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In view of the fact that the detection of driver’s distraction is a burning issue, this study chooses the driver’s head pose as the
evaluation parameter for driving distraction and proposes a driver distraction method based on the head pose.+e effects of single
regression and classification combined with regression are compared in terms of accuracy, and four kinds of classical networks are
improved and trained using 300W-LP and AFLW datasets. +e HPE_Resnet50 with the best accuracy is selected as the head pose
estimator and applied to the ten-category distracted driving dataset SF3D to obtain 20,000 sets of head pose data. +e differences
between classes are discussed qualitatively and quantitatively. +e analysis of variance shows that there is a statistically significant
difference in head posture between safe driving and all kinds of distracted driving at 95% and 90% confidence levels, and the
postures of all kinds of driving movements are distributed in a specific Euler angle range, which provides a characteristic basis for
the design of subsequent recognition methods. In addition, according to the continuity of human movement, this paper also
selects 90 drivers’ videos to analyze the difference in head pose between safe driving and distracted driving frame by frame. By
calculating the spatial distance and sample statistics, the results provide the reference point, spatial range, and threshold of safe
driving under this driving condition. Experimental results show that the average error of HPE_Resnet50 in AFLW2000 is 6.17° and
that there is an average difference of 12.4° to 54.9° in the Euler angle between safe driving and nine kinds of distracted driving
on SF3D.

1. Introduction

+e World Report on Road Traffic Injury Prevention points
out that many factors have an impact on traffic safety, such
as the mental state of drivers, the degree of fatigue, and
whether the driver is drunk or distracted. According to
Volvo, over 80% of road accidents are caused by distracted
drivers. Compared with other dangerous driving modes,
distracted driving is transient and frequent [1].When drivers
are distracted, for example, when adjusting onboard
equipment, using the mobile phone, or involuntarily bowing
the head due to fatigue, their head pose changes in varying
degrees compared with the normal situation, +erefore, the
analysis and comparison of the driver’s head pose can

provide a basis for judging whether the driver is in a dis-
tracted driving state.

Distraction detection is one of the application directions
of head pose estimation [2]. In the field of computer vision,
by inputting the head image containing the target user into
the computer and combining it with image processing
technology, the pose parameters of the head in space are
determined based on calculation and prediction. +ere are
two ways of expressing this pose parameter: face orientation
and Euler rotation angles [3]. Compared with the expression
based on face orientation, the Euler rotation angle is more
accurate and comprehensive. As shown in Figure 1, the Euler
rotation angle refers to a group of angular parameters in
three-dimensional space: yaw, pitch, and roll. In this paper,
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the Euler rotation angle is chosen as the expression of the
head pose. Figure 2 shows the differences between the Euler
rotation angle and face orientation expression.

Distraction detection needs to be judged according to the
location of the driver’s gaze. At present, there are some
methods to deduce the driver’s cognitive state by consid-
ering the characteristics of eye movement (e.g., gaze, sac-
cade, and smooth tracking), such as driver distraction [4].
Other methods apply classification to eye images related to
different gaze regions to detect the location of the driver’s
gaze while driving [5]. +ere are also some methods that can
track facial features and 3D head posture and predict the
direction of gaze relative to the position of the car to detect
whether the driver’s eyes are fixed on the road [6]. Other
methods study the driver’s gaze behavior (e.g., scan fre-
quency and scan time) to evaluate the driver’s driving
performance when interacting with other devices, such as
portable navigation systems while driving [7]. Finally, there
are some studies on the functional relationship between the
driver’s head posture and gaze behavior, in order to predict
the fixation position according to the driver’s head position
and direction [8], so as to classify different types of driver
behavior while driving [9]. Considering the stringent re-
quirements of the gaze point estimation for the data set and
after studying the relationship between the driver’s head
posture and gaze behavior, it is found that using head
posture estimation to detect the driver’s distraction behavior
is feasible and accurate.

In previous work on driver distraction detection, Hoang
et al. [10] used faster R-convolutional neural network (CNN)
to establish whether the driver’s hands are on the steering
wheel and whether the driver has a mobile phone as a basis
for distraction detection. Robinson et al. [11] designed a
distraction detection system that uses the direction of
movement of the driver’s eyes, mouth, and head in the
vehicle image as recognition parameters in order to judge the
driver’s distraction. In a limited environment, the global
detection accuracy is as high as 99%, while, in the practical
application, the accuracy is 86%, and the average response

time is 30ms. In 2016, State Farm held a distracted driving
identification competition in ten categories on Kaggle.
Toshi-k uses the detector to detect the driver’s body outline,
cuts the picture according to the detected body outline, and
then uses the depth convolution network to identify it, which
gives good results. Taking advantage of the good perfor-
mance of the convolutional neural network (CNN) in the
field of computer vision, Baheti et al. [12] proposed a de-
tection system based on CNN that not only identifies
whether the driver is distracted or not but also identifies the
types of distraction, modifies the structure of VGG16, and
uses various regularization techniques to improve recog-
nition accuracy.

+e existing research on the identification of driver
distraction can achieve remarkable results in specific envi-
ronments and datasets.+ese data come either from a public
driver distraction dataset or from a laboratory driving
simulator, but there are few studies that analyze the dis-
traction state based on actual driving images. For example,
in State Farm Distracted Driver Detection (SF3D), the
number of participants in the training set is 26, the driver
image is not obscured, the light conditions in the experiment
are good, and the change of light and shade is not obvious.
+ere are some differences between this and the actual
driving conditions. Such are the bumps in the driving
process that easily cause the deviation of the imaging angle.
In addition to other factors, the weather and sun exposure
angle easily cause greater light and dark changes, as well as
the large base of drivers, less participants maybe not able to
accurately fit, and other related differences. In addition, a
single picture can only capture an instantaneous state, while
continuous human action is difficult to judge. It cannot be
established with certainty whether the driver is distracted or
not from a single picture. +erefore, in view of the related
issues presented above, this paper makes the following
contribution to the field:

(1) It proposes a head pose estimation method based on
deep learning without preprocessing input images.
+e paper compares the results between the im-
proved Alexnet and three kinds of Resnet based on
this method.

(2) On the common distraction dataset SF3D, the head
pose difference between safe and distracted driving is
analyzed by (1) as the basis for distraction detection.

(3) Several actual driving videos are analyzed frame by
frame on the basis of (2) to obtain the safe driving
head pose range and threshold under the corre-
sponding imaging angle.

2. Methods

2.1. Head Pose Estimation

2.1.1. Deep Learning Method. Traditional head pose esti-
mation methods can be divided into shape-based [13, 14]
and face-based key point set relationships [15–17].+ey both
have some shortcomings: the method based on shape
template has a large error and can only render limited
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Figure 1: Example of expression of Euler rotation angle.
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discrete attitude values. On the other hand, in the method
based on facial key points, the marking and positioning
accuracy of facial key points directly affects the results.
Compared with other methods, the deep learning method
[12, 18] has a strong generalization ability and can fit dif-
ferent face poses so as to ensure higher accuracy.

Head pose estimation is essentially a regression problem
[2], that is, mapping high-dimensional image space to low-
dimensional head pose space.+e solution can be divided into
two parts: dimensionality reduction and regression. +e
mapping from image to pose space can be effectively com-
pleted by a CNN. Different from the fully connected network,
the core of the CNN is the convolution layer that completes
image feature extraction through convolution operation [19].
Owing to the local connection and weight sharing, the
number of parameters in the network is significantly lower,
which makes the network model easier to train and reduces
overfitting. At the same time, the downsampling of the pool
layer further reduces the number of parameters, so the
generalization of the model is improved.

2.1.2. Network Structure. Based on deep learning, the head
pose estimator (HPE_Resnet) used in this paper is improved
on the classical residual network. +e core idea of Resnet
[20] is to no longer learn a complete output but only learn
the difference between output and input. +is idea realizes
the jump transmission of information, maintains the
completion of feature information, and solves the problem
that the accuracy of traditional CNN decreases with the
increase of depth. In addition, its time cost does not increase
significantly with the deepening of Resnet layers.

HPE_Resnet does not do any preprocessing of images at
input and gives them directly to the model for training. +is
is different from some network models which need to
preprocess pictures, such as cropping, graying, equalization,
and normalization, while the use of native images is closer to
the actual use. HPE_Resnet retains the convolution layer and
pooling layer in Resnet, uses the first half of the convolution
layer as the feature extractor, uses 3-3 convolution in the
two-layer residual block, and uses one convolution and one
convolution in the three-layer residual block to realize the
continuous operation of dimensionality reduction,

convolution, and dimension enhancement. Figure 3 shows
two-layer residual block used on HPE_Resnet18 and 34 and
three-layer residual block used on HPE_Resnet50.

Nowadays, head pose estimation based on deep learning
is mainly done in the following three ways:

(i) Based on the routine, the head pose estimation is
regarded as a typical regression problem, while
network parameters are continuously optimized by
the loss function to approach the label value.

(ii) +e range of head pose parameters is divided into
several equal intervals, and the regression problem
is transformed into a classification problem [21].

(iii) Combined with the idea of classification and re-
gression, the range of parameters is classified, and
regression prediction is then carried out.

It should be pointed out that (ii) is only suitable for some
specific head positions, such as head up, head down, and left
and right rotation. In essence, the continuous head pose is
mapped into a discrete specific interval, although it can
overcome some interference, but the actual division range is
relatively large (about 15°) and cannot accurately express the
head pose and meet the needs of detection. In this paper, (i)
and (iii) are verified on the same network at the same time.
For (i), only regression training is carried out, the loss of the
whole Euler angle is calculated, and a single mean square
error is used as the loss function:

loss1 : MSE y, y′( ) � ∑
n
i�1 yi − yi′( )2

n
. (1)

For (iii), yaw, pitch, and roll are trained separately. +e
range of each angle parameter is divided into several cate-
gories, and regression training is then carried out.+e cross-
entropy loss function is used in the classification prediction
stage, and the mean square error loss function is used in the
regression phase:

loss2 : H(p, q) +MSE y, y′( ) � −∑
x

p(x)log q(x)

+
∑ni�1 yi − yi′( )2

n
.

(2)

Yaw = 0

Pitch = 0 Roll = 0

Yaw = 0

Pitch = 0 Roll > 0

Yaw = 0

Pitch = 0 Roll < 0

Figure 2: Frontal face image with face orientation (1, 0, 0).
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After conv1, Max pool, conv2, conv3, conv4, conv5, and
Average pool processing, the image is transmitted to the four
branches of the full connection layer (FC), respectively. In
the FC of HPE_Resnet18 and HPE_Resnet34, the original
number of output channels is unchanged, that is, it is 512.
Due to the use of three-layer residual blocks in HPE_R-
esnet50, the output channel needs to be expanded, that is, it
needs to be 512∗4.+e Softmax activation function is used in
FC_Yaw, FC_Pitch, and FC_Roll. +e sum of classification
and regression errors of each Euler angle is calculated
separately. In FC_All, only the overall regression error is
calculated. +e detailed architecture is shown in Figure 4.

2.2. Distraction Detection

2.2.1. Head Pose in SF3D. During driving, head pose is one
of the most abundant parameters. On SF3D, the head poses
of nine types of distracted driving are intuitively different
from safe driving. In order to quantify specific differences
and reduce the impact of individual extreme values,
HPE_Resnet50 was used to test SF3D with a total of 20,000
images. +e results show that distracted driving differs from
safe driving in the head pose.

In Table 1, the mean, standard deviation, and quartiles
(Q3–Q1) of the Euler angular components are calculated
separately for each category, where the standard deviation
reflects the degree of dispersion of the sample and the
quartiles (Q3–Q1) mainly reflect the spatially approximate
distribution of c0 to c9 over the angular components. +e
results show that the yaw component as a whole has a higher
volatility and distribution range than the pitch and roll
components, that is, more active offset activity in the yaw
direction in real driving.

+e SF3D variability at the 95% and 90% confidence
levels was then verified, respectively, and the results showed
that safe driving in the head position was significantly
different from various types of distracted driving.

Combining Tables 1 and 2 reveals that the angular
components corresponding to each type of driving action are
distributed over a specific interval and that there are varying
degrees of spatial distance differences between the mean
points. Starting with these two characteristics can provide a
statistical basis for the design of distracted driving identi-
fication methods.

Table 1 only shows that there is a certain difference in
head pose between safe and distracted driving that cannot be
directly used as a basis for discrimination. Due to the
continuity of distraction, such as adjusting vehicle equip-
ment, using a mobile phone, and turning head for a long
time, duration is uncertain, and continuous information
cannot be expressed in a single frame. For this reason, it may
be difficult to define whether driving is distracted or not,
which results in a high rate of misjudgment. +erefore, in
order to obtain the parameter range and driving charac-
teristics of safe driving, the driving behavior should be
analyzed over a period of time, and the driver’s head pose
parameters should be read frame by frame.

2.2.2. Distraction Detection Based on Video Frame. It should
be pointed out that head pose is closely related to the im-
aging angle, and it is only meaningful to discuss head pose at
the same imaging angle. As shown in Figure 2, the front face
of the camera is yaw� 0, pitch� 0, roll� 0. If the imaging
angle is changed at this point, the head does not rotate
relative to the human body, and the result will still change.
+erefore, when the range of head pose parameters and
threshold of safe driving are given, the corresponding im-
aging angle should be indicated.+e specific steps for solving
the safety range and threshold issue are as follows:

(1) Calculate the Euler angle of a single person with a
total of n frames of a safe driving continuous video
frame by HPE_Resnet50, which is recorded as
(yawi, pitchi, rolli).

(i) Calculate the average value of n Euler angles in
this group (yaw, tpitchn, q hroll)i, and take it as
the base point bj(j � 0, . . . , m).

(2) Repeat Step (1) m times to get a total of m person
times safe driving base point set B(b1, b2, . . . , bm).

(i) Calculate the set B mean value, which is recorded
as the safe driving base point β(yaw, pitch, roll).

(ii) Based on the statistical analysis of m∗n points,
extreme points are removed and expanded into
specific space Ω, that is, the safe driving range.

(3) Calculate the spatial distance di(i � 1, 2, . . . , n) of m
group n points from β, as shown in equation (3), and
remove the partial maximum to make the distance
between most points at least 90% and β≤ d, where d
is the recommended safety threshold:

di �
������������������������������������������
Yaw − yawi)

2
+ Pitch − pitchi)

2
+ Roll − rolli)

2.(((
√

(3)

(4) Test k continuous video frames, compare with space
Ω, and calculate the space distance di(i � 1, 2, . . . , k)
between each frame and β. In equations (4), (5), and
(6), OT represents the number of all k values that
exceed the threshold, MCOT represents the maxi-
mum number of k values that continuously exceed
the threshold, which can reflect the driver’s

3∗3, 128

3∗3, 128

relu
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128-d

1∗1, 128

3∗3, 128

relu
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relu

512-d

1∗1, 512

Figure 3: Two-layer residual block and three-layer residual block.
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distraction over a period of time, and NN indicates
the number of thresholds exceeded:

all �
OT

k
∗ 100% , (4)

cont �
MCOT

k
∗ 100%, (5)

count � N. (6)

3. Experiment and Result

3.1. Experiment Datasets. +e datasets used in this study are
300W-LP [22], AFLW [23], AFLW2000, SF3D, and a
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Figure 4: Architecture of HPE_Resnet50: 3∗conv1 represents the three overlays of the network layer and (7∗7, 64) indicates the convolution
core size of 7∗7, with a total of 64 layers.

Table 1: Head pose related data on SF3D through HPE_Resnet50.

SF3D
Yaw Pitch Roll

x σ Q3–Q1 x σ Q3–Q1 x σ Q3–Q1

c0 −59.3 12.7 16.7 10.1 8.3 11.8 −21.0 6.4 8.6
c1 −48.0 12.6 15.0 −4.6 9.2 14.1 −26.1 7.9 9.6
c2 −37.7 12.7 14.1 −10.5 5.5 7.1 −16.4 10.0 16.6
c3 −71.6 14.3 15.9 1.3 10.1 15.5 −15.9 5.8 7.1
c4 −68.0 12.2 16.0 2.6 7.3 9.4 −16.2 6.1 8.1
c5 −40.2 6.5 7.5 −4.5 8.4 12.2 −30.0 5.9 8.0
c6 −43.2 13.7 16.0 −3.5 8.4 11.1 −28.6 9.5 12.1
c7 −13.8 21.1 28.3 −19.4 11.0 15.9 −29.3 16.2 28.9
c8 −38.1 17.7 21.6 −8.4 7.1 8.6 −16.5 12.0 19.9
c9 −16.8 9.3 14.1 −16.1 5.9 8.8 −30.6 6.2 7.6

Table 2: Analysis of head pose differences.

Source of variation SS Df F value P value
Statistical significance

α � 0.05 α � 0.1

Yaw
SSA 6.67∗106 9 3,882.04 0.00

P< 0.01 P< 0.01SSE 3.81∗106 19,990 — —
SST 1.05∗107 19,999 — —

Pitch
SSA 1.40∗106 9 2,271.66 0.00

P< 0.01 P< 0.01SSE 1.37∗106 19,990 — —
SST 2.77∗106 19,999 — —

Roll
SSA 7.49∗105 9 984.96 0.00

P< 0.01 P< 0.01SSE 1.69∗106 19,990 — —
SST 2.44∗106 19,999 — —
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collection of actual driving images (Driver_Imgs). 300W-LP
and AFLW are used as training sets and AFLW2000 as a test
set. SF3D is used to verify the safety and head pose dif-
ferences in all kinds of instances of distracted driving, while
Driver_Imgs is used to test the effect of actual driving.

Statistics show that the range of head motion of adult
males is limited. Under the condition of frontal imaging,
specific angle ranges are yaw [−79.8°, 75.3°], pitch [−60.4°,
69.6°], and roll [−40.9°, 36.3°]. Combined with the range of
head pose in the dataset and the actual driving situation, the
Euler angles of images are limited to [−99°, 99°], as shown in
Table 3.

Figure 5 shows some images from the experiment
datasets. 300W-LP is a large comprehensive head pose
dataset different from the previous medium and small range
(±45°) datasets. By expanding the side image of the human
face, it can solve the problem of landmark occlusion in a
large range and provide high-precision head pose data.
+ere is a situation when a picture contains multiple faces in
AFLW. In order to meet the objective of the experiment,
which is only to judge the distraction state of a single person,
this kind of image is removed from the dataset, leaving only a
single face in the range of [−99°, 99°], excluding the pictures
in AFLW2000. Finally, a total of 16,825 pictures were used in
AFLW. At the same time, the images not in the range of
[−99°, 99°] in AFLW2000 were removed, and 1,968 test
images were used.

SF3D based on a distracted driving identification
competition on Kaggle in 2016 was divided into ten cate-
gories: drive safe, text left, talk left, text right, talk right,
adjust radio, drink, reach behind, do hair and makeup, and
talk to passenger. +is was a total of 22,424 training pictures.
+ese training pictures were taken by 26 participants in the
experimental environment. In the experiment, only 20,000
pictures classified by Kaggle, 2,000 in each category, were
selected.

Driver_Imgs comes from the “BeiDou +” vehicle video
surveillance platform in Jiangsu Province. It is composed of
continuous video frames, and the data are all from an actual
driving video. A total of 90 drivers’ driving video clips were
selected. +e imaging angle was fixed on the right side of the
face and the face was clear and unobscured. As the driving
time covers the whole day, and there are interference factors
such as light and weather, the light and shade of the picture
obviously change.

3.2. Results and Discussion

3.2.1. Head Pose Estimation Result. Experiment 1 aimed to
train a reliable head pose estimator. In order to improve the
generalization ability of the model and have a good rec-
ognition effect on the general images, 300W-LP and AFLW
were used for training. First, 300W-LP was used for 10
epochs of training, and then AFLW was used for 15 epochs
of training.+e learning rate was 10−5, and the batch size was
16. Finally, the training effect was verified in AFLW2000,
and the difference between single regression and combined
classification and regression thoughts was obtained.

Table 4 shows the results of each model on the verifi-
cation set. After many tests, the average error is stable at
6.17°. In this training, with the deepening of the number of
network layers, the error becomes smaller and smaller, and
the training idea of combining classification and regression
is obviously better than single regression. As far as a single
Euler angle is concerned, the training of yaw under classi-
fication and regression is more successful. On the contrary,
the prediction error of yaw under only regression is larger
than that of pitch and roll.

3.2.2. Distraction Detection Result. Experiment 2 was
designed to verify the application of head pose estimation in
the actual driving image, as shown in Figure 6. +e range of
safe driving head pose at this imaging angle was obtained by
calculating a total of 8,000 safe driving pictures of 80 drivers,
removing extremes at both ends, and selecting the range
containing most of the data points (>90%), as shown in
Figure 7. In Table 4, β(yaw, pitch, roll) is the average point
of 8,000 data sets, and D is the safe driving threshold. In
Table 5, the spatial distance between each point and β was
calculated, and the distance between 90% of the points and β
was less than 18.6, so 18.6 was set as the safe driving
threshold.

A total of 3,000 video frames, including two categories of
safe driving and distracted driving, were collected from 30
drivers, broken down into 3 categories of safe driving actions
and 5 categories of distracted driving actions, as shown in
Table 6 and Figure 8. After obtaining the respective head
posture data through the depth learning model, the corre-
sponding distraction parameters ALL, MAX, and COUNT
were calculated and the spatial distances from the base point
β were plotted chronologically as fold lines. In order to
ensure the stability of the recognition, the experiment
stipulates that only if the threshold is exceeded continuously
by 5 frames and above, the COUNT will be plus 1, that is,
0.25s continuous overthreshold at the current FPS, to
prevent the phenomenon of only individual video frames
exceeding the threshold due to vehicle bumps or posture
calculation errors and the driver is judged to be distracted,
resulting in excessive sensitivity of the method.

Table 7 records the distraction parameters for t1–t15
videos t1–t5 are the safe driving videos, and all of the es-
sentially undeflected head positions are positive observation
positions, which are the positions that drivers hold for the
longest time in daily driving. From Table 7, it can be seen
that all three distraction parameters did not reach the
threshold of distraction recognition theory and had small
values. To verify the method’s ability to recognize other
driving actions in safe driving, distraction judgments of five
drivers in the t6–t10 were added. Unlike the t1–t5, the driver
in the t6–t10 performed several observations of the mirrors
on both sides. Looking in the rearview mirror is a normal
operation during driving, more common but with greater
head deflection. Distraction parameters were all increased
compared to t1–t5, but neither reached the threshold for
distraction recognition.Where COUNT basically reflects the
number of times the rearviewmirror is viewed, MAX reflects

6 Computational Intelligence and Neuroscience



Table 3: Experiment datasets.

Datasets 300W-LP AFLW AFLW2000 SF3D
Driver_Imgs

Safe_Imgs Test_Imgs

Number 61,225 16,825 1,968 20,000 80∗100 15∗100
Angle range ±90° ±99° ±99° — — —

(a) (b)

(c) (d)

Figure 5: (a), (b), (c), and (d) come from datasets AFLW, 300W-LP, SF3D, and Driver_Imgs, respectively.

Figure 6: Part of continuous video frames in Safe_Imgs.

Table 4: Verification results for all deep learning models on AFLW2000 with 1,968 images.

Classification and regression Only regression

Model Yaw Pitch Roll MAE Yaw Pitch Roll MAE
Alexnet 27.16 14.95 16.28 19.47 28.22 15.60 17.14 20.32
HPE_Resnet18 4.96 8.57 9.23 7.59 26.90 14.31 15.42 18.88
HPE_Resnet34 4.80 7.01 8.00 6.60 26.04 13.62 13.40 17.69
HPE_Resnet50 4.16 6.57 7.75 6.17 23.05 12.75 9.29 15.03
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Figure 7: Continued.
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Figure 7: Head pose statistics in Safe_Imgs. (a) Yaw range. (b) Pitch range. (c) Roll range. (d) Distance range.

Table 5: Safe driving range and recommended threshold obtained from Safe_Imgs.

Participants number FPS Video Safe range β D

80 20 5s/segment
Yaw (−45°, −13°)

(−27.6, 2.5, 3.9) 18.6Pitch (−10°, 15°)
Roll (−5°, 15°)

Table 6: Driving action description.

Safe Safe_l Safe_r Dist_h Dist_p Dist_t Dist_r Dist_d

Safe
Left rearview mirror

(safe)
Right rearview mirror

(safe)
Small hand
movements

Phone use
Turn
around

Adjust
radio

Drink or eat

(a) (b) (c) (d)

(e) (f ) (g) (h)

Figure 8: Some pictures of test_Imgs. (a) Safe. (b) Safe_l. (c) Safe_r. (d) Dist_h. (e) Dist_p. (f ) Dist_t. (g) Dist_r. (h) Dist_d.
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the maximum number of hours for a single observation, and
t11–t15 is the driver’s true distraction during the actual
driving trip. During the window of 5 seconds, some of the
driver’s headmovements included the entire window period.
Although the distraction movements varied, they all had
varying degrees of loss of safe driving head position, and one
or two of the distraction parameters were significantly
higher than the threshold in the distraction recognition
theory. Figure 9 shows the line chart of t1–t5.

4. Conclusions

+is study focused on training a stable, accurate, and
available head pose estimator that does not require pre-
processing for either training pictures or actual test images.
After testing, the error of the pose estimator is within an
acceptable range, which can be used not only to analyze the
images collected in the experimental environment but also
pictures from the real world.

Based on the calculation and statistics of the head pose on
the common distraction dataset performed using the head
pose estimator, it is concluded that there are specific differ-
ences in the head pose between safe and distracted driving.
+is difference can be used for providing quantitative data
basis for distraction detection. Since the single-frame image
can only capture an instantaneous state while human action is
continuous, it is not reliable for identifying a distracted state
based on a single-frame image. +erefore, continuous video

frames can overcome the sudden impact caused by the bumps
and light changes on the driving route, provide the safety
range and threshold at a specific driving angle, and establish
parameters for identifying distracted driving.

Point-of-gaze as an important indicator to judge the
driver: we can use point-of-gaze estimation and head pos-
ture estimation for information fusion in the future. In more
complex driving scenes, there is a certain correlation be-
tween them, which can complement each other, and in
theory, the accuracy of distraction recognition can continue
to be improved. At the same time, lightweight is also an
important work, which makes it possible to deploy on ve-
hicle equipment and maintain high accuracy.

Data Availability

+e dataset in the paper can be obtained by contacting Sili
Xia (xiadeemail@163.com).
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Table 7: Distraction parameter of t1-t15.

Test_Imgs t1 (safe) t2 (safe) t3 (safe) t4 (safe) t5 (safe)

All 9% 23% 27% 14% 18%
max 4 3 4 2 3
Count 0 0 0 0 0
Test_Imgs t6 (Safe_l) t7 (Safe_l) t8 (Safe_l) t9 (Safe_r) t10 (Safe_r)
All 38% 42% 46% 20% 48%
max 23 15 14 14 22
Count 2 3 4 1 3
Test_Imgs t11 (Dist_h) t12 (Dist_p) t13 (Dist_p) t14 (Dist_p) t15 (Dist_t)
All 100% 92% 66% 100% 100%

max 100 33 14 100 100

Count 1 3 5 1 1
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Figure 9: +e chart of t11-t15.
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