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�e advances in wireless communication schemes, mobile cloud and fog computing, and context-aware services boost a growing
interest in the design, development, and deployment of driver behavior models for emerging applications. Despite the progressive
advancements in various aspects of driver behavior modeling (DBM), only limited work can be found that reviews the growing
body of literature, which only targets a subset of DBM processes. �us a more general review of the diverse aspects of DBM,
with an emphasis on the most recent developments, is needed. In this paper, we provide an overview of advances of in-vehicle
and smartphone sensing capabilities and communication and recent applications and services of DBM and emphasize research
challenges and key future directions.

1. Introduction

Modeling driver behavior is a complex task that has garnered
signi	cant research attention throughout the past decades.
�is interest is fueled by the constant growth of cities as
indicated by the recent statistics that the urban population
has grown from 746 million in 1950 to 3.9 billion in 2014
(54% of the current world population) [1]. As more people
migrate to cities, the transportation infrastructure is faced
with signi	cant challenges leading to more accidents, deaths,
congestion, and environmental pollution. Studies have indi-
cated that there are over 30,000 deaths and 1.2million injuries
annually on roadways in the United States, 80% of which
are due to driver inattention or as a result of unintended
maneuvers [2, 3]. Human error is therefore the primary cause
of such tragedies.

Driver behavior modeling (DBM) has primarily emerged
to predict drivingmaneuvers, driver intent, vehicle and driver
state, and environmental factors, to improve transportation
safety and the driving experience as awhole.�esemodels are
then typically incorporated into Advanced Driver Assistance
System (ADAS) in the vehicles. For instance, by coupling
sensing information with accurate lane changing prediction
models, anADAS canprevent accidents bywarning the driver
ahead of time of potential danger. In addition to modeling

the vehicle behavior, determining the drivers’ state such as
their attention level anddriving competence canplay a crucial
role in the success of ADASs. At another level, gaining
insight on the drivers’ objectives such as destination and road
preferences opens the door to novel travel assistance systems
and services.

Despite the progressive advancements in various aspects
of DBM, only a limited number of surveys can be found
that review the growing body of literature. Among those,
lane changing models have been reviewed in [4, 5], while
Doshi and Trivedi [2] survey developments in driver intent
prediction with emphasis on forecasting the trajectory of
the vehicle in real time. Works covering driver skill and
di�erent approaches to driver models have recently been
reviewed in [6]. A review of the cognitive components of
driver behavior can also be found in [7] where the author
addresses the situational factors and motives that in�uence
driving. �e surveys mentioned above only target a subset
of DBM processes and thus a more general review of the
diverse aspects of DBM with an emphasis on the most recent
developments is needed. In particular, advances in vehicle
sensing capabilities (as well as smartphones), vehicle-to-
vehicle (V2V) communication, and cloud-based services are
facilitating an unprecedented era of data collection that is
enabling researchers to develop more sophisticated DBM.
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Figure 1: Driver behavior modeling (DBM): sensing, applications, and future systems.

�e contemporary emergence of “big data” storage and
processing solutions is another technological development
that is anticipated also to drive new avenues of research and
exploration inDBM. As such, the objective of this survey is to
provide a review of the recent applications and research areas
inDBMand emphasize key future directions.We believe such
a state-of-the-art work is needed to assist those interested
in embarking in this evolving 	eld. To accomplish this we
organize the survey into the following sections:

(i) Section 2 	rst provides an introduction to the com-
ponents and stages involved in driver behavior mod-
eling, the various forms of input, and the primary
modeling approaches.

(ii) Section 3 discusses the typical applications and uses
of DBM with emphasis on ADASs and the emerging
autonomous vehicles.

(iii) In Section 4 we review fundamental modeling objec-
tives in detail. �e objectives are the speci	c research
components that enable the development of the appli-
cations mentioned earlier. �is includes topics such
as predicting behavior at intersections, lane changes,
and route choice.

(iv) Simulation-based and data-driven evaluation tech-
niques are highlighted in Section 5. References to
datasets for speci	c DBM objectives and applications
are provided.

(v) Finally, Section 6 discusses several open research
issues and directions such as collaborative DBM and
Driver Assistance Clouds (DACs).

2. Overview and Preliminaries

2.1. Modeling Frameworks. As mentioned in Section 1, mod-
eling driver behavior includes the driver intent, state, and
vehicle dynamics. It is therefore di�cult to develop a single

modeling framework for the complete driving task. However,
traditionally a typical modeling framework includes inputs
from various sensors and vehicle controllers, preprocessing
algorithms to 	lter the data if necessary, the core predictive
models for particular tasks (these can follow the various
levels discussed below), and feedback. An overview of various
models that capture the dynamics between the driver, the
vehicle, and the environment is presented in [6, 8]. More
generically, DBM can be considered to involve (1) a sensing
phase, (2) a reasoning phase, and (3) an application layer,
as illustrated in Figure 1. �e sensing phase involves various
forms of data collection from the vehicle, driver, and the
environment. �is is then typically fed into a reasoning
engine with some application in mind. Although current
research in individual applications has not yet matured, the
ultimate goal is to develop assistance systems that integrate
multiple personalized services for the driver as shown in
Figure 1. �is requires a high level of data abstraction and
processing from multiple resources.

2.2. Inputs for Driver Behavior Modeling. Inputs to the
DBM include vehicle data from the Controller Area Network
(CAN), sensors, and more recently input from smartphones.

2.2.1. CAN. �e CAN provides accurate information of
several in-vehicle parameters such as the pedal positions,
steering wheel angle, RPM acceleration, and turn signal state
[2]. Data collected using the CAN is typically more accurate
than that from mobile sensors as it is directly connected to
the vehicle. Several adapters can be used for data acquisition
from the CAN such as the OBD-II (On-Board Diagnostics)
Bluetooth adapter with the Torque Pro Application [9].

2.2.2. Sensors. Several sensor systems can be used in DBM
such as radars, lane position sensors, Global Positioning
System (GPS), accelerometers, and gyroscopes. �e use of
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sensors embedded in smartphones is currently being inves-
tigated as an alternative/complementary input to the CAN,
and the outcomes of several projects have been reported
recently [10–14]. �is is particularly useful for older vehicles
and in developing countries where smartphones are popular
andmay facilitate simpler integration into crowd sensing and
cloud-based services. However, sensor calibration is required
and the accuracy may vary from device to device which is a
topic of current investigation.

2.2.3. Cameras. While cameras can be considered to be
one type of sensor, they are particularly useful in several
aspects of DBM. For instance, cameras focused on the driver
can be used to predict the driver’s state and fatigue levels.
�ey can also be used to improve maneuver recognition by
incorporating cues of the drivers eye gaze, hand position, and
foot hovering. Examples of such maneuvers include intent to
change lanes, brake, and turn that can be inferred earlier with
the use of cameras as drivers check their blind spots and grip
the steering wheel prior to taking action.

2.3. Modeling Levels. In driver behavior literature, several
models have been proposed; examples of thesemodels are the
hierarchical control model, the GADGET-Matrix model, and
the DRIVABILITY model. �e hierarchical control model is
based on Michon’s theory. It has commonly been categorized
as operational, tactical, and strategic based on the timescales
through which they operate [2, 7].

2.3.1. Operational Level. Modeling operational maneuvers
involves actions performed over less than a second primarily
in order to remain safe or abide by tra�c regulations. Sudden
braking and turning are examples of this modeling domain,
which operate at the shortest timescale of human interaction.
Such models can be used to improve vehicle design, human-
vehicle interaction, and emergency assistance systems. An
overview of such modeling techniques can be found in [15,
16].

2.3.2. Tactical Level. Tactical maneuvers can be de	ned as a
coherent set of operational maneuvers intended to achieve
a short-term goal such as lane changes, turns, and stops.
�ese operations typically last for several seconds, thereby
enabling predictive modeling and inference. Modeling and
predicting tactical maneuvers have signi	cant potential to
improve ADASs since there is time to prevent unsafe driving
behaviors if the drivers are unaware of the danger of their
actions. As such,models that enable early prediction of driver
intent prior to a tactical maneuver are of particular interest.
An interesting survey of tactical maneuvers with emphasis on
modeling driver intent can be found in [2].

2.3.3. Strategic Level. At the strategic level, actions are trig-
gered by the long-term goals of the driver. For instance,
destination and route calculation is an example of strategic
actions where the timescale extends to minutes or hours
[17–19]. Driver preferences can also be considered within

this modeling domain since they impact strategic maneu-
vers. Understanding strategic maneuvers provides additional
context and preliminary input to tactical and operational
maneuvers by modeling the underlying driver preferences
and long-term goals of the trip. In this regard, a lane change
can be modeled at the tactical level based on the strategic
input of the drivers route and behavioral information.

Hatakka et al. [20, 21] have debated that the hierarchical
control model would need to capture and include the driver’s
general goals for life and skills for living and hence extended
the three hierarchical levels into four by adding the behavioral
level on top of the three hierarchical control levels, introduc-
ing theGADGET-Matrixmodel.�ehierarchical levels of the
GADGET-Matrix model consist of the Vehicle Maneuvering
level mapped to the operational level in Michon’s model. It
mainly accounts for the drivers capability of operating the
vehicle such as controlling of speed, the vehicle’s direction,
and braking. �e mastering tra�c situations level (mapped
to the tactical level) is mainly related to the drivers’ thinking
skills, which allow drivers to adapt to the current tra�c
situation. �e third level is the goals and context of driving
level (mapped to the strategic level), which includes the tools
that evaluate the purpose and the environment of driving,
that is, driving rules and where and when to drive. �e
top level considers the importance of driving for the driver
that motives and allows describing behaviors which are “less
congruent with the norms of the society” [21].

�e DRIVABILITY model [22] is di�erent from the
aforementioned models by mainly focusing on the strategic
model. �e model describes driving behavior as a result to
	ve permanent and temporary contributors, which simulta-
neously a�ect a driver’s decisions:

Individual Resources. �ey are physical, social, psy-
chological, and mental conditions of a driver.

Knowledge and Skills. �ey are the driver’s train-
ing, education, experience, and knowledge not only
related to driving skills but in general, since these
factors greatly in�uence motivation and behavior of
the driver.

Environmental Factors. �ey include the vehicle sta-
tus, the existence of tra�c hazards, the weather, and
road and tra�c conditions.

Workload and Risk Awareness.�ey are the main two
key elements that tie the drivers’ resources to their
environmental status to facilitate understanding and
analyzing driving performance.

2.4. Reactive and Predictive Models. DBM can be classi	ed as
either reactive or predictivemodels.Reactivemodels learn the
observed behavior or driving maneuver a�er the action has
been conducted. For instance, driver coaching applications
can employ reactive models that identify dangerous driving
maneuvers performed by the trainee during the training
session. On the other hand, predictive models are required
to identify the driver action on the onset of the behavior in
real time.�is is needed in ADASwhere precautionary action
should be performed immediately. �e success of predictive
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models is contingent on how early they can predict the driver
behavior, and they are therefore typically more di�cult to
develop than reactive models.

2.5. Algorithms and Approaches. Algorithms and approaches
for DBM encompass a broad range of statistical, machine
learning, and pattern recognition techniques, among others.
We highlight some of the most commonly used approaches
below.

2.5.1. Basic Statistical Classi�cation. Statistical models can be
used to study the behavior of drivers based on collected data.
Simple trends in the data can be used to gain insight on
the anticipated driver maneuvers and classi	cation criteria
can be identi	ed. Model 	tting and regression techniques are
some common examples of such methods. While statistical
classi	cation approaches are generally intuitive, they may be
limited in their ability to classify complex multidimensional
data [23].

2.5.2. Discriminative Approaches. Discriminative approaches
such as Support Vector Machines (SVMs) are generally used
to overcome some of the limitations of basic classi	cation
schemes. SVMs can be used to e�ciently model driver
behaviors where binary classi	cation is involved such as
determining driver compliance to tra�c rules or deciding
whether a driver will make a particular maneuver. Two
particular advantages of SVMs are as follows: (1) they solve
an optimization of a convex function, and thus the derived
solution is a global optimum, and (2) the upper bound on
the generalization error does not depend on the problem
dimension [23, 24].

2.5.3. Generative Models. Generative approaches are another
primary modeling technique in DBM. Here, the underlying
patterns in the collected driver data are investigated and the
probability of observing a set of outputs for a given model
is determined. Hidden Markov Models (HMMs) are one
examplewhere the relationship between the observations and
the hidden states that generate these observations can be
identi	ed [25]. Here, the states of the HMMs de	ne di�erent
behaviors and the transitions between these states capture the
evolution of the driver model.

3. Applications

Modeling driver behaviors enables a plethora of applications
facilitated by the constant advances in sensing and computa-
tional capabilities. We discuss the recent developments and
applications in this section and summarize our discussion in
Table 1.

3.1. Driver Training and Self-Coaching. Many of the driver
models are developed aiming at facilitating better driver
training models. �e idea is to monitor driver actions either
in a simulator or in a real environment and assess the driver
safety and competence levels based on models for ideal
driving.�ere has been particular interest in developing such

systems for novice drivers and to retrain elderly drivers by
understanding their de	ciencies at di�erent levels [8, 26].

3.2. Driver Assistance Systems. As mentioned in the Intro-
duction, the majority of the driver fatalities and injuries are
caused due to driver inattention and unintended maneuvers.
ADASs are thus being developed by industry and academic
projects in an e�ort to reduce or eliminate at best these
casualties. �e primary object of ADASs is to forecast the
trajectory and behavior of a vehicle in real time and then
compensate for dangerous circumstances or events. To do
so, it is essential for the ADASs to be capable of di�erenti-
ating between potentially dangerous situations and regular
driving behavior. Accurately modeling deceleration behavior
is one element of such systems [27]. A primary challenge
however is to develop such systems without annoying the
driver with irrelevant recommendations and precautions or
misinterpreting the state of the driver or the surrounding
vehicles. Research in ADASs that involves multiple vehicles
can lead tomodels that capture right-of-way rules and general
road scene-awareness. Eventually Driver Assistance Systems
may evolve to driver-less systems for either semiautonomous
or fully autonomous vehicles [28].

3.3. Energy E	ciency. Driver behavior models can also
be applied towards improving vehicle energy e�ciency by
monitoring the pedal actuation and fuel usage. Reports
and recommendations can then be provided to the driver.
Additionally, optimizing electric vehicle sharing has been
recently proposed in the literature [29].

3.4. Crowdsourced Sensing for Road Conditions. Traditional
research in DBM has focused on input from a single driver.
�e current direction of crowdsourced sensing and big data
analysis can be coupled with driver behavior models to gain
insight on the current road conditions. �is includes tra�c
jams, road types, and speed limits, as well as predicting the
weather conditions and degree of slipperiness [30].

4. Modeling Objectives

While the applications discussed in the previous section
demonstrate the desired uses of DBM, they are typically
achieved by individual modeling objectives which we review
in this section.�e objectives discussed herein are not meant
to be comprehensive but rather representative of the major
classes of DBM objectives.

4.1. Lane Changing. Lane changing models describe the
drivers’ lane changing behaviors under various tra�c con-
ditions. �e primary goal is to determine whether or not
it is safe for a driver to make a lane change given the
vehicle’s speed and the surrounding tra�c.�e gap acceptance
measure is a traditional approach used in lane changing
models. A driver will only make a lane change if both the
lead and lag gaps in the target lane are above the safety
threshold. �ere are several challenges however that make
lane changing models complicated such as the variance of
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the gap acceptance behavior under di�erent tra�c conditions
and the dependence on the capabilities and types of the
vehicles.

�ere is a very large body of research on lane changing
models—a few literature surveys [4, 5] have been conducted
to classify the di�erent approaches. According to Rahman
et al. [4] there are four categories of models: rule-
basedmodels, discrete-choice probabilistic models, arti	cial-
intelligence models, and incentive-based models. �e Gipps
Model [31] is among the most notable rule-based models.
It models the lane changing process as a decision tree with
a series of 	xed conditions that are typically found on the
roadways and the output is a binary choice that indicates the
lane changing decision. Gipps Model incorporates a number
of logical and practical reasons into lane changing tree such
as intent of turning, presence of heavy vehicles, existence of
the safety gap, and speed advantage and has been used in
several microscopic tra�c simulation tools. However, Gipps
Model does not include mechanisms to deal with di�erent
tra�c conditions. For instance, during congestion drivers
may cooperate to allow other drivers to change lanes, or
on the other hand drivers may be aggressive and force lane
change in theoretically an unsafe way. Cellular automata
[32] and game theory based models [33] have also been
developed as rule-based models. �e work in [33] tackles
cooperative and forced lane changes using game theory with
driver experience as a parameter.

Discrete-choice models based on probabilities have also
received considerable attention in the literature. Ahmed
[34] developed a generic lane changing model that captures
both mandatory and discretionary lane changes in a simple
mathematical formulation. Toledo et al. [35] also propose a
probabilistic model where the trade-o�s between forced and
discretionary maneuvers are combined in a single utility and
tuned using maximum-likelihood estimation approaches.
Extensive tests on microscopic vehicle trajectory data col-
lected in Arlington, USA, have con	rmed the e�ectiveness of
Toledo’s models.

Several lane changing models based on fuzzy-logic and
arti	cial neural networks have also been developed, although
their adoption remains limited [4]. �e advantage of fuzzy-
logic is that the uncertainty in lane changing can be modeled
and a number of abstract IF-THEN rules can be used to
represent the complex decision-making. Among the more
recent works is that of Moridpour et al. [36] which focuses
on lane change behavior of heavy vehicles. Neural networks
have demonstrated high accuracy in modeling lane changing
decisions on 	eld collected data [37]. Inputs such as the vehi-
cle’s direction, speed, distance from surrounding vehicles,
and preferred speed have been used to train the network
using the backpropagation algorithm with promising results.
�e primary disadvantage of arti	cial-intelligence based
approaches is the dependence on 	eld collected data for
di�erent tra�c situations in order to calibrate and develop
the models satisfactorily.

Incentive-based models have been more recently consid-
ered in modeling lane changing behavior. In essence, the
incentive criterion models the attractiveness of a lane based
on its utility to the driver, and a safety criterion captures

the risk associated with the lane change [38]. Modeling
the incentives can include a variety of factors such as the
desire to follow a route, gain speed, and keep right [39],
in addition to politeness factors [38] that can be tuned to
account for di�erent driver personalities. While incentive-
based approaches capture the human element of maximizing
personal bene	ts and driving preferences they lack more
detailed physical modeling that may limit applicability to
di�erent tra�c situations such as congestion.

As discussed, several types of lane changing models
have been proposed in the literature. However, novel models
that combine the personal driving aspect (incentives and
preferences), road congestion, and geometric considerations,
as well as contextual factors such as weather and lighting,
are needed to develop generic lane changing models. Works
addressing speci	c lane changing maneuvers such as ramp
merging [40, 41] andmultiple lane changing are another open
area of research.

In addition to determining stopping, estimating the
general driver behavior at intersections is of signi	cant
importance. Various works have addressed speci	c goals
such as recognizing turning and stopping maneuvers [42, 43]
and le� turns at signaled intersections [44]. In [45] Vacek
et al. consider the more challenging problem of predicting
multiple situations using case-based reasoning. Modeling the
evolution of an intersection situation is also investigated in
[46]where the authors propose amultiple stage approach that
combines situation assessment with behavior prediction. In
the 	rst stage, the current intersection situation is classi	ed
by decomposing it into more manageable sets of related road
users to prevent a combinatorial explosion of variables. �e
interactions between the entities are used to determine the
con	guration; for example, a vehicle has to slow down to
keep a safe distance or stop at a tra�c light. Subsequently,
in the second stage the velocity pro	le of each vehicle
is predicted taking advantage of the previously estimated
situation using random forest regressors [47]. More recently,
a two-layer framework for estimating driver decisions at
intersections has been proposed [48]. As opposed to the top-
down approach of estimating the intersection situation and
then using the underlying continuous model to determine
the vehicle dynamics (as in [46]), the authors propose
bottom-up architecture. �eir reasoning is that it is easier
to observe the lower level states such as vehicle position,
velocity, orientation, and yaw.�ese continuous observations
are modeled as Gaussian Mixture Models (GMMs), and the
higher level discrete state system is modeled using HMMs
corresponding to the potential driver decisions.

4.2. Intersection Decision-Making. Reports indicate that an
estimated 45% of injury crashes and 22% of roadway fatalities
were intersection related in theUnited States [49]. Such statis-
tics have driven several international research projects that
speci	cally target intersection decision collision avoidance
systems [44, 50, 51].

A primary objective in signalized intersection decision-
making is to predict whether the driver will stop safely
before the stop bar if the signal turns red. �is classi	cation
is then integrated into ADASs to warn drivers of the own
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violations and may also be used to warn other drivers via
V2V and Vehicle-to-Infrastructure (V2I) communication.
�e observations typically needed are the vehicles position,
speed, and acceleration and the tra�c signal phase that
are monitored over a time window [23]. Time Transmis-
sion Interval (TTI), Time-to-Collision (TTC), and Required
Deceleration Parameter (RDP) are also commonly used in
intersection safety systems. �e vehicles TTI = �/V, where
V is the vehicle’s current speed and � is its distance to the
intersection. �e TTI is computed on the onset of braking
and compared to the required time for a safe stop. In a
similar approach, RDP denotes the required deceleration for
the vehicle to stop safely given its current distance and speed
and a comparison is made to RDP threshold to determine
if the required deceleration is larger than that permissible.
A slightly more involved classi	cation based on SDR has
been presented in [52]. Here, instead of making independent
observations, a regression curve is generated from a set
of speed and distance measurements of compliant vehicles.
Measurements are then compared to the compliant SDR
curves to identify the degree of violations and issue warnings.
In [53] 	eld tests are conducted to characterize the driver
stopping decisions for di�erent age groups and genders.More
sophisticated models based on SVMs and HMMs have also
been developed for higher classi	cation accuracy [23].

In summary, modeling driver behavior at intersections is
indeed a very complex task, and a lot of further research is
needed before the goal of fully autonomous driving can be
achieved.

4.3. Driver Pro�ling and Characterization. �e objective of
driver pro	ling is not to model speci	c maneuvers but
general driver characterization. Examples include detecting
aggressive driver behavior [54] and the level of driver compe-
tence by assessing behavior in di�cult situations/maneuvers
such as driving on ice and avoiding accidents. Driver pro	ling
can be integrated into ADASs for vehicles with multiple
drivers to tailor the assistance recommendations to each
driver.

A large body of literature is available on driving behav-
ior analysis to determine aggressive behaviors and provide
safety recommendations in Driver Assistance Systems [10–
12, 14]. For instance, the work in [10] measures in-vehicle
acceleration using smartphone sensors to count events of
sudden acceleration, braking, and sharp turning.�e authors
emphasize the need for dynamic calibration algorithms when
using phone sensors. More recent e�orts have also been con-
ducted in [11] where a fuzzy-logic based scoring mechanism
is introduced to pro	le driver aggressiveness on a scale of
[0, 100]. In addition to using smartphone sensors, an onboard
diagnostic reader and an inertial measurement unit were
used in [12] along with a Bayes classi	er to model aggressive
driving behaviors.

4.4. Route Choice Pro�ling and Travel Assistance. Navigation
systems and online maps have garnered increasing user
adoption over recent years, with statistics indicating that 55%
of smartphone holders use mapping services on a regular

basis.�ese services typically provide one ormore alternative
routes primarily based on the shortest distance between the
source and destination. However, in reality there are several
other factors that in�uence the preferred route for a user. For
instance, di�erent drivers may have varying comfort levels
with driving along highways, making multiple lane changes,
or le� turns at tra�c lights. �is is important for novice
drivers and the older populationwho are in particular need of
usingmapping services. In addition to the driver competence
level, personal preferences can also play a signi	cant role
in route selection. �is includes the number of controlled
intersections, stop signs, or routes with frequent public
transportation stops and school buses. �us, while mapping
services have revolutionized the user navigation experience
today, much research and development are needed towards
personalized travel information and Driver Assistance Sys-
tems.

A recent survey of the current literature on route choice
models in transportation networks has been covered in [55].
According to the survey, several fuzzy-logic and reasoning
approaches have been adopted due to their simplicity in
dealing with uncertainty and qualitative variables. Genetic
algorithms and ant colonization were also considered in sev-
eral applications of route-	nding problems in transportation
networks. Another interesting literature review is available
in [56] where Ramaekers et al. classify the works according
to the factors considered in the models such as travel time,
number of intersections, tra�c lights, roadside aesthetics,
and several other factors. �is study also investigates the
relationship between the purpose of the trip and the road
categories used. A major limitation of previous studies is the
assumptions of perfect knowledge due to lack of information
about the transport network. �us, incorporating real-time
information from a cloud-sourced sensing platform is one
open area of research. Learning user preferences is another
relevant area of research where Taw	k et al. [57] explore
the evolution of driver route choices with time. �e authors
conclude that while some drivers maintain their choice,
others are keen to continuously evaluate alternative routes. A
detailed analysis is made where factors such as ethnicity, edu-
cation, driving experience, and gender are included. �ese
results dictate that personalized travel information systems
are needed to cope with such di�erences. In such systems,
collecting user feedback is elemental and is concluded in the
work of Park et al. [58].

5. Evaluation Methodologies

In this section we discuss the common evaluation techniques
of DBM that include real datasets and driving simulators, as
well as some of the typical metrics.

5.1. Microscopic Datasets. Datasets of driver behavior are
typically generated by collecting vehicle and sensor data of
multiple subjects as they drive. �e collected datasets are
further classi	ed as naturalistic and instructed. In naturalistic
data collected, the subjects are told to drive as they normally
would where only the route may be speci	ed but the goals of
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the study are not. �is enables the most natural form of data
for use in ADASs. On the other hand, instructed data col-
lection typically involves informing the subjects to perform
speci	c driving tasks or scenarios andmonitoring the output.
�is allows more focus and emphasis on collecting data of
particular maneuvers but potentially modi	es the driving
behavior since the subjects are consciously repeating certain
tasks. Speci	c datasets are typically created for di�erent
driving tasks/objectives. For instance, references to datasets
for driver behavior at intersections can be found in [50, 59],
while several lane changing datasets are discussed in [4].

5.2. Simulators. Several DBM studies have been based on
simulator studies as well. �e advantages of driving simu-
lators are that several variables such as distractions, tra�c
conditions, and weather can be controlled accurately without
compromising safety. Simulator-based studies are also eas-
ily repeatable and facilitate large data collection. However,
simulator-based models may not accurately re�ect the on-
road performance and therefore validation with real data is
needed.

5.3. Metrics. True and false positive rates are common met-
rics for evaluation in DBM where a speci	c task is to be
predicted. True positive rates represent the percentage of
correctly predicted events while false positive rates denote
the percentage of events that were incorrectly predicted
as true. While these statistics provide an overview of the
model’s success, it is important to consider the details of the
testing and learning environment of each study in order to
objectively compare performances objectively. �e timeliness
of the prediction is another important parameter used in
DBM that indicates the proactive capabilities of the di�erent
models. Naturally, as the time gets closer to themaneuver, the
performance increases.

6. Open Research Challenges and
Future Directions

Driver behavior modeling is currently receiving increasing
interest from industry and academia due to several contem-
porary factors, including the challenges of increasing global
urbanization and demand for smart infrastructure solutions,
the emergence of enabling technologies such as advanced
sensing and data analytics, and the demand for futuristic
applications such as autonomous vehicles. In this section we
	rst summarize some of the current open research challenges
and then highlight two emerging directions of future research
in Driver Assistance Systems (DASs).

6.1. Research Challenges

(i) Novel DBM that incorporates personal driving incen-
tives and preferences, with contextual factors such
as weather and lighting, is needed to develop more
personalized and generic models.

(ii) Works addressing more the less common and com-
plex driving tasks are needed to complement the

current literature. �is includes but is not limited to
ramp merging, multiple lane changing, cooperative
intersection behavior, and driver intention modeling.

(iii) Although there are several available datasets for
DBM evaluation, more work is needed towards a
uni	ed standard dataset for di�erent applications.
�is will o�er a platform for researchers to compare
and evaluate their modeling techniques. �us, more
representative data from 	eld tests for drivers of
di�erent genders and age groups is without a doubt
also required.

(iv) Personalized navigation and travel systems that learn
and model user preferences are another challenging
area of research. Previous works in this direction
have primarily assumed perfect knowledge of the
road network and environment, which is not realistic.
�erefore, incorporating real-time information from
a cloud-sourced sensing platform will foster greater
readiness for practical implementation.

(v) Personalized driver monitoring and state recogni-
tion that can capture drivers’ state dynamically and
online. Previous proposalsmake use of vehicle or/and
smartphone sensors and the driver pro	le to detect
drivers’ abnormal states such as drowsiness. Most
drowsiness detection schemes assume that the driver
is always facing the camera or ignore the level of
illumination, which directly a�ects the correctness
of the collected data for image processing, which
render these proposals impractical. Other methods
such as context-aware schemes could be explored
to recognize the driver state by detecting abnormal
actions such as zigzag pattern driving and random
and risky acceleration and lane changes. In addition,
simpler and dynamic image processing methods are
required to detect the driver’s states online.

6.2. Emerging Directions

6.2.1. Cooperative Modeling Approaches for Collective Scene
Modeling and Sensing. Most of the current literature on
driver behavior modeling has focused on a single vehicle
making inferences based on sensed measurement of the
driver, the vehicle, and its environment. Today, advances
in vehicle-to-vehicle (V2V) and Vehicle-to-Infrastructure
(V2I) communications can facilitate novel approaches to
driver behavior modeling. In particular, cooperative models
can be developed that leverage information from multiple
vehicles to develop more global behavioral models. �is can
enable driving-scenario or situation modeling for diverse
applications and scenarios such as collective behavior at
intersections [60]. For instance, coupling intervehicular com-
munications with driver behavior modeling can facilitate the
following advancements in DBM.

Signaling Warnings. In addition to alerting the driver to dan-
gerous situations, these can be communicated to surrounding
vehicles. Previous e�orts in ADAS have primarily focused on
alerting the driver and not the surrounding vehicles. Some
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Figure 2: Overview of a personalized Driver Assistance Cloud (DAC).

recent works that investigate the use of V2V communication
to signal warnings include [23, 61].

Scene Modeling by Information Exchange. In essence, road
driving is a collaborative action. �e behavior of one driver
will impact the behavior of others. �us, building models
that simultaneously incorporate inputs frommultiple drivers
can generate a model that can more accurately predict
the collective behavior. With intervehicular communications
such models can be derived, and we refer to this as scene or
road situation modeling.

Early Model Building. �e sensors used to model driver
behavior for Driver Assistance Systems typically have a
range of a couple of hundred meters. Vehicle-to-vehicle
communication can expand the sensing range further and
enable models that can predict driver behavior early on.

Collaborative Objectives. Applications such as adaptive cruise
control can bene	t signi	cantly from intervehicular commu-
nications where long-term planning based on the positions of
several vehicles can be bene	cial. In such cases, fuel e�ciency
can be improved by optimizing the speed over a time horizon.

In order to develop cooperative driver behavior models
we need to answer the following research questions:

(i) What information is relevant for intervehicular com-
munication? Di�erent applications will have di�erent

needs, and it is necessary to identify the bene	cial
information exchange.

(ii) How can multiagent models be developed that aggre-
gate the information frommultiple sources? As single
driver behavior modeling is already a di�cult task
that involves several parameters, simple multidriver
modeling approaches should be developed 	rst.

(iii) How can feedback be e�ectively incorporated to
model the scene evolution as time progresses?

6.2.2. Personalized Driver Assistance Clouds. While several
developments have independently been made in features for
in-vehicle ADAS, there is limited work towards a framework
that integrates the current sensing capabilities, driver behav-
ior models, and communication to the cloud. Such a system,
which we refer to as a Driver Assistance Cloud, can provide
novel personalized driver services, applications, and safety, as
illustrated in Figure 2.

In order to develop such systems a road tra�c infor-
mation repository can be created to integrate environmental
and road attributes such as weather conditions, construction,
prevalence of pedestrians, bus stops, and potholes. �ese
attributes can be incorporated from diverse sensing sources
a�er intricate calibration and pruning. DBM that provides
insight on the driver skill level for di�erent maneuvers will
then be needed. For instance, acceleration pro	les can be
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analyzed to determine lane changing and ramp merging
competence. A particular feature of DACs may be designing
e�cient route selection algorithms based on driver pro	les.
�is includes 	rst learning route preferences based on moni-
toring both the routes taken by drivers and their competence
levels on di�erent road types. �en, multicriteria decision-
making techniques can be applied to determine the routes
most suited to di�erent drivers.

6.2.3. DBM for Level 3 AutomatedDriving. Level 3 automated
driving [62] refers to vehicles that are automatically equipped
to control all driving functions with little to no attention
of the driver for speci	c periods. In level 3 automated
driving human intervention is expected at anymoment at the
human’s discretion.�is is a new area of research with several
nontrivial DBM challenges:

(i) Rapid onboarding: modeling of the driver behavior
of reestablishing the driving context when switching
from automated driving to human driving

(ii) Complexity: the fact that fully automated vehicle
results in increased complexity of the vehicle func-
tionality and communication. Fully automated vehi-
cles are expected to utilize VANET communication,
which is too fast for human tomonitor. Consequently,
careful DBM design and analysis are needed espe-
cially on the event of automated system error when
the human intervention is needed in short time.

(iii) Cooperative DBM between level 3 automated driving
and levels 2 and 1 automated driving
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