vehicle. This is because, during normal driving, it is

dangerous to perform the secondary tasks so that secondary

data are limited. However, the steady scenario can be used to

collect enough secondary behavior data safely. The number

of images for each task and the quantitative comparison

between normal driving and secondary tasks is shown in Fig.

3. Unlike some human activity recognition studies that require

temporal information, in this study, no temporal information

is considered, and each image is processed individually. The

reason is that during driving the driver outer behaviors are

always explicit, such as mirrors checking and performing sec-

ondary tasks. Therefore, no temporal information is required

for inferring driver behaviors since most of the images carry

enough information for activity recognition.

III. METHODOLOGIES

This section describes the algorithm framework that is used

in this study. Specifically, Section III.A introduces the image

pre-processing and segmentation based on the GMM algorith-

m. Section III.B describes the three deep CNN frameworks as

well as the transfer learning scheme.

A. Image Pre-processing and Segmentation

The original images are stored in the format of 640ˆ360ˆ3.

The raw images are cropped to speed up the CNN training

process and increase the classification accuracy. An interest

of region (ROI) which mainly contains the driver body region

is selected. The left part of Fig. 1. indicates the raw image

and the selected ROI. After the raw images are cropped, these

images are transformed into the size of 227ˆ227ˆ3 to satisfy

the input requirement of the AlexNet and 224 ˆ 224 ˆ 3 for

the GoogLeNet and ResNet, respectively.

Then, the GMM algorithm is applied to segment the images

and extract the driver body region from the background. GMM

is an unsupervised machine learning method, which can be

used for data clustering and data mining. It is a probability

density function that is represented by a weighted sum of sub-

Gaussian components [30]. One of the advantages of using

GMM to unsupervised segment the images is it requires no

manual labeling and can be flexible to modify the model

by adjusting the cluster centers [32]. To train a GMM-based

segmentation model, each image is represented by a feature

vector according to the pixel intensity. The feature vector for

the GMM is a three-dimensional vector that contains the RGB

intensity of each pixel.

Fig. 4. illustrates the segmented images of the ten drivers

for model training and testing. Driver head and body region

can be identified with the GMM segmentation method. Since

the camera is fixed inside the vehicle cabin, the drivers

seat position and the corresponding head position will be

fixed within a certain area. The driver body region can be

determined based on a set of pre-defined points which are

located around the drivers head position. The points around

the head position and the corresponding label will be used to

indicate the driver regions. In the future, the manual selection

method can be replaced by using an automatic detection

method. For example, a precise driver head position can be

first detected using the head detection algorithms and then
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Fig. 4. Illustration of the raw images and segmented images.

the driver body regions can be determined directly or using

a simple semantic segmentation network. As shown in the

next section, the segmentation-based method can dramatically

increase the model recognition accuracy.

B. Model Preparation and Transfer Learning

1) AlexNet Model: Currently, deep convolutional neural

networks have gained a tremendous improvement in the do-

main of computer vision. One of the key reasons is the dis-

tribution of ImageNet dataset [33]. ImageNet is a large-scale

dataset, which contains more than 15 million high-resolution

annotated natural images of over 22,000 categories. A large

number of annotated images benefit the training of deeper and

more accurate CNN models. In this work, three deep convolu-

tional neural network models, namely, AlexNet, GoogLeNet,

and ResNet50 are chosen as the basic model structures for the

recognition of driver behavior. The AlexNet was first proposed

by Alex Krizhevsky in 2012 [34], who won the ImageNet

Large Scale Visual Recognition Challenge (ILSVRC12). The

model was trained for the classification of 1000 categories in

the ImageNet dataset. There are five convolutional layers and

three fully connected neural network layers with non-linearity

and pooling layers between the convolutional layers. In total,

AlexNet contains 60 million parameters and 650,000 neurons.

An simplified model structure for AlexNet is shown in Fig. 1.

2) GoogLeNet Model: GoogLeNet is another deep CNN

model, which won the ILSVRC14 [41]. GoogleNet is sig-

nificantly deeper than the AlexNet, and it achieved more

accurate classification results on the ImageNet dataset. Despite

the model depth, the main contribution of GoogLeNet is the

utilization of Inception architecture. As shown in [41], the

most common ways of increasing CNN model performance

are to improve the network size (either the depth or the width

of the model). However, it gives rise to the requirement for

larger scale dataset and more computational burden. Based

on this, the Inception layers was introduced into the CNN

model to increase the sparsity among the layers, and reduce

Fig. 5. Inception layer of GoogLeNet. There are six convolution filers and
one max-pooling filter within each Inception layer [41].

the number of parameters. Each Inception layer consists of

six basic convolution filters and one max pooling filter. With

different scales, the parallel-arranged convolutional filters will

have more accurate detailing and a broader representation for

the information from previous layers. A typical dimension

reduction Inception layer is shown in Fig. 5. In total, there

are two traditional convolutional layers at the lower level of

the GoogLeNet and nine Inception layers are concatenated

at higher levels. With the application of Inception layers, the

general quantity of the parameters in GoogLeNet is 12 times

less than that in the AlexNet.

3) ResNet Model: Recent evidence has shown that the net-

work depth is of importance to the feature representation and

generalization [45]. It is common to see that simply stack the

convolutional layers to increase the depth of the model cannot

give a better training and generalization performance [46].

Accordingly, in [44], Kaming, et al. introduced a novel deep

CNN model, namely, Residual Networks (ResNet) to enable

the construction of deeper convolutional neural networks. By

introducing the residual learning scheme, the ResNet achieved

the first place on the ILSVRC 2015 classification competition

and won the ImageNet detection, ImageNet localization, CO-

CO detection 2015, and COCO segmentation.

As shown in the left part of Fig. 6, the underlying mapping
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Fig. 6. Residual learning block and deep residual network [44].

function for the basic residual block can be assumed as H(x).

The x represents the inputs to the first layer. The residual

network supposes an explicit residual mapping function F(x)

exists such that F(x)=H(x)-x, and the original mapping can

be represented as F(x)+x. The core idea behind the residual

network block is that although both H(x) and the F(x)+x

mapping is able to approximate the desired functions asymp-

totically, it is much easier to learn the mapping of F(x)+x.

The added layers through the shortcut connection are the

identity mapping. The right graph in Fig. 6 represents the full

structure of a deep residual network, where residual learning

is performed for every few stacked layers. By introducing

the identity mapping and copying the other layers from the

shallower model, the deep residual network can efficiently

solve the model degradation problem when the models getting

deeper [44].

4) Transfer Learning: A large-scale annotated dataset like

ImageNet is needed to train the deep convolutional neural

networks like AlexNet, GoogLeNet, and ResNet from scratch.

However, in general, large-scale annotated datasets are not

always available for specific tasks. Therefore, the common

ways to use the pre-trained deep CNN model are either treating

the model as a fixed feature extractor without tuning the model

parameters or fine-tune the pre-trained model parameters with

a small-scale dataset. In this study, the CNN models will be

used in the second manner, which is to fine tune the last

few layers of the models with the driver behavior dataset.

Since the original models are trained to classify the 1000

categories, the last few layers have to be modified so that the

models can satisfy the seven objects or the binary classification

task. Specifically, the original last fully connected layer and

the output layer, which generate the probabilities for the

1000 categories, are replaced by a new fully-connected layer

and softmax layer that output the probabilities for the seven

categories.

The basic structure and properties of the convolutional lay-

ers is remained so that these layers can keep their advantages

in the feature extraction and representation. Meanwhile, the

knowledge that learned from the large-scale ImageNet dataset

can be transferred to the driver behavior domain. A small

initial learning rate is selected to slow down the updating

rate of the convolutional layers. On the contrary, a much

larger learning rate for the last fully connected (FC) layer

is chosen to speed up the learning rate in the final layers.

In this study, the convolutional layers are not frozen as we

Fig. 7. Confusion matrix of secondary tasks detection with AlexNet.

found that the performance will decrease when totally freezing

the convolutional layers. Therefore, a small updating rate was

chosen so that the convolutional layer will try to adapt to the

new classification task. With this kind of combination, the new

models can be trained to solve the new classification tasks.

IV. EXPERIMENT RESULTS AND ANALYSIS

In this section, the analysis for the driving activities classi-

fication are proposed. The system performances are evaluated

from four major aspects: the impact image segmentation on

multi-behaviors recognition, deep CNN model visualisation,

the binary classification results on the distracted behavior de-

tection, and the performance comparison with other methods.

A. Evaluation of CNN models on the Multiple Driving Behav-

iors Recognition

In this section, the activities recognition results for the ten

participants are evaluated. The seven driving-related tasks are

ordered as normal driving, right mirror checking, rear mir-

ror checking, left mirror checking, using radio/video device,

texting, and answering mobile phone. Table1, Table 2, and

Table 3 illustrate the classification results of the seven tasks

based on AlexNet, GoogLeNet, and ResNet, respectively. T1

to T7 represents the seven tasks and D1 to D10 indicates the

ten different drivers. The models are trained with MATLAB

Deep Learning toolbox and evaluated using the leave-one-out

(LOO) cross-validation method. To get the activity identifi-

cation results for each driver, the images from one driver

are used as testing images, whereas the rest images of the

nine drivers are used for training. Therefore, for each driver,

the data are completely new to the CNN models and the

identification performances equal the model generalization on

this new dataset.

As shown in Table 1, the general identification accuracy

for the segmentation-based AlexNet achieved an average of

81.4% accuracy. The raw-image based AlexNet was also

tested, which achieved only 69.2% recognition accuracy. In

Table 1, the average performance in the rightmost column is

defined as the average detection results for each driver, while
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TABLE I
CLASSIFICATION RESULTS FOR DRIVING TASKS

RECOGNITION USING ALEXNET

No.
GMM Based AlexNet

T1 T2 T3 T4 T5 T6 T7 Ave

D1 0.825 0.929 0.011 0.225 0.840 1.0 0.972 0.771

D2 0.875 0.234 0.571 0.229 0.516 0.928 0.836 0.813

D3 0.564 0.684 0.0 0.711 0.747 0.983 0.983 0.908

D4 0.825 0.469 0.927 0.399 0.0 0.958 0.994 0.786

D5 0.797 0.20 0.10 0.843 0.60 0.959 0.996 0.843

D6 0.957 0.928 0.852 0.977 0.783 0.926 0.999 0.928

D7 0.993 0.921 0.915 0.951 0.913 0.290 0.981 0.878

D8 0.990 0.989 0.417 1.0 0.991 0.996 0.736 0.880

D9 0.353 0.994 0.229 0.813 1.0 0.982 0.979 0.752

D10 0.528 0.724 0.447 0.798 0.274 1.0 0.995 0.684

Mean 0.786 0.869 0.545 0.802 0.771 0.932 0.945 0.816

TABLE II
CLASSIFICATION RESULTS FOR DRIVING TASKS

RECOGNITION USING GOOGLENET

No.
GMM Based GoogLeNet

T1 T2 T3 T4 T5 T6 T7 Ave

D1 0.917 0.619 0.0 0.325 0.433 1.0 0.968 0.768

D2 0.892 0.362 0.0 0.042 0.230 0.784 0.815 0.767

D3 0.883 0.563 0.0 0.073 0.840 1.0 0.994 0.739

D4 0.740 0.453 0.848 0.986 0.758 0.663 1.0 0.755

D5 0.970 0.20 0.233 0.325 0.078 0.959 0.988 0.799

D6 0.951 0.966 0.807 0.936 0.967 0.075 1.0 0.829

D7 1.0 0.886 0.436 0.990 0.890 0.248 0.963 0.737

D8 0.301 0.995 0.178 1.0 1.0 0.990 0.998 0.789

D9 0.562 0.245 0.949 0.997 1.0 0.990 0.843 0.792

D10 0.990 1.0 1.0 0.685 0.882 0.012 1.0 0.810

Mean 0.835 0.766 0.648 0.796 0.819 0.678 0.948 0.786

TABLE III
CLASSIFICATION RESULTS FOR DRIVING TASKS

RECOGNITION USING RESNET50

No.
GMM Based ResNet50

T1 T2 T3 T4 T5 T6 T7 Ave

D1 0.944 0.389 0.120 0.125 0.219 1.0 0.963 0.746

D2 0.872 0.284 0.0 0.729 0.066 0.918 0.926 0.921

D3 0.919 0.938 0.195 0.040 0.814 0.998 0.993 0.753

D4 0.975 1.0 0.924 0.514 1.0 0.639 0.882 0.801

D5 0.907 0.255 0.133 0.874 0.473 0.930 0.996 0.856

D6 0.790 0.992 0.941 0.791 0.504 0.509 0.985 0.750

D7 0.996 0.857 0.629 0.922 0.950 0.301 0.973 0.786

D8 0.528 0.567 0.192 0.641 0.988 0.944 0.715 0.638

D9 0.346 0.245 0.713 0.997 0.735 0.693 0.829 0.655

D10 0.002 0.999 0.058 0.991 0.782 0.219 1.0 0.589

Mean 0.728 0.652 0.391 0.662 0.653 0.715 0.926 0.749

the mean accuracy in the bottom row represents the average

detection rate for each task. Regarding the detection accuracy

for each task, the answering mobile phone activity gets the

most accurate detection results among the ten drivers for all

three models. The worst result happens in the rear mirror

Fig. 8. Illustration of texting behavior of driver 3. The left image is the raw
image, and the right image is the segmented image.

checking (T3) case for the three models. One explanation is

that the rear mirror checking behavior require few body and

head movement, which can be easily misclassified into the

normal driving task. Another evidence that can be drawn from

Table 1, Table 2, and Table 3 are the CNN model achieved

better detection results on the secondary tasks in general. This

is mainly because when performing the secondary tasks, the

driver has to move his/her body and hands instead of only

rotating her/his head, which is more distinct and easier to be

detected.

Table 2 indicates the activity classification results given by

the GoogLeNet. The general detection results is similar to the

results in Table 1 except that the overall detection accuracy

for the ten drivers are slightly lower. The GoogLeNet does not

achieve better classification results than the AlexNet as it does

on the ImageNet dataset. However, the classification results

for the GoogLeNet trained with raw images are better than

that in the AlexNet case. The general classification results for

the GoogLeNet with the raw image is 74.7% accuracy, which

is 5% higher than that for the AlexNet. Table 3 illustrates the

activity classification results given by the ResNet. Same to the

GoogLeNet, the ResNet does not show its advantage on the

activity classification task. Instead, the precision is the lowest

among these three models. The general classification accuracy

is 74.9% for the GMM-ResNet and 61.4% for the Raw image-

based ResNet. Discussions on the results will be proposed in

the next section.

Fig. 7. illustrates the confusion matrix for the ten drivers

using the AlexNet model with GMM segmentation. The green

diagonal shows the correct detection cases for the class. The

bottom row shows the classification accuracy with respect

to the target class, while the rightmost column shows the

classification accuracy with respect to the predicted labels.

As shown in Fig. 7, all of the driving tasks except the third

task (rear mirror checking) achieved reasonable detection rates.

There are 353 cases of rear-mirror checking are misclassified

into normal driving and 747 cases are misclassified into the

left mirror checking.

B. Visualisation of Deep CNN models

To further understanding of how the model responses to the

segmented images, the activation map and feature visualization

for the CNN models are analyzed. Fig. 8. shows the raw image

and the segmented image of in-vehicle texting behavior for

one participants. The image pair will be used to generate the

model activation map.

Fig. 10. shows the activation maps of AlexNet and

GoogLeNet with respect to the images shown in Fig. 8. As
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Fig. 9. Activation map of the two CNN models. The left part is given by the AlexNet model and the right part is given by the GoogLeNet. From left to
right, the Relu5 layer activation of the GMM-AlexNet model, the Relu5 layer of the Raw-AlexNet model, the conv2-Relu layer of the GMM-GoogLeNet,
and the same layer activation map for the Raw-GoogLeNet model. The lower part images are the corresponding strongest activation channels in the activation
maps for the GMM-AlexNet and GMM-GoogLeNet models.

shown in the left part of the dashed line in Fig. 10, the top

activation maps are given by the Relu5 layer of the AlexNet

models. Specifically, the top left one is based on the AlexNet

with GMM segmentation (G-AlexNet model), whereas the

second one is based on the AlexNet with raw images (R-

AlexNet model). The bottom images are the corresponding

strongest activation channel for the segmentation-based model.

As shown in the left part of Fig. 10, the Relu5 layer for the G-

AlexNet model remains much more features than that in the

R-AlexNet. The segmentation-based method can extract the

driver from the background more precisely so that the CNN

model can maintain more relevant features of the driver. The

strongest activation of the G-AlexNet model keeps the driver

head rotation and other channels can store the arm position

information as well.

Since the GoogLeNet is much deeper than the AlexNet,

only the activation map of the second convolutional layer is

analyzed. The right part of Fig. 10. indicates the activation

of the conv2-ReLu layer in the GoogLeNet. As shown in

the figure, the G-GoogLeNet trained with segmented images

carries more driver related features instead of background

features. As the driver-related features are not well maintained

in the beginning layers, the deeper Inception layers of the R-

GoogeLeNet also cannot learn very representative features for

the driver. Based on this, the activation maps explain why the

segmentation-based CNN models lead to a better classification

result than the raw image-based models.

Similar results can be found in the ResNet case which

is shown in Fig. 10. The upper images show the activation

maps for the G-ResNet and R-ResNet, respectively. The lower

part indicates the corresponding strongest activation map.

Specifically, the green box in the top row images is the

strongest activation channel of the final ReLu layer of the G-

ResNet, and its corresponding channel in the R-ResNet map.

The red boxes in the top images are the strongest activation

channel of the R-ResNet, and its corresponding channel in

the G-ResNet. As can be seen in the lower part of Fig. 10,

the strongest activation channel of the G-ResNet is able to

capture the head rotation and position features, while the R-

ResNet fails to learn a precise representation for this behavior.

Fig. 10. Activation map of the ResNet. The left part indicates the activation
of the final Relu layer for the G-ResNet, while the right part is for the R-
ResNet. The red boxes in the upper images are the strongest activation for the
Raw-ResNet, while the green boxes represent the strongest activation for the
G-ResNet. The lower four images are the corresponding activation channels.

TABLE IV
TRAINING AND TESTING TIME COST FOR EACH MODEL

G-
ANet

R-
ANet

G-
GNet

R-
GNet

G-
RNet

R-
RNet

Training
Time (s)

„1100 „1200 „2400 „2400 „3600 „3600

Testing per
Image (ms)

„13 „12.5 „45 „45 „140 „140

Based on the model visualization results, it can be seen that

with a prior image segmentation, the CNN model can learn

more representative driver status features.

Finally, the time cost for model training and testing are

compared in Table 4. As shown in Table 4, the general training

for the GoogLeNet is two times longer than the AlexNet,

and it takes about one hour to train the ResNet on the

local computational device. It takes about 12ms to process

one image for the AlexNet while the testing time for the

GoogLeNet and ResNet are 45ms and 140ms, respectively.

The model training and testing are implemented on an Intel

Core i7 2.5GHz CPU and NVIDIA MX150 2GB GPU.
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TABLE V
BINARY CLASSIFICATION RESULTS USING ALEXNET

D1 D2 D3 D4 D5 D6 D7 D8 D9 D10 Mean

Binary
AlexNet

Normal 0.970 0.994 0.849 0.873 0.991 0.897 0.897 0.997 0.911 1.00 0.936

Distract 0.910 0.673 0.858 0.917 0.763 0.856 0.856 0.941 0.948 0.988 0.881

Ave 0.948 0.867 0.852 0.903 0.856 0.882 0.882 0.976 0.927 0.996 0.914

Binary
GoogLeNet

Normal 0.993 0.940 0.141 0.850 0.988 0.992 0.992 0.833 0.908 0.999 0.897

Distract 0.784 0.577 1.00 0.870 0.857 0.692 0.847 0.884 0.898 0.934 0.841

Ave 0.916 0.796 0.426 0.863 0.911 0.883 0.946 0.853 0.904 0.978 0.875

Binary
ResNet50

Normal 0.908 0.950 0.656 0.609 0.989 0.820 0.982 0.871 0.06 0.985 0.798

Distract 0.905 0.768 0.524 0.975 0.794 0.941 0.946 0.809 1.00 0.994 0.891

Ave 0.907 0.878 0.612 0.852 0.874 0.864 0.971 0.847 0.955 0.988 0.830

C. Driver Distraction Detection using Binary Classifier

In this section, the three CNN models are modified and

trained to detect whether the driver is distracted or not. In

this case, the first four tasks are grouped together, while the

last three tasks constitute another group. The CNN models

are fine-tuned to solve the binary classification problem. The

distraction detection results for the AlexNet, GoogLeNet,

and ResNet are shown in Table 5. As shown in Table 5,

the segmentation image based AlexNet leads to the most

accurate results. The general classification accuracy for the

G-AlexNet based model is 91.4%. The general classification

accuracy for the GoogLeNet and ResNet methods are 87.5%

and 83.0%, which are slightly lower than the results given by

the AlexNet. It should be noticed that there are no smoothing

algorithms applied to the distraction warning module. In real-

world situations, the driver assistance system will only warn

the driver if the distraction happens continuously in a short

period. Therefore, if applying a short period smoothing or

voting techniques, the distraction detection system can be more

suitable for the real-world application.

D. Comparison with Other Methods

To further evaluate our method, additional experiments

are made to compare the proposed method with convention-

al hand-craft feature extraction and shallow CNN methods.

Specifically, the approaches used for comparison include:

FC7+ANN: The method proposed in [35], which extracts

the posture features with a pre-trained AlexNet CNN model. In

this part, the activation of ’fc7’ layer of AlexNet is extracted,

and an FFNN ANN model with 300 neurons is constructed

based on the feature set. The dimension for each of the ’fc7’

feature vector is 4096.

PHOG+SVM: The pyramid histogram of oriented gradients

(PHOG) followed by support vector machine (SVM) method.

A pyramid HOG feature extractor, which concatenates two

different scale HOG extractors is used. The block size for

the HOG feature extractors is 22, and the cell sizes are 88

and 1616, respectively. The dimension for each of the PHOG

feature vector is 32328.

OP+ANN: The method proposed in [52] [53], which rec-

ognize the motion with optical flow. Specifically, the optical

flow of the video sequence is extracted with the Lucas-

Kanade method, and a 51529-dimensional feature vector is

TABLE VI
ACTIVITY RECOGNITION COMPARED WITH OTHER APPROACHES

T1 T2 T3 T4 T5 T6 T7 Mean

FC7+ANN 0.478 0.343 0.113 0.249 0.311 0.803 0.631 0.497

PHOG+SVM 0.573 0.059 0.024 0.394 0.108 0.437 0.473 0.354

OP+ANN 0.404 0.033 0.093 0.121 0.209 0.561 0.506 0.347

OPsCNN 0.537 0.369 0.085 0.273 0.205 0.572 0.669 0.443

GMMsCNN 0.423 0.242 0.096 0.109 0.212 0.598 0.531 0.400

Proposed 0.786 0.869 0.545 0.802 0.771 0.932 0.945 0.816

concatenated for each image. Then, another FFNN model with

the same structure of the one that proposed in [24] is used.

OPsCNN: Based on the magnitude of the optical flow, a

shallow multi-class CNN is proposed. Three convolution lay-

ers are used following with three fully connected layers. The

input images are rescaled into the size of 120ˆ120. The filter

size is selected as 5ˆ5 for the first two convolutional layers,

and 3ˆ3 for the third convolutional layer. Batch normalization,

non-overlap pooling, and ReLu non-linearity layers are applied

between the convolutional layers. The number of neurons for

the three FC layers are 512, 128, and 7, which is similar to

the architecture used in [51].

GMMsCNN: The shallow CNN with the GMM segmented

color images are also tested. Finally, as the dimensions of

the feature vectors given by different algorithms are too high,

a principal component analysis (PCA) algorithm is used to

reduce the feature dimension and reduce the training cost for

the first three models. The dimension for each feature vector is

reduced to 500. The model comparisons are illustrated in Table

6. As shown in Table 6, the PHOV and optical flow features

are unable to accurately represent the driving tasks and far

less precise than the transfer learning method. The recognition

results of the optical flow-based and shallow CNN-based

methods are slightly better than the feature extraction methods.

The high-level features from the FC7 layer of AlexNet with

FFNN gives better results than the rest four methods. However,

the average results for the ten drivers are still significantly

lower compared with the proposed method.

In Table 7, the proposed method is also compared with

relevant studies in the literature. It should be noticed that

difficulties exist in making a precise cross-platform compar-

ison between the existing studies since different algorithms,
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TABLE VII
CLASSIFICATION RESULTS USING FEATURE EXTRACTION

ID Inputs Tasks Model Validation Platform Subjects Computation Cost

[24] Kinect RGB and
depth, body,

head, eye

7 tasks: 4 mirror checking,
radio, phone call, texting

Random Forest
and FFNN

Loo, Recognition:
82.4%

Real
Vehicle

5
drivers

8 fps data
collection

[47] Kinect RGB and
depth image

(Eye,arm,head,and
facial features)

5 tasks:phone
call,drinking,message,looking

object,normal driving

Sequential model
with AdaBoost

and HMM

Loo, Recognition:
85.0%, Detection:

89.8%

Simulator 8
drivers

1 fps screenshot of
the monitors

[48] Triple-view
fusion

7 tasks:gear, driving, phone
call, phone pick, control,

looking left/right

CNN+RNN
sequential feature

extractor with
SVM classifier

Cross Validation,
90% in average

Simulator 3
drivers

15 fps data
collection

[19] CAN and
cameras with
268D features

4 mirror tasks and radio,GPS
operating and

following,phone operating
and call, picture,coversation

SVM, KNN,
RUSBoost

Loo, recognition
rates for different
tasks are among

65%-85%

Real
Vehicle

20
drivers

5s window size
with 10 samples

per window

[49] Side view
images with face

and hand
detection

10 tasks: dringking, radio,
normal driving, makeup,

reach behind, conversation,
phone call, texting

Transfer learning
with AlexNet and

Inception V3

CV, 75%training
data and

25%testing, 95.98%
in average

Real
Vehicle

31
drivers

AlexNet 182 fps
and Inception V3
72 fps with GTX

TITAN

[50] Side view
images

10 tasks: dringking, radio,
normal driving, makeup,

reach behind, conversation,
phone call, texting

Transfer learning
with VGG16,

AlexNet,
GoogLeNet, and

ResNet

Loo, recognition
accuracy in the

range of 86% and
92%

Simulator 10
drivers

Frequency in the
range of 8 and

14Hz with Jetson
TX1

[51] Side view
images

4 tasks: normal driving,
Operating shift gear, phone

call, eating/smoking

Sparse filter and
CNN model

CV, 80%training
and 20%testing,

99.47% in average

Real
Vehicle

20
drivers

-

Ours Front view
images

7 tasks: 4 mirror checking,
radio, phone call, texting

GMM
segmentation and
transfer learning

Loo, Recognition:
81.6%, Detection:

91.4%

Real
Vehicle

10
drivers

14 fps with Nvidia
MX150 GPU

platforms, and experimental methods were used. Based on

Table 7, some researchers have tried to analysis the driver

distracted behaviors with either real vehicle and simulated

data. For example, in [19], Li, et al. proposed a machine

learning framework for the detection of driver mirror checking

behaviors and secondary tasks. The general framework follows

a standard machine learning application procedure, which

consists of feature extraction, model training, and testing. The

detection rates for secondary tasks like radio operating and

phone-talking are around 75% to 80%. We believe this should

attribute to the absent of driver body features. In [24], the

driver’s behaviors are detected with a Kinect device, which

enables the analysis of both driver’s head and upper body

features. However, that work also heavily rely on the complex

feature extraction and analysis, which is time-consuming and

requires extra hardware for calibration. Similar work can be

found in [51], where the authors evaluated the performance

of different types of CNN models on ten different driving

activities. Although high detection accuracies are achieved

in the study, the data are collected on the driving simulator

and did not stand for the real-world in-vehicle performance.

Another reason that can significantly influence the model

accuracy is the evaluation method. In Table 7, the Loo method

is more strict than the cross validation method as it indicates

the model generalization capability on the unseen dataset. If

we use the cross-validation method and simply separate the

data into training and testing group, the GMM-AlexNet in this

study can achieve 98.9% accuracy for multi-tasks detection.

However, we still suggest using the Loo method as it can

reflect the performance variance on different subjects.

Based on the comparison with existing studies, the proposed

method in this study show three advantages. First, a naturalistic

in-vehicle dataset is collected for the fine-tuning and validation

of the deep CNN models. The fine-tune method is very

efficient in real-world application as it is hard to collect large

scale annotated driver distraction data. Although some studies

use side view images as the images show clear driver body

features [48]-[51], the side view method is less efficient and

robust compared with the front view method in the real vehicle

as the side view can be occluded by the passengers. Second,

the leave-one-out model evaluation is used so that the results

illustrate an independent performance on the different drivers.

Third, the segmentation-based CNN models achieved state-

of-art detection accuracy on distracted behaviors such as the

phone answering (93.2%) and texting (94.5%) with naturalistic

data.

V. DISCUSSION

A. Transfer Learning Performance

With the analysis of different deep CNN models, it can

be found that deeper CNN model like ResNet50 does not

contribute to a higher detection accuracy as it did in the

ILSVRC competition. The reasons can be multifold, and we

try to explain this phenomenon merely based on the evidence

in this study. First, as the GoogLeNet and ResNet are deeper

than the AlexNet, the model may need more data to be
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optimized. Second, the transfer learning approach is different

from training from scratch such as using the ImageNet dataset.

The fine-tune transfer learning method mainly focus on the

tuning of a few layers while keeping the main characters of

the convolutional layers. However, as the model getting deeper,

the domain knowledge learned from the much larger dataset

may not very suitable for the smaller dataset. This conclusion

is only made according of the results in this study and further

evaluation is expected. The primary object in this study is not

to evaluate the classification performance of different CNN

models. However, this study aims to provide an efficient end-

to-end approach to understand driver behaviors. Therefore,

more experiment and analysis are expected in the future to

obtain a more precise explanation.

Although it is essential to understand which features are

more critical to the driver behavior recognition, the traditional

machine learning framework is less efficient and usually has a

specific requirement on the system hardware such as head pose

measurement and skeleton tracking. Therefore, in this work,

an end-to-end deep learning approach is designed to solve the

driver behavior recognition task. The only hardware required

for the proposed system is an RGB camera. Meanwhile,

as shown in this study, the CNN models can automatically

capture the head and body features. The deep learning method

achieved competitive detection results compared with the

methods that rely on the head and body detection [24] [47].

However, the end-to-end process shows its advantages in real-

world detection since no complex head pose and body joint

estimation algorithms are needed. Besides, this study also

evaluated the binary classification results and found that the

deep learning approach can provide an accurate estimation of

the distraction status. This approach can be easily integrated

into most of the current ADAS products dues to its efficient

and low-cost properties.

B. Real-time Application

In this experiment, the system is implemented to a Windows

operating system using MATLAB platform and a single low-

cost GPU device. The testing cost of the AlexNet for each

image is about 13ms, also, it cost 50ms for the GMM to

segment each image. The total computational cost for each

image is around 60-70ms, and the general processing ability of

the system is about 14fps. Therefore, the proposed system can

satisfy the real-world computational requirement. Meanwhile,

regarding the in-vehicle embedded systems in the real-world,

the Linux platform along with C++/Python programming

usually can be more efficient than the MATLAB environ-

ment. Also, since more powerful embedded GPU devices has

been published, the in-vehicle graphics processor can provide

more powerful parallel computation than the current platform.

Hence, the algorithm has no significant limitation in the real-

world application.

Next, a sliding-window is applied to the detection to smooth

the result. The current driver state is selected according to the

majority state within the sliding window. The smoothing re-

sults of the secondary tasks detection and distraction detection

are shown in Fig.12 and Fig.13. The upper images of Fig.12

Fig. 11. Driver 2 real-time activity detection using AlexNet and sliding-
window.

Fig. 12. Driver 1 real-time activity detection using AlexNet and sliding-
window.

and Fig.13 indicate the comparison between the ground truth

label and the predicted values concerning the seven driving

activities detection and distraction detection, while the bottom

images represent the comparison between the ground truth

label and the smoothed version of the predicted values. The

sliding window can be used to smooth the result, and eliminate

some false detection cases. However, it should be noticed that

as the sliding-window uses the voting scheme, detection delay

can happen for the secondary tasks and the horizon of the

sliding-window will control how much delay the detection

system has. A larger horizon of the sliding-window will lead to

a smoother result; however, it will also cause a larger detection

delay. In Fig.12 and Fig.13, the window is selected as seven

samples, which can cause a 500ms delay. Considering each

task, especially the secondary tasks can last several seconds,

this 0.5s late detection is normally acceptable.

VI. CONCLUSION

In this work, a driving-related activity recognition system

based on the deep CNN model and transfer learning method is

proposed. To increase the identification accuracy, the raw RGB

images are first processed with a GMM-based segmentation

algorithm, which can efficiently remove the irrelevant objects

and identify the driver position from the background con-

text. The classification results indicate that the segmentation

contributes to a much more precise detection result than the



REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) 11

model trained with the raw images. Another comparison is

made between the transfer learning and other feature extraction

methods. Finally, if using the CNN models as a binary

classifier, the driver distraction detection rate can achieve 91%

accuracy. In the future, the data will be further analyzed, and

the model will be updated to increase the system robustness

and detection accuracy. Meanwhile, the system will be tested

and used for driver/passenger behavior analysis on the partially

automated vehicles in the real world.
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