ED 072.249

限。

N_{0}^{0}

- Γ

$$
\begin{gathered}
\text { : Meredith P. Crawford } \\
\text { President } \\
\text { Human Resources Research Organization }
\end{gathered}
$$

 American Professional Driver Education Association; Dr. Earl D. Heath, NHTSA; Dr.
Francis Kenel, Illinois State University; Dr. P. Robert
 general guidance to direct participation, in carrying out activities of the project. Members
of the panel were: Dr. Richard W. Bishop, Florida State University; Dr Appreciation is expressed to the project advisory panel for assistance ranging from

 the study and Dir. Alan G. Hundt was Project Director during the phase of the study ship of the National Fighway Traffic Safety Administration (NHTSA), U.S. Department
of Transportatior. (Contract No. FH 11-7336). Dr: A. James McKnight was in charge of (System Operations), Alexandria, Virgina, Dr. J. Daniel Lyons, Director, under sponsor-
 Technical Report 72,14); describes the procedures ${ }^{\text {- }}$ used to develop the objectives from

 Technical Report 70-103), provides an inventory of the driver tasks from whici the evaluation instrument which resulted from a driver task analysis. The first report in the
'series, Driver Education Task. Analysis: Task Descriptions (DOT HS 800 367, HumRRO education objectives and deals with the performance and enabling objectives and the It is the third in a series of four reports ${ }^{\circ}$ describing the development of driver
 usefulness in the fields of research and training in driver education. It is also available

वщомячон

辰

㞔。
\therefore
Driver Education Task Analysis:
Instructional; Objectives

 дredoa 'suond

 other resources hat prevail in many schools. In fact, there are a few objectives, such as those ther resources that prevail in be dimcult to achieve within the limitations of time, facilities, and

 must possess in order to meet performance objectives. the purpose of the unit is to be attained. performance the driver education student must exhibit if

provides driver performance and knowledge tests.
 uo!qduว another report entitled Driver Education Task Analysis, Volume IV: Development of Driver
Education Objectives ${ }^{3}$.
 ,
 reduction of each task into its requíred individual behaviors, and an evaluation of each behavior's

 factual information should be limited to what appears beneath the knowledge objective. Each
instructor is expected to include any additionial information he believes will enhance the attainment intended primarily to amplify the more general description of the objective. It is not intended that
factual information should be limited to what appears beneath the knowledge objective. Each types of information to be covered by driver educators. The provision of factual information is These objectives are primarily, facts about how, when, where, or why various per-
formances are carried out. The description of knowledgẽ objectives is intended primarily to identify
 knowledges and skills. These knowledges and skills 'constitute "enabling" objectives in the sense

 criticality items as cleaning the windshield in order to be considered qualified.
 "qualified" only if he did well enough on other items of moderately high criticality to total 70% his failure to meet such low criticality objectives as failure to clean the windows or windshield. A
student who failed to remove snow from the windows or to adjust his mirrors could be considered
 rated at the "moderately, high" criticality level. The student's failure to remove accumulated snow example, none of the objectives was rated at the "high" criticality level. Two of the behaviors were The criticality of each objective may be determined by the column in which it appears. In the other logical category is labeled at the leftrhand side-of the pa is no particular sequence, the behaviors are organized. into logical groupings. Each sequential or performance objective. The objectives aralisted vertically, more or less in the sequence, in which
they would occur, in cases when the behaviors normally occur in a particular sequence. When there trip," is presented at the top of the page. 'Each• paragraph in the. unit describes a specific
performance objective. The objectives are listed vertically, more or less in the sequence in which purpose, "to enable the student to prepare the car and lits occupants for a safe and comfortable The first learning unit can serve as a specific example of how to use this volume. The units' objectives be taken up in the order in which they are listed. thir The order in which objectives are listed in Part I follows a sequence of generally increasing statement of purpose for these objectives is given as "educating" rather than "enabling" objectives are worded in terms of what the "driver" rather than the "student" must do. The and drugs or the care of the automobile. Because there is no effective way to evaluate. the student's
performance relative to these objectives upon completion of, a driver education course, the A number of perfornance objectives rehate to long-term driver behavior-the use of alcohol students or instructors, to attain them. They should be reviewed by the driver educator as goals,
 The standards given represent the judgment of highway safety specialists as to what should be
: ipected of a student graduating from a driver education coursé. The standards are based, as are handling 20 moderate or moderately low criticality situations and still be considered qualified. critical in the instructional objectives, the student would have to handle $19(95 \%)$.correctly to be, These standards mean that on a road test containing 20 situations that were identified highly

 criticality. Each' level has been assigned a minimum standard of performance by an independent
group of highway safety authorities. The standards are as follows: standards. or minimu a such standards, the objectives' have been grouiped into five major levels' of standards, of minimum qualification, it is necessary to establish minimum levels of acceptable

 The Driving Situations Test is intended to assess the abifity. of the student to deal with a
 perform, 85% of the former and 70% of the latter. All of the performances in the driving
fundamentals-test-fall into these two categories.
 - Separate scöring stencils are provided for the moderately high criticality̆ performance and the is available for recording adequa y, of student response. The reader should imagine that each page
of the test booklet is.cut along the solid vertical line running down the right-hand side of the page
 For ease in scoring, all, answers are recortled on'a single "scoring sheet." The right-hand margins of

forms' so that it may be administered in vehicles with either a manual or an automatic shift. little used, roadway. It'requires no special fâcilitıes or -equipment. It is highly similar to the off-road ability to control the motion of an automobile and. is to be administered on an offroad area or a 7soj spequamepung bunnua
three separate tests-driving fundamentals, driving situations, and driving knowledge. An evaluation instrument designed to assess the attainment of the specified performance and

LNヨWกy!

only in connection with the firgt learning unit requiring them. it should be apparent that the same skills underlie almosteall performance objectives having to do components of the learning unit that must be dealt with in an;operational or simulated automobile.

 pre not as well understood as those of knowledges. The skill descriptions that are provided here are addition to knowledge, some level of practice before they may be attainedi It is this need for such as the ability to back a car into a tight parking space. These performance objectives require, in some cases in which performance also depends upon the development of complex skills. These
include perceptual skills, such as the ability to judge passing distance, or perceptual-motor skills, ग!पM $\overline{\text { Sा!प्रS }}$

 have the'same specific facts relate to individual performance 8 bjectives, they would, of course,

 standards. At least the use of the standards provide a means of giving differential weights to toms of
differing criticality and avoids treating allquestions as being of equal importance.
 information is to the performance. Until an empirical analysis is made of the relation between enabling ralated. Use of the sarre standardis presumes that io perform correctly, the student must possess the
related knowledge." The validity of this assumption probably depends upon how closely related the according to the criticality of the performance objectives to which they appear to be must closely

 A 105 .item Driving Knowledge Test has been furnished to provide a means of assessing the
student's mastery of certain enabling knowlegges. While most of the items are multiple chooce, elght

Situations Test indicates thiat $30-45^{\circ}$. minutes of driving in a combined urban-rural setting will
provide-more than 100 observations.
 may be used equitably as long as enough situations are encountered to provide a rei....bice estimate of standardization does 'not constitute'a handicap. Yet, even where the test is to "oe used for
certification purposes (i.e., to determine which students pass the course) the Driving Situatons Test primariny or er eucational purposes--to identify specific student strengths and weaknesses the tack
of standardization does not constitute:a handicap. Yet, even where the test is to oe used for treated at greater length in Volume IV of the report series cited earlier. As long as the.test is used test as a measure of the student's overall ability. The question of standardization vs. validity is standardize a road test is to eliminate observations concernted with such unplanned contingencies as
traffic, weather, and various signal devices. Such restrictions would severely limit the.vaidity of the students will vary considerably. The test cannot, therefore, be "standardized." The only way to \because. It is obvious that both the number and the nature of situations acer by dife.

 Vehicles - Parked") is great enough to warrant looking for them. section between. Duke and Gibson Street represents, a shopping district with 20 -minute. metereu
parking. The prospect of encountering the situations identified in Step 3 of the test ("Other

 - traffic. He would make such observations at a later intersection, where either of tiese is likely to

 proceeds along a particular route, he uses the test format to select the specific obsertations that are which will specify for the test administrator the observations to be made. As the "tost deal" test,

 this is not done, the administrator, when confronted by more responses thail he can handle, wil
 situations. The two book Cet. should be fastened back-t-back, so the administrator can muve frum
one type of situation to antther simply by tuming the booklet oyer.
 Fundamentals Test, the right ${ }^{\text {thand }}$ margin is progressively recessed so that answers may be recorded
on a common answer sheet: It is also recessed from the bottom so that each pags may be ourckly

唇。

 passes safely without interference to other road users．．．．．．．． To enable the student to make sound passing decisions and to complete To enable the student to maintain an adequate separation between
the car and the vehicle ahead．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．． To enable the student to safely enter，drive on，and exit from
a freeway．．． country and mọuntainous terrain．．．．．．．．．．．．．．．．．．．．．．．．．．．．．． To enable the student to drive in a safe，efficient manner in upen

 To enable the student to maintain a complete and accurate understanding
of the driving environment and to identify any critical changes that ${ }^{-}$To enable the student to prevent and stop a skid． To enable the student to back up safely and smoothly

To enable the student to come to normal safe stop on level roadways
and on hills and to make required rapid stops．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．． To enable the student to downshift to maintain speed or reduce speed，
before starting down a hill，in heavy，slow－moving traffic，or in
emergency situations．． To enable the stulent to adjust speed to existing traffic conditions
to account for variations in traffic flow and legal speed limits．．．． To enable the student to make a safe，comfortable turn

 To enable the student to accelerate smoothly and safely from a
standing position．$\quad . \ldots \ldots$

－。䔍荡
－Index－to．the Driver Education Instructional Objectives

椌。

＇σ

$$
\begin{aligned}
& \text { 象 }
\end{aligned}
$$

$$
\begin{aligned}
& \begin{array}{l}
\text { To enable the student to adjust his driving behavior to compensate } \\
\text { for the effects of hauling heavy loads within or on top of the car. }
\end{array} \\
& \begin{array}{l}
\text { To enable the student to adjust his driving behavior to compensate } \\
\text { for the effccts of towing a trailer. .. }
\end{array} \\
& \text { To enable the student to drive safely during darkness. } \\
& \begin{array}{l}
\text { To enable the student to maintain directional control during } \\
\text { a high crosswind. .4. }
\end{array} \\
& \text {. } \\
& \begin{array}{l}
\text { To enable the student to drive safely and comfortably during } \\
\text { extremely hot or extremely cold weather. }
\end{array}
\end{aligned}
$$

$$
\begin{aligned}
& \begin{array}{l}
\text { To enable the student to negotiate toll plazas in a:safe and } \\
\text { expeditious manner. }
\end{array}
\end{aligned}
$$

$$
\begin{aligned}
& \begin{array}{l}
\text { To eniable the student to safely cross railroad crossings and to } \\
\text { respond to possible dangers at such crossings. }
\end{array} \\
& \begin{array}{l}
\text { To enable the student to drive safely in and around off-street areas } \\
\text { without impeding traffic flow. }
\end{array}
\end{aligned}
$$

$$
\begin{aligned}
& \begin{array}{l}
\text { To enable the student to turn around by means of a three-point turn, } \\
\text { or a two-point turn using a driveway. } \\
\text { To enable the student to approach and enter off-street areas in a }
\end{array} \\
& \text { To enable the student to perform a U-turn where legally permissible. }
\end{aligned}
$$

$$
\begin{aligned}
& \begin{array}{l}
\text { To enable the student to deal safely with roadway obstructions } \\
\text { and barricades. }
\end{array}
\end{aligned}
$$

$$
\begin{aligned}
& \begin{array}{l}
\text { To enable the student to drive safely on different types of road } \\
\text { surfaces; to enáble the student to adjust his driving according to }
\end{array} \\
& \text { To enable the student to select the appropriate lane for driving. }
\end{aligned}
$$

$$
\begin{aligned}
& \text { 场落 } \\
& \text { N } \\
& \text { กั } \\
& \begin{array}{l}
\text { に } \\
6 \\
0
\end{array} \\
& \begin{array}{l}
10 \\
10
\end{array} \\
& \begin{array}{l}
1 \\
\infty \\
\infty
\end{array} \\
& \begin{array}{ll}
\mapsto & \mapsto \\
\infty & \infty \\
\infty & \infty
\end{array} \\
& \underset{\infty}{\infty} \\
& \underset{\rightarrow}{n} \\
& \stackrel{1}{2} \\
& \begin{array}{l}
1 \\
\underset{\infty}{\infty} \\
\infty
\end{array}
\end{aligned}
$$

$\begin{array}{ll}\text { H } \\ \text { N } \\ \text { N } \\ \text { N }\end{array}$
$\begin{gathered}\mathrm{H} \\ \mathrm{NO} \\ \mathrm{N}\end{gathered}$
$\begin{array}{r}\mathrm{H} \\ \mathrm{O} \\ \hline\end{array}$
出

辰
＜

әәивидди！ен

붕
荡
su！peot
兆
 To educate the student on the post－accident responsibilities of
the driver．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．
 symptoms of malfunctions，and deficiencies noted during inspection
 accordance with the recommendations of the manufacturer．． To educate the student to have the car inspected and serviced in To through routine care and servicing．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．． conditions that－may affect driving ability and how to compensate for
such conditions．．． To enable the student－to become aware of physical and emotional

To educate the student on the effects that drugs and alcohol have on
driving safety and performance．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．
 To enable the student to attach a trailer to the car and load the To enable the student to load objects securely in the passenger area，
trunk，and on the roof．．． To educate the student in the planning and preparation which
precede．driving and in navigational activities．．．．．．．．．．．．．．． To involved when being pushed or pushing another vehicle．．．．．．．． To educate the student to remedy various on－road emergency
malfunctions．．． To enable the student to deal safeiy with breakdowns tha
disable the car while on the road．．．．．．．．．．．．．．．．．．．．．

PURPOSE: To enable the student to prepare the car and its occupants for a safe and comfortable trip.

KNOWLEDGES

The student must know the location, function, and operation of the controls and accessories and know the location, function, and interpretation of the gauges.

The accelerator, brake pedal, clutch pedal (manual transmission), and dimmer switch, all of which are on the floor.
The ignition, gearshift lever and gear positions, directional turn sighals, and steering wheel. Most of these controls are usually on the steering columr.
The parking brake, a handle or hándle-pedal combination located beneath the dashboard.
Light switches, the wipers, washers, temperature controls, radio, seat adjuster, head support, adjusting seat belt, and safety harness.
Śpeedometer, fuel gauge, temperature gauge, "ammeter, oil gauge, and odometer.

The student must know the procedures to be performed.routinely before driving the car and their relationship to the car, the field of vision available, and the safety of the occupants.

When the car is in a garage, the garage door must be opened before starting the engine to provide' the ventilation necessary for dispelling carbon monoxide fumes from the exhaust. Witho " ventilation, carbon monoxide may be lethal within minutes.

The maximum field of vision, optimally 360°, should be attained before driving the car, Such visibility is dependent upon cleạn windows and lights, a properly adjusted seat, properly adjusted'rearview and side mirrors, removal of loose items from the dashboard and rear window deck, and the seating of passengers outside the driver's line of sight.

Dirt on car lights weakens their illuminating power. Dirt on the wind: shield, inside or out, will intensify glare from the sun and from the headlights of oncoming vehicles. Dirty windows ànd lights have been mentioned as contributing causes in accidents.

Condensation should be removed with a cloth rather than a hand because a cloth will clear, the surface of moisture and dust whereas a bare hand will only smear the surface.
Snow should be brushed off the roof, hood; and trunk. Snow could slide down from the roof to cover the windshield or rearwindow when the car is in motion. Also, snow that blows off the car is a distraction to drivers following and may even create an additional hazard by blowing against their windshields and blocking vision.
Improper seat adjustment and the driver being too small for the vehicle being driven have been cited as contributing causes in some accident reports reviewed.

- The mirrors should be adjusted to give maximum coverage of the rear areas and so that the driver can use them by shifting his eyes, not his head or body.

Loose objects may.interfere with the driver's vision by blocking his view or by being reflected in the window. Their movement may distract the driver's attention or interfere with his operation of thescontrols.
Firmly clamped and properly adjusted head supports minimize whiplash by stopping the rearward motion of the head and snap.bock effect that cause injury. However, an improperly' adjusted head support may be more hazardous than none aţ all.
The driver's responsitilities include supervision of 'passenger loading to ensure that they are properly seated and secured.

The driver and efther one or tiwo passengers should be the maximum number of occupants in the front seat. The number depends on the type of vehicle and shquild not exceed the number of seat helts that are available. Some stateds prohibit more than three persons in the frort seat. In any case, the passengers must not interfere with the control of the car. Childen under ages threee or four should beseated and secured in special dévices such as car seats or car beds. Older children and adults should be seated with seat belts fastened and properly adjusted.
In most accidents it is safer to be held in the car than thrown out and r-safer to be held in one place than tossed about inside the car.

One study comparing accidents occurring with and without the use of seat belts indicated that seat belts may red:ıce injury occurrence - .by 60%.

Of persons injured in crashes, 75% sustain head injuries, with the order of vulnerability ibeing front seat passenger, driver, and rear seat passenger. The shouldel harness better prevents impact with the

- steering wheol, dashboard, and windshield. A projection of 8,000 to 10,000 lives saved each year- through the proper use of shoulder ${ }^{2}$ harnesses is based ont theigreatly increased probability of being killed on ejection from a car intan accident as opposed to remaining in the car. Yet only 4\%, of the people who have shoulder harnesses available wear them.
The seat belt-shoulder harness combination is more effective than the seat belt alone in minimizing injury in a head on collision.
Locked. doors are -more likely to remain closed durinǵ. a collision and thus reduce the chance of ejection. The most frequent and "most severe driver injuries are caused by ejection. Locked doors also provide protection against an intruder gaining entry to the car when ditiving in unprotected areas.

The student must be able to locate and operate the controls and accessories until he can do so without looking and with a degree of speed. He must develop a crude but necessary "feel" for the car (e.g., the pressure required to activate the brakes, the seat adjustment that suits him best, the most comfortable position of the right foot on the accelegtor, the location of the wiper control and the procedure for turning it on).

The student must be able to locate and read the gauges at alaince so that he will be able to give maximum attention to the roadway while keeping abreast of the car's operation.
$\vec{\alpha} \quad$ PURPOSE: To enable the student to start the car.
CATEGORY

KNOWLEDGES

The student must know the sequence of steps for starting the car, what to do if the car does not start immediately, be able to recognize any of the common causes for its failure to start, and know the limitations of the car when the engine is not warm.

Most cars have a five-position switch. The positions are, from left to right: "accessories," "locked," "off," "on," and "start." The student must know the location and function of each of these positions."
Turning off all accessories and lights prior to, starting the car reduces the electrical load on the battery and allows all available power to be applied to the ignition system for starting.
Depressing the clutch until the engine starts takes. Strain off the drive train, and prevents the car from lurching forward if the transmisision is not in the nequtral position.
A car with an automatic shift will start only in the park or neutral position. In neutral, transmission gears are disengaged and in park, the transmission is locked. The car cannot move under its own power with the; gearshift lever in either position.
Depressing the accelerator sets the choke in automatic choke cars. If it is properly adjusted for climatic conditions, pumping the accelerator is unneces- . sary. Pumping the accelerator can flood the angine and should be avoided if possible.
In very cold weather extra fuel may be required if the choke has been set for a much warmer temperature. If pumping the accelerator is necessary it should be pumped only once or twice.
In manual choke cars the choke should be pulled out farther than normal for easier starting in extremely cold weather.
After having started the car, it is a good driving practice to warm the exigine by driving slowly rather than allowing the engine to idle a few minutes.

Prolonged idling shọuld be avoided in cold weather because it keeps the choke.* closed longer.
When the engine is warm the heater and defroster will produce warm air.
Occasionally, the car will not start immediately. Causes for engine failure should be recơgnized and minor problems corrected.

The oil and generator lights could burn out leaving the driver without a true signal of oil pressure or generator operation.
The starter may" be damaged if it is engaged while the engine is running.

If the starter properly cranks the engine, but the engine will not start, one of the following may be the reason: Insufficient gasoline, flooded engine, vapor lock or frozen fuel line, improper choking, a wet ignition system, or more serious mechanical difficulties requiring a mechanic's services. When the starter makes no sound or turņs very slowly, the problem could be improper positioning of the gearshift lever, a battery without sufficient power or poor conhecTions at the battery cable, the weight of the engine oil is too heavy, or more serious mechanical difficulties.
The smell of gasoline indicates the engine is flooded. To correct the situation the accelerator should be depressed while the starter is turning the engine. This allows the correct mixture to enter the.engine while the over-rich mixtureescapes through the exhaust.

O .. PURPOSE: To enable the student to accelerate smoothly and safely from a standing position.

The student must know how to use the "gearshift when accelerating. .
The procedures àre somewhat more complex in the manual shift ear
In an automatic transmission car the student is required to "shift from the "neutral" or "park" position to the \&̈arive" position.
The location of the gearshift can valy in both automatic and manual shift cars. In either type, gearshifts can be located on the steering column or on the floor.

In ${ }^{-}$manual shift cars the number of gears, the function of each, and the shifting , pattern affect a driver's ability to shift smbothly.
The proper sequence for shifting gears contributes to a smooth gaịn in speed.
There are variations in thie shifting patterns of threefand four-speed transmissions. The student should know these variations.
The accelerator pedal controls the amount of the gasoline-air mixture that enters the engine and regulates car speed. If fuel is fed too late or afte, the friction point is•reached, the engine lacks sufficient speed and power to pull the car, 'which results' in a series of slow bumpy jerks. The engine may even stall.
Releasing the clutch slowly to the friction point in the manual shift car enhances smooth acceleration if the accelerator is depressed slightly at the same time.
While cars differ in the speed required before shifting to second gear, a speed of about eight miles per hour will be enough for the car to run on momentum when the clutch is disengaged and to permit smooth shifting.
A speed of 15 to 20 miles per hour is required to carry the car on momencum while the engine is disengaged and to keep the engine from laboring when it first moves the car in high gear. .
Since the car spends only a few seconds in first and second gears it is more conyenient to keep the left foot poised above, and not depressing, the clutch pedal until shifting is completed.
Once the car is in high gear, the left foot should be moved away from the clutch/to avoid "riding" it, which is damaging in high gear. "Riding the clutch" in other gears can be damaging also if it is done for a long period of gime.
When driving in a car with automatic transmission, the student should know the gear ratio range.

In general, the drive position provides an adequate range of gear ratios in most traffic situations.
Some of the more powerful cars have more than one drive setting.

- In some cars one of the drive positions provides a lower gear ratio for use in heavy traffic and for mountain driying, and". also provides fngine braking power on long step ciowngrades.
Depressing the brake before shifting into a drive position in an automatic shift car prevents the car from lurching.

The vehicle's acceleration capability is important.
Engine'power and gear selection aresmajor determinnants of this capability.
Other factors that affect acceleration are the traction of the drive wheels, the way the driver uses the accelerator pedal, and the driver's selection of the proper gear range.
While acceleration is affected by these factors, the rate of accelerațion itself affects gas consumption. The greater the rate of acceleration, the greater the amount of gas that is consumed.

SKILLS

To accelerate smoothly in a manual shift car, adriver must cooirdinate the release of the clutch pedal, to the friction point with his left foot with the depression of the accelerator slightly with his right foot.

Skitl in hand and foot coordination is.essential in order to shift gears noiselessly and. smoothly.

KNOWLEDGES
The student must know the procedures for.starting the car from a stationary position on a downgrade and on an upgrade. The roles of the brake and clutch take on greater significance when on a hill because of the tendency of the car to roll towards the bottom of the hill. The use of each is critical to the safety of the car. driver, other, vehicles, property, and pedestrians.

SKILLS
The student must be able to coordinate brake, clutch, and accelerator in starting.a manual shift car on, a hill. When driving a car with automatic transmission, the ability to release the brake and depress the accelerator properly must be developed. The procedure must be done in a manner that prevents the car from initially rolling backwards and at the same time effects a smooth forward movement.

knowledges

The student must $\cdot k n o w$ that even on a straight roadway the proper position of a car will not be maintained unless he is looking ahead, observing and recognizing movements away from the desired path, and continuously correcting any deviations from that path.

The importance of focusing well ahead is supported by accident data. Failure to focus well ahead to maintain the car within lane boundaries was noted as a principal cause in a number of the accident reports reviewed.
Keeping the eyes focused well ahead aids in the recognition of approaching hazards and helps the-driver in selecting a safe path.
Focusing ahead aids in steering the car smoothily.
Constant eye movement is also necessary. It not only prevents the fixed stare, but also enables the student to be continually aware of his relationship to the roadway.

When driving down a roadway, the driver, perceives the car's path angle, that is, the direction the car is moving, and observes the direction and velocity of surroundinj objects across the visual field; objects directly along the path angle do not appear to move.

When the path is not aligned with the roadway as identified by road edges, lane markings, and so forth, a steering correction is applied to make the.two coincide.
Individual preferences for steering cues such as lane markings and road edges exist. Some drivers use both of these cues, preferring one or the other at different times.

Steering techniques that will aid the student to drive safely are:
Placing the hands on the upper half of the steering wheel:
Allows large and rapid wheel displacements by keeping elbows free of the body.
Causes an automatic corrective steering input whenever the car accelerates .laterally.
, The 10 o'clock and $2 o^{\circ}$ clock hand position on the steering wheel permits maximum use of the top half of the wheel and maximum: application of strength to-offset wheel pull from blowouts.or soft shoulders. While the 10 and 2 o'clock position is basic, almost continuous hand movement is necessary to control the steering wheel.
Oversteering at high speeds was noted' as the cause in a moderately high percentage of the accident reports reviewed.

The greater the separation from oncoming traffic, the less likely is the occurrence of a head on collision if an oncoming vehicle enters the driver's lane.
When the lane is bordered on botr sides by objects the driver should keep close to the objects on the left side. Doing so puts the minimum clearance swhere the driver is able to assess clearance most accurately.

SKILLS

The student must develop the ability to waccurately perceive any lateral deviation from the desired path, and to make smopth steering corrections with a minimum amount, of reversals. He must be able to, scan off-road movements as a matter of habit while concentrating on the roadway, well ahead. Focusing about eight to 12 seconds ahead is necessary, in order to anticipate required steering corrections early enough to make them smoothly.

NORMATIVE INFORMATION

Drivers have a tendency to steer closer to the center of a two-lane road as speed increases. A difference of slightly over one foot existed between 25 and 60 miles per hour.

The minimum amount of deviation from a desired path that is detectable appears to be about $31 / 2$ inches. The average driver fluctuates about $11 / 2$ feet either side of his average position.

PURPOSE: To enable the student to make a safe, comfortable turn.

KNOWLEDGES

The student must know that he should signal his intention to turn to other drivers or pedestrians in the area.

Signalling is accomplished by lifting or depressing the directional turn- signal lever which is usually mounted on the left side of the steering column just below the steering wheel.
When the directiona! "signal is activated, the indicator lights on the panel flash on and off in unnison with' the external turn signal lights.
Most cars áre equipped with an automatic cancellation mechanism that will deactivate the turn signals after the turn is completed. However, frequently a turn is not sharp enough to activate the automatic cancellation device and the turn signals will keep blinking after the turn is completed. The driver should look at his panel atter completing the turn and if the signal remains activated, he should return the signal lever to the neutral position to deactivate the signal.

The driver should slow down to a safe speed before entering the turn, since an attempt to reduce speed in the turn may throw the car into a skid.

Even though he is turning, the driver should continue to look at least five seconds ahead, and preferably as much as eight to 12 seconds ahead.

The driver should remain as upright as possible since to do so improves his perception of the roadway and its rate of curvature.
The driver should avoid shifting gears while in a turn in order that rie may concentrate his attention on the turn, keep both hands on the steering wheel, and have his foot ready to brake if necessary.
,
The hand-over-hand technique allows the wheel to be turned quickly while maintaining strong positive control. One-hand turns are slower and tend to result in a wide turn. Reaching inside the wheel is an awkward practice and the hand will occasionally hit the horn ring or inside the steering wheel.

Both hands should be used to straighten the wheel upon completion of the turn. If the hand is taken off the wheel, the driver could lose control if the car strikes a rut, hole, or other object.

The student must be able to:
Perceive á disparity, between his intended path ánd the car's existing path angle. Judge the rate at which to turn his steering wheel in order to align his cat's path angle with the intended path at any particular rate of speed. This process continues throughout the turn. As the intended path assumes a straight line, the driver will have to turn his wheel back to the neutral position in order to achieve the desired path angle.
Judge the maximum speed at which he can make the necessary steering corrections without discomfort or placing the car in a skid.

Speed Control

:
4. for variations in traffic flow and legal speed limits.
criticality

VOWLEDGES

The student must know that speed may nat necessarily be the cause of many accidents but it is a complicating factor. High speed attends a disproportionately high percentage of accident casualties, aggravates crash severity, and is associated with increasing the fatality rate.

Speeding drivers were involved in over 26% of the accident reports recently rêviewed.
In one year, 39% of traffic fatalities were caused by exceeding the speed limit.
A recent survey showed that 15.9% of all accidents resulted from driving too fast. Earlier information indicates the driver was speeding in 39% of nonfatal accidents and in 49\% of fatal accidents.

A study done by the Bureau of Public Roads indicates the safest speed is usually the average speed of all vehicles on a particular stretch of road. The likelihood of a car being involved in an accident is directly related to its deviation from the average speed of travel, whether it is going faster or slower than other vehicles in traffic. .

High speed can be especially dangerous because of its effects upon the driver.
A. driver tends to adapt to high speed after 15 to 20 minutes and therefore underestimates his speed.
When he is required to reduce speed (e.g., when entering a speed zone or leaving a freeway), the result of his underestimation is to exceed the established limir.

Selecting the proper speed is the. primary implement in dealing with highway hazards.

With increases in speed, the time available for identifying, making decisions and carrying out those decisions decreases.
$\because \quad$ Speed adjustment and maintenance of a relatively constant speed are dependent upon road condition, rapid changes in weather conditions, the driver's condition, and the car's condition.

The driver who frequently drops down to 25 to 30 miles per hour for no reason and then accelerates to 45 to 50 miles per hour uses-more gasoline than one who drives steadily at 40 to 50 miles.per hour.
Mairltaining the speed of traffic flow prevents traffic bunching up behind the car, thes impeding traffic flow.
Objects, obstructions, and pedestrian or vehicle traffic on or near the

- intended path of the vehicle can create a hazardoús situation which the driver must reckon with by speed and/or direction/adjustment.

The driver's ability to judge speed without seeing the speedometer is dependent upon visual movement of objects across the retina, particularly in the periphery 1when looking ahead), kinesthetic perceptions (e.g., road vibration), and auditory perceptions (e.g., rushing air, tire hum, engine noise, and auto body noises).

NORMATIVE INFORMATION

Drivers appear to be capable of detècting speed changes of about 5 miles per hour and also average about a 5 mile-per-hour error in estimating speed. There is a tendency to underestimate at lower speeds or when attempting to slow down, and to overestimate when accelerating.

W PURPOSE: To enable the student, to downshift to maintain speed or reduce speed, before starting down a hill, in heavy, slow-moving traffic, or in emergency situations.

KNOWLEDGE
The student must know the importance of being able to downshift correctly, at the proper time.

Downshifting is practical when attempting to maintain or reduce speed when driving-downhill, in slow, heavy traffic, or in emergency situations. It is also appropriate when the engine is laboring.
Speed should be reduced to below 30 miles per hour when downshifting with automatic transmissions from the drive position to the next lower range.
Downshifting to second gear should be accomplished, before starting down a hill, and usually only when the carr speed is reduced to 15 or 20 miles per hour.
Downshifting to first gear should be avoided since in most cars first gear is not designed to mesh while the car is moving. Downshifting to first gear could damage the gears.
Downshifting should be avoided at high speeds because there is a greater tendency for the rear-wheels to slide if the surface is slippery. Downshifting is hard on the car at moderate speeds, and even harder at high speeds.

SKILLS

The student must develop coordination of use of the clutch, accelerator, and gear shift lever when downshifting in a manual shift car.

PURPOSE: To enable the student to come to normal safe stop on levelisk :
PURPOSE: To enable the student to
make required rapid stops
C̣RITICALITY

↔ KNOW゙LEDGES

The student must know the importance of proper braking technique in reducing accidents, increapsing comfort, and extending the service life of the brake's and tires.

Proper signals to following traffic must be given prior to brake application.
A hand signal should be given under the following conditions:
In bumper-to-bumpar traffic where taillights may not be observable or the attention arousal of a hand signal would be advantageous.
If the car's stop lights are inoperable.
Where a hand signal is required by law.
Tapping the brake lightly to flash the brake lights increases their attention arousal and is advantageous whenever a sudden stop is required.

Braking may be accomplished by using either the right or left foot. The right foot braking is the moré common method and is generally employed in instructing new drivers.

Left foot braking reduces slightly the time required to apply the brake. However, it also may result in (a) simultaneous application of brake and accelerator, (b) "riding" the brake thus causing the brake lights to go on and I creating ạdditional wear on brake linings.

Right foot braking separates accelerator and brake pedal application, reducing the chance that the two would be applied simultaṇeously in an emergency.

The student 'must know the distance required to come to a stop at various initia speeds.

Under the best of conditions, the following cistances apply:
Twenty mph-2 to 3 car lengths
Forty mph -7 to 9 car lengths
Sixty mph-15 to 17 car lengths
Stopping distances would be increased by any of the following: Worn tires
Worn brake linings or other brake deterioration
Slippery road surface
Down-hill grade
Power brakes require less effort but do not reduce stopping distance. They are potentially dangerous in that they may:

Create a false sense of security.
Cause over-application of brakes on wet or icy pavement.

The student 'must know the importance of proper braking procedure to safe, comfortable stops.

Applying the brake before depressing the clutch allows engine braking to augment that supplied by the brakes. ,
The clutch must be depressed before the car comes to a stop ir. order to, avoid stalling the engine.' .
Easing up on the brake pedal just before coming to a full stop avoids a jolting stop.
Stopping several yards behind the car ahead provides a safety margin in case the car is struck from the rear. On a hill it reduces the likelihood of being struck by the car ahead in the event it should roll backwards in attempting to start.
? Shifting. into neutral for a prolonged stop eliminates the chance of the car lurching forward should the foot slip off the clutch pedal.

The student must know not only the procedure for making a rapid stop but the potential 'hazard involved in braking sharply enough to lock the wheels and produce a skid (see "Skid Control").

SKILLS

The student must be able to:
Judge 'the appropriate point at which to initiate stopping so as to cume to a safe, smooth stop yet not delay traffic unnecessarily.
Make a normal siop by applying the brake sufficiently to produce maximum deceleration without discomfort, or excessive wear to tires or brake linings.
Make a rapid stop by applying brakes sufficiently to prôduce maximum deceleration without locking the wheels and putting the car in skid.
Make an emergenc: stop by rapidly pumping (slippery pavement) or "jabbing" (dry surface) the arake pedal (see "Skid Control").

NORMATIVE INFORMATION

A deceleration of .2 to .3 g appears to constitute a "normal" stop.
Left foot brake, application occurs about $1 / 5$ of a second faster than right foot brake application.
: P PURPOSE: To enable the student to back up safely and smoothly.

KNOWLEDGES

The student must know the proceduresp, laws, and precautions that pertain to backing up.

State regulations regarding backing.up on roadways vary. Gerierally, backing up is permitted as long as it does not interferf with other, traffic. One state prohibits all backing except to ledve a parked position.
All states prohibit backing on freéways.
In general, backing should be avoided when doing so would interfere with the flow of traffic.

Accident-data reveal that:
"x large percentage of chargeable accidents occur during backing movements.
A recent survey of accident reports has shown that a moderately high proportion of the accidents occurred while drivers were entering or leaving a parking space or travelling on parking lot. A majority of these accidents were attributed to a failure to check to the rear for parked or moving vehicles prior to backing out of a parking space.

In order to back safely, the student should know:
Blind spots exist to the rear of the car. Pedestrians are not used to cars
ingoving backwards and may fail to get out of the car's path.
Looking directly back through the rear window reduces the chances of hitting a pedestrian and of overlooking something coming from either - side.

Putting the head out the left side window gives a good view along the left side of the car, but renders the driver completely blind to anything directly behind.
Opening the door to look back is hazardous and may cause injury to driver or damage to the car.

- Grasping the steering wheel at the top gives the most control with the least amount of effort.
Steering corrections when backinǵg must be gradual and smooth to avoid possible loss of control of the car.
An̄ allowance for a'greater stopping distance when the car is in reverse - than when it is in drive is necessary because many car brakes are less efficient in stopping in reverse. Greater pressure on the brake pedal is also required. Generally, a slow speed while in reverse is preferred to prevent loss of control.

$$
\text { - } \because
$$

Holding the accelerator steady and controlling the reverse speed of the car with the clutch from the friction point avoids the tendency to feed gas too guickly. This method"also compensates for the error of releasing the accelerator too suddenly.

SKILLS
The student must be able to:
Decide upon a safe speed based upon traffic conditions, the presence of pedestrians to the rear, and the presence of objects to the rear when backing.
Coordinate steering and speed while looking to the rear by developing foot, hand, and eye coordination.
When driviing a car with a standard transmission develop the ability to control car speed in reverse by depressing and releasing the clutch pedal.
If driving a car with automatic transmission, ability to control speed by using the brake pedal must be developed.

PUURPOSE: To enable the student to prevent and stop a skid.

KNOWLEDGES
-The student must know the factors responsible for skidding, the methods that minimize the chances of going into a skid, and the corrective action to take if the car begins to skid.

The chances of skidding can be reduced if care is exercised when driving on roadways covered with snow, jice, oil, water, or other material that tends to reduce the'road surface friction. Curves and turns should be entered at a moderate rate of speed and decelezation should be gradual and smooth in order to minimize the chances of skidding.
In addition to driving carefully, car maintenance can play a role in avoiding or : minimizing the probability of skidding. Tread design variation in tires, unequal front wheel alignment, and bald or badly worn tires contribute to skidding.
Although precautions may be taken and preventive maintenance performed regularly, there is no guarantee that the driver will be able to avoid going into a skid. Consequently, it is important to know the procedures to be employed to regain control of the car. These procedures are shown in the performance objectives. When attempting to arrest a skid the brakes should not be applied immediately. Applying the brakes increases the probability of locking the wheels. If the front wheels are locked, steering control will be lost and the car will slide in a straight line regardless of the position of the wheels. Even if the wheels do not lock when the brakes are applied, the braking action will result in a weight transfer to the front end of the car concurrent with a weight reduction in the rear end. These weight changes increase the chances of spinning out.
Lifting, the foot off the accelerator suddenly can produce a similar effect to braking since when doing so, the braking power of the engine is suddenly applied.
In order to prevent skidding in the opposite direction during a skid the wheels should be straightened just before reaching the desired heading. The inability to countersteer was noted in a moderately high proportion of the accident reports that were reviewed.

SKILLS
In o:der to avoid a skid, the-driver must be able to adjust his braking and rate of turn to his initial spoed and road surface conditions isee "Stopping" and "Turning").

In order to control a skid, the driver must be able to execute the following series of ${ }^{*}$ responses with precise movement and timing-and yet essentially automatically owing to the speed with which they must occur and the stress under which they take place:

Avoid applying the brake at all until the car has assumed the intended path angle (i.e., while it is skidding sideways).
Trurn the steering wheel in the direction he wishes the car to go-the intended path angle.
Turn the wheel in the opposite direction just before the desired path angle is attained in order to stop the car's rotation and to prevent "overshoot" (continuing to rotate beyond desired path angle).
Return the wheel to the straight ahead position just as the desired path angle is attained.
~Make the above steering corrections no greater than is necessary in order to prevent large angular velocities (rate of rotation) causing total loss of control. Stopping the car or slowing to a controllable velocity by "pumping (slippery - surface) or stabbing (dry surface) the brakes once the car is on the desired path angle.
SteerIng around any obstacle limiting the rate of turn and brake application so as to avoid producing another skid.

PURPOSE: To enable the student to maintain a complete and accurate understanding of the . driving environment and to identify any critical changes that might affect his driving

1

PURPOSE: Tó enable the student to maintain a complete and accurate understanding of the driving environment and to identify any critical changes that might affect his driving (Continued).

CATEGORY	- CRITICALITY				
	.				
	. HIGH	$\begin{gathered} \text { MODERATELY } \\ \text { HIGH } \end{gathered}$	MODERATE	MODERATELY LOW	LOW
Traffic Controls		The student will observe all offi'cial road signs, which provide warnings, information, and regulations, and respond accordingly, for example, check that the car is moving within the posted speed limit. He will observe traffic lights well in advance to be prepared to respond as required.	In urban areas, the student will observe a string of traffic lights for several blocks. He will observe the pavement markings to note: - Whether the center line and lane lines are solid or broken because they control lane chañging and passing maneuvers. Arrows or wording desig: nating lane restrictions such as turning lanes, through traffic lanas, and slow traffic lanes, to make sure the car is positioned in the correct lante.		
Within The Car		When taiking io a passenger, the student will continue to look toward the roadway, not toward the passenger.	The student will react to anything within the car that could adversely affect his driving performance. For example, he will: - Ventilate, the car interior when heat or cigarette smoke, is excessive. - Avoid distractions from pas. senger conversation or activity. - Avoid engaging in conversation whell in traffic. . 1	The student will look at the instrument panel displays regularly to keep abreast of the car's operating status. In doing so, he will:" - Monitor the speedometer to determine the car's speed. - Observe the fuel gauge to determine the level of gasoline in the fuel tank. - Monitor the temperature gauge for signs of overheating. - Obiserve the oil pressure gauge for signs vof abnörmal pressure. - Observe the ammeter to determine whether the tattery is discharging or being charged. He will take note of any unusual performance in the car's operation as detected through hearing, seeing, smelling, or feeling.	He may adjust the temperature controll for comfort.

The student must know how to gather critical driving information.

- The driver who keeps abreast of the driving situation by continuous surveillañe of traffic, traffic controls, his car's operating status, and the surround: ing environment will be more likely to recognize hazards while there is still time to avoid them.
Failure to recognize hazards in time is the chief cause of accidents.
The driver receives the vast majority of the information he uses through his eyes. The eyes should be shifted frequently to avoid their freezing on one conflict while another is missed. In a moderately high number of accidént reports reviewed, the driver's attention was diverted to other aspects of the traffic scene just prior to the accident. Also, the more intently a driver fixes his central vision on a particular object, the.less aware he will be of sensations from his larger field of indirect vision.
A loud radio, inattention, and misinterpretation of traffic sounds have-caused drivers to react late to auditory clues of an impending crash. The National Safety Council reported 12,000 accidents involving emergency vehicles in 1968, the majority of which were due to the failure of drivers to hear the warning signals.
Every official traffic control device (sign, lane marking, light) has a particular meaning.
Recognition of abnormal car operation and, if possible, immediate correction of difficulties may kelp to avoid the inconveniarice of a breakdown or the risk of an accident.
Conversation or activity with or among passengers may be distracting and reduce the quality of the driving performance. Such distrations were cited as primary or contributing causes in over 6% of the accident reports reviewed. In a study of one-car accidents, 10% resulted from passenger distractions.

The studerit must:
Develop the visual surveillance habit of scanning 360° around-the car.
Develop coordination between control movements and eye movements.
4
Be able to use peripheral vision for-lateral control.
Develop the ability-to recognize hazards in time to avoid them.

NORMATIVE INFORMATION

Safe drivers tend to assure themselves of information 8 to 12 seconds. ahead. The smallest lead time experienced drivers tend to allow is $13 / 4$ seconds.

Even after several months, new drivers tend to spend more time monitoring the road straight 'ahead than experienced drivers.
os PURPOSE: To enable the student to drive safely in ah urban area and react appropriately to pedestrians and to other traffic.

kNOWLEDGE

The student must know the demands imposed on him when driving in urban areas. Visual demands on the driver appear to be about three times as much at 20 miles per hour in the; city at at 60 miles per hour on a modern divided. highway. The mere presence off pedestrians and children increases the surveillance requirements of the driver.
City driving requires about twice as many actions as driving on a four-lane highway.

The increase in demands placed upon the driver in the city is partially due to the greater concentration of other, vehicles.

Traffic controls and pedestrian traffic also contribute to making city driving a difficult task.
Accident fatalities and rear-end collisions can be expected to be high in the urban areas ts a result of the increase in pedestrian and r roṭor vehicle traffic. Urban. motor vehicle accidents produced 32% of all traffic fatalities in 1968.
Approximately 30% of urban accidents are rear-end collisions.
Special regulations many also exist in urban environments.
Traffic may be limited to one direction on certain streets.
Many cities have one-way streets to improve traffic flow.
Usually, traffic on adjacent parallel streets moves in opposite directions.
Lane restrictions and traffic flow may change during the'rush hours in the city. If unfamiliar with the city, the student must rely upon: signs and pavement marking in -order to attain such information.
Driving techniques in the city must differ from those on the open road, with the concentration of traffic in the city.

Matching speed to the progressive light system in the city permits travelling several blocks without stopping and enhances traffic flow.
Rapid acceleration followed by sudden stops should be avoided, since it invites rear-end collisions'and impedes traffic flow.
,

SKILLS

The student must have mastered the perceptual-motor skills involved in basic vehicle control (shifting, turning, stopping) to the level that allows them to occur automatically, allowing hindi to attend to the demands of traffic controls and route signs and other critical facets of the urbèn environment.
-

Highway Driving
in PURPOSE: To onable the student to drive in a safe, efficient, manner in open country and mountainous terrain.

KNOWLEDGES

The student must know the precedures for driving on open and rural highways as well as in mountainous terrain, for warding off the effects of monotonous driving., ${ }^{2}$ In scenic areas, "strict attention must be given to driving. Sightseeing should be avoided.
When driving in mountaincus terrain, steering' near the right edge of the roadway is advised because an oncoming vehicle may be blown into the car's lane by the wind. Being close to the right edge provides a margin of safety.
.Potential accident'situations have been identified:
The number of signalized intersections on a multilane highway contributes significantly to. an increase in accidents.
There is a positive relationship between the accident rate on freeways and the number of median openings, excluding intersections, on multilane highways.
Speed differentia! is à major factor in accidents on twolane rural roads. Both slow-moving and fast-moving,vehicles constitute a hazard. Some farm machiñes have colorea "slow moving yehicle" signs attached to the "back to warn cars overtaking them. .
$1 \div$
$\div . \quad$.
\& PURPOSE: Tó enable the student to safely enter, drive on, "and exit from a freeway.

кnowLégGes

The student must be aware of the potential hazards involved in high.speed freeway travel.

Although freeways are designed to permit safe high-speed travel, a variety of weather, roadway, traffic, and other conditions frequently necessitate a reduction of speed. Almost one-half of freeway accidents have been attributed to cars moving too fast for conditions.
Wet weather. Approximately 20% of freeway accidents occur on wet roadways. Crests and dips. 35% of freeway accidents occur on crests and dips; the rate of rear-end collisions at these points is approximately one-and-one-half times the rate on other sections.
Entrances and exits. Almost 20% of freeway accidents occurred in the vicinity of entrance and exit ramps.
Rush-hour traffic. Rush-hour traffic on urban expressways results in a relatively high accident rate. The highest rate occurs with outbound traffic because of drivers' late afternoon physical and mental fatigue.
Shoulders. Freeways without shoulders or with shoulders that are unpaved, narrow, or not flush with the roadway have somewhat higher accident rates than freeways with adequate shoulders.
Lane variation. Freeways with lanes varying in number or width are more likely to produce acidents than those that are uniform.
Because of the high rate of travel and the suddenness with which traffic conditions ciange, the driver must maintain large following distances and be particularly alert to changes in traffic.

Approximately one-half of freeway accidents are rear-end collisions.
Approximately one-fourth of urban expressway accidents result. from improper lane changes, that is, "cutting in".
A substantial ${ }_{6}$ number of freeway, accidents occur when the driver's attention is momentarily distracted.
Because of the high rate of speed that prevails on a freeway, a driver who is operating more than 15 miles under the posted speed limit risks causing an accident.

The driver should be sure his car is in good operating condition before entering a freeway.
A large number of accidents are caused by drivers stoppifíg or backing up on a freeway. .
A driver who moves to the middle or left-hand lane when approaching an interchange not only facilitates the safe exit and entry of other cars, but reduces the likelihood that he will have to slow down and thus risk being struck from the rear.

SKILLS

When travelling at high speeds the results of steering wheel motions are greatly magnified. The driver, therefore,' must master low-speed and high-speed steering.

4

Car Following
PURPOSE: To enable the student to maintain an adequate separation between the car and the vehicle ahead.

CATEGORY	CRITICALITY			\cdots	
	HIGH - Under normal driving conditions, the student will maintain at least a two-second separation from the vehicie ahead to allow for stopping the car with adequate space between it and the vehicle.				Low
		MODODERATELY HIGH			
Normal Driving		$4{ }^{\text {a }}$	- .		
Increasing Separation	The student will increase the following distance (or time) when driving: - On icy or wet roadways. - Under poor visibility conditions.	The student will increase the separation distance: - When behind any of the following vehicles: - Oversize vehicles that obscure forward visibility. - - Vehicles that stop frequently, such as transit and school buses, post office and, delivery trucks. - Motorcycles and bicycles.' - Erratically driven vehicles. - During'conditions of darkness. - At locations where traffic intersects, merges, or diverges. - Where the road ahead is not visible, such as near crests and sags.	The student will increase the distance from lead vehicles that are carrying protruding loads.	-	
Adjusting Speed	The student will watch for indications of reduced speed by the vehicle ahead, to include: - More rapid closure of the car on the vehicle. - Hand signals from the vehicle's driver. - Activation of the veliicle's brake lights or turn signals.	The student will adjust the car's speed to changes in the speed of the vehicle ahead. - If the vehicle ahead slows down he will remove his fotot from the accelerator to re"duce the car's speed. - If the vehicle stops, he vill apply the brakes quickly enough to stop u!alle leaving sufficient space ahead to permit driving around the other vehicfe without backing up first. - If the velicle turns, he will: - O Observe the path of the vehicle to see if the turn can be completed safely. - Prepare to stop quickly if the vehicle aborts the turn or is forced to stop before completing the turn.	He will observe vehicies beyond the one directly in front to detect early traffic situations that will cause a change in speed. If the vehicle ahead slows down, the student will tap the brakes lightly to warn following traffic, and then slow down.	2	-

KNOWLEDG̣ES.

The student ،nust know that appropriate and stable following distances maintain safe traffic flow, and certain conditions call for a greater than normal following distance.

Following another vehicle requires a spatial interval of sufficient size for the driver to adjust to unexpëcted moves by the vehicle ahead or to fluctuations ' n the traffic ahead without being forced into sudden swerves or stops.
One rule that can be used to maintain a safe following distance is to keep a distance between vehicles that is travelled in at least two seconds.
The two-secund separation time interval can be estimated by using the procedure described in thê performance section. A traditional rule of thumb has been one car length for every 10 miles per hour of speed.
Some circumstances call for greater 'following distances.
When increasing speed; As speed increases so does the distance required to come to a stop. To allow for the greater stopping distance, a greater headway between the car and vehicle ahead is needed.
When driving orr wet or icy roads, which also increases the stopping distance.
When driving at night or during weather conditious that adversely affect the driver's ability to see roadway and traffic conditions ahead. Vehicles may decelerate sharply during poor visibility. A greatèr following distance is required to allow a safety cushion for responding to sudden actions by' the vehicle(s) ahead.
When fatigued. This causes a person to respond to situations more slowly than when he is fresh. The longer the driver takes to react, the more distance is required to stop the car. To accommodate this poorer perfomance, the driver allows a greater headway from the vehicle in front.
When following emergency vehicles. Most states require a separation of at least 500 feet from emergency vehicles.
When following dual-wheeled vehicles, which may cause damage to the car by the thrust of debris thrown from between the wheels. Also the vehicle's largen size tends to block the view ahead if followed closely.
${ }^{*}$ Following two-wheeler; vehicles that can stop within shorter distances. than cars for a given speed because of their lighter weight.
Unstable spacing between vehicles adversely affects the flow of following traffic.
. Following too closely is a.significant factor in accidents. For example:
Accordinn to Accident Facts for 1969, 11.3\% of all accidents were caused by following too closely.

Driver-failure to maintain an appropriate interval while following a lead vehicle in "traffic was a significant factor in rear-end collisions in a moderately high percentage of accident reports reviewed.
About 30% of city accidents are rear-end collisions. In one year nearly 2,400 involved fatalities.
Rear-end accidents accounted for 70% of all accidents that occurred on freeway crests and dips. Following too closely was cited as the cause of 44% of the rear-end accidents. The visibility distance requirement on freeway crests and sags is greater than the criterion for stopping sight distance on' two-lane roads.

SKILLS

The student must be able to attain and maintain an appropriate and stable interval between the car and the vehicle ahead. To do so he will have to perceive changes in the separation distance or apparent vehicle size, depending upon the distance involved, and adjust the car speed to changes in the lead vehicle's speed.

NORMATIVE IŃNORMATIÓN

Drivers" seem to underestimate distance in feet by 3:) to 40%, on the average, at highway speeds. In one study, drivers, on the average, were 20% off in attempting to maintain an 80 -foot following distance at 45 miles per hour.

At distances over 100 feet and less than ${ }^{\circ} 50$ feet, drivers respond to absolute distance as perceived through the size of the vehicle ahead. If the apparent size is too large, the distance is too close.

At distances between 50 and 100 feet, the primary cue is relative speed as perceived through changes in the lead vehicle's size. At short distances drivers are, unable to detect small changes in the relative velocity of the vehicle ahead.

PURPOSE: To enable the student to make sound passing decisions and to complete passes safely without interference to other road users.

pleted within the available passing

If he has any doubt about the possinot initiate the pass.

If considering a pass when approaching oncoming traftic, he will pass the maneuver can be comwith an adequate safety margin for returning to the driving lane. student may pass on the right of for a left turn.

On four-lane roads, ent may pass moving traffic on the right if it is necessary and legal within

- On roadways with six or more on the left.
other trafic, particularily that approaching the car from the rear.
- Mainain the proper following distance prior to the change in lanes.
*

PURPOSE: To enable the student to make sound passing decisions and to complete passes safely without interference to other road users (Continued).

The student must know the factors that permit him to make a sound passing decision, and complete a pass safely

Obedience to signs, lane markings, and other passing limitations is a lega - requirement in most states.

Passing is prohibited when approaching or at intersections, also on hills, on curves, and in the presence of other roadway features that limit sight distance and hold the possibility of unexpected maneuvers.
The student should not pass when a pedestrian is on either the edge or the shoulder of a two- or three-lane road.
Given the accelerative capability of most cars, approximately 9 to 10 seconds is the average amount of time required to pass a moving vehicle at normal highway speeds. Six seconds would constitute a risky minimum time. Rarely should a pass take more than 15 seconds. Acceleration capability decreases as speed increases, but the degree of decrement varies among car. types.
Doubt.increases decision time and diminishes the time available to pass. One researcher found that drivers required increasingly more time as the interval between an oncoming vehicle and the car decreased. With any doubts, a pass should not be tried.
Passing behind another vehicle on a two or three-lane road puts the driver at the mercy of the driver ahead to leave sufficient time. apd room for the car to reenter the driving lane before meeting oncoming traffic.
Extra caution is necessary when passing on the right because drivers do not expect to be passed on that side. Also, they have more difficulty in detecting vehicles passing on their right and they may enter the right lane without warning. Typicaliy, the horn should not be blown when passing on the right because the driver ahead may suddenly move to the right upon hearing the horn.
Early signalling of intention to pass reduces the chance of a following vehicle pulling out to pass 'as the car begins its pass.
Maintaining "proper" following distance prior to changing lanes permits: Checking the clearance ahead.
Acceleration in the right lane before passing.
Deceleration and reentry to the right lane if necessary. Indeperident studies of accidents and near accidents among professional drivers at tributed these situations largely to following too closely-before changing lanes to pass.
The blind spot at the left side of the lead vehicle is located at the 7 to 8 o'clock position.
A large number of accidents occur and many errors are commited during passes.

Reasons given for passing accidents include (a) the drivers' disregard of roadway limitations, (b) failure to note an oncoming vehicle or misjudgment of the distance to or speed of an oncoming vehicle, (c) failure to note the lead vehicle signalling or in the process of changing lanes, and (d) swerving sharply in front of the passed vehicle.
About 3\% of freeway accidents occur while passing.

SKILLS

The student must be able to decide whether passing the lead vehicle is legal, safe, and worthwhile. To do so, he must:

Judge the ávailable passing time or distance.
When there is no oncoming traffic the time judgment is based upon the distance available, that is, the distance between the car and the end of a passing zone, a curve, a hill, or some other limiting circumstance.
When there is an oncoming vehicle, the judgment is based upon available distance, and the estimate of the speed of the oncoming vehicle. While drivers are accurate judges of distance, they cannot estimate well the speped of an oncoming car; they tend to underestimate if it is travelling fast and overestimate if it is travelling slowly. The driver needs to compensate for his error by ahowing additional passing distance in the face of other cars.

- Judge the amount of time or distance it will require to pass the lead vehicle. When the driver is following the lead vehicle, he must be able to judge the accelerative capacity of his car at the speed he is travelling, under, the load and operating conditions.
When the driver is approaching the lead car, he must be able to judge the rate differential (closing gap) between himself and the lead vehicle.
He must be able to assess the gap ahead of the lead vehicle.
The skilled driver does not make a series of individual judgments, but rather combines the cues of speed and distance into an overall perception of a safe or unsafe pass. He must continue to observe cues and allow his perception of passing safety to determine whether he completes or aborts a pass once it is initiated.

PURPOSE: To enable the student to enter traffic without interfering with other vehicles.

KNOWLEDGES

The"student must know the procedures for entering traffic safely and with minimal , interruption of traffic flow.

Failure to check traffic before leaving a stopped or parked position is a common cause of accidents and a frequent error of drivers taking road tests.
The maneuver is complete only after the car has matched the speed of the traffic flow. :
Moving slower than the traffic may force other drivers to slow down and interrupts traffic flow.

skILLS

The student must be able to assess the suitability of a gap required for entering traffic. He must also be able to judge the speed of the rear-approaching traffic in order to time his move into the gap.

PURPOSE: To enable the student to leave the line of traffic with minimal interference to the vehicles behind and to the side of the car.

KNOWLEDGES
The student must know the procedures for leaving the line of traffic with minimal hindrance to the flow, risk of collision with another vehicle, or risk of a one.car accident, and the reasons behind using correct procedures.

Soft and/or narrow shoulders are not suitable areás for śtöpping the car.
Soft shoulders and medians should not be driven upon because they could cause the car to skid, or even to turn over. Road signs are usually erected to warn drivers of soft shoulders.

- A car should be driven entirely off the travelled portion of the roadway onto a shoulder or median. A car that is partially on the roadway is an obstruction to traffic and is in danger of being hit by a vehicle moving in the near lane.
Communicating to, other drivers the intention to leave the roadway well before doing so will reduce the chance of being hit from, behind wher slowing down.
- Cheçking the speedometer upon decelerating after a period of sustained high. . speed driving is necessary because drivers tend to feel they are moving slower than they really are. If the speed is too high, the driver could lose-control af er driving onto the shoulder or collide with anvehicle parked.at the side of the road.

SKILLS

The student should be able to recognize the physical appearance of shoulders and judge whether the shoulder is wide enough for the car to pull completely onto it.
$\therefore \therefore^{*}$ He should also be able to judge whèther the place selected for stopping can be seen at a-safe distance by vehicles approaching from both the front and the rear.
in PURPOSE: To enable the student to change lanes safely and without obstructing the flow of traffic.

CATEGORY ${ }^{\prime}$		- CRITICALITY			,	
		HIGH	MODERATELY HIGH		MODERATELY LOW	LOW
-	Deciding to Change Lanes	When considering changing lanes, the student will look at the rearview and side mirrors to observe: - Vehicles passing in the new lane. - Vehicles in the new larie that'are closing rapidly from the rear.	The student will observe the pavement markings to determine whether changing lanes is legally permissible. Before changing lanes, he will: - Glance at the rearview mirror to see if any vehicle following the car is about to enter the new lane. - Check for a vehicle that is moving in the blind spot. In doing so he will: - Look out. the window with his head turned enough to see around the blind spoi. - - Vary the car's speed very slightly to help bring into view a vehicle that is in the blind spot and traveling at exactly the same speed as the car. -On multilane roads, look for vehicles about to enter the new lane from the far adjacent lane.	When considering a lane change, the student will' look well in advance for regulatory signs that prolibit the maneuver.	. 7	ת
	Preparing to Change Lanes	\because	The student will signal his intention to change lanes by using the turn signal and/or the appropriate hand signal. Just before changing lanes, he will accelerate if thera is sufficient space ahead to do so. If not, he will maintain his speed.	1		'
\cdots	Changing Lanes			After signalling, the student will wait a few seconds, if possible, before beginning to change lanes. He will turn the stecring wheel sufficiently To enter the new lane smoothly but without delay or straddling the line.	\cdots	\cdots

KNOWLEDGES
Legal and safe lane thanging is dependent upon the following:
Observance of the signs and lane markings that govern lane changing. Solid lines mean that the car may not change lanes, broken lines that it may. When there are a solid line and a broken line together, the car may change lanes only when the broken line is nearer the car.

Consideration of the effect of the lane change on safety and traffic flow.
Proper signalling of the intention to change lanes.
While lane changing is a commion maneuver, drivers frequently commit errors in performing it. Among the more frequently cited errors are:

Changing lanes without signalling. In one study, 80% of the drivers changed lanes without signalling. Only $\mathbf{2 5 \%}$ of the drivers on a freeway signalled a lane change even though they knew they were being observed.
Failure to stay in the proper lane.
Remaining in the lane when a change is appropriate (e.g., holding in the passing lane even though the right lane is open and the car's speed is slower than the speed of the left-lane traffic).
Failure to check for rear-approaching traffic in the new lane prior to initiating lane change. This. error has been mentioned' as a cause of accidents. For example, on six-lane divided highways, about 5% of the accidents are caused by cars pulling out in front of a passing vehicle.

SKILLS

The student must be able to jydge:
If the closing rate and distance of following vehicles in 'other lanes and the traffic flow will give the studentr a safe opportunity to change lanes.
The speed and distance of leading vehicles must be similarly gauged. Speed changes must be estimated quickly if changing into the lane is to be done safely.
Before changing lanes, the student must be able to:
Keep traffic to his front, side, and rear under constant surveillance and. simultaneously steer the car within its lane.
Accomplish the change in a smooth continuous moverment with very slight steering corrections and accelerator reversals.

PURPOSE: To enable the student to park the car safely and legally, and to exit from the car, with minimal interference with other vehicular or pedestrian traffic.

			CRIT LITY		
CATEGORY	HIGH	MODERATELY HIGH	MODERATE	MÓDERATELY. LOW	LOW
Seeking Space and Determining Suitability	-	The student will not double park, that is, park on the roadway side of any vehicle parked or standing at the edge of the street or curb.	When looking for a parking space, the student will maintain a speed that is close to the posted speed. Before decelerating to inspect thesuitability of a parking space, he will signal his intention to slow down or stop to the vehicles behind him. He will pause briefly to inspect the space to minimize the hindrance to following traffic. When a parking space is adjacent to or opposite a street excavation, he will make sure the car would not impede the traffic flow if parked in. this space.	In determining the suitability of. a parallel parking space, the student will drive alongside to see if the space exceeds one and one-half car lengths. The student will look for signs and curb or pavement markings to determine whether parking is allowed.	The student will.not park in a space where the car would overlap a driveway, except momentarily, to discharge or pick up passengers.
Paratlel Parking		Before attempting to parallel park, the student will signal following traffic to pass if the roadway width pernits.	When entering a paralle! parking space the student will back the car slowly, while turning the steering. wheel sharply to the right.	When preparing to parallel park the student will position the car alongside and about wo leet from the vehicle parked in front of thes space to be occupied. To back into a parallel parking space he will: - Look over his right shoulder and out the back window. - Back slowly while turning the steering wheel sharply to the right. - Straighten the steering wheel when the back of the front seat is in line with the rear of the vehicle parked to the front of the space. - Look to the front to ensure the car will clear the parked vehicle, and then look to the rear again.	\%

(n) PURPOSE; JTo enable the student to park the car safely and legally, and to exit from the car, with. minimal interference with other. vehicular or' pedes̄trian. traffic (Continued).

The student must know the procedures for entering a parking space with the least amount of maneuvering, the laws that govern parking, and the possible impact on traffic flow of a car being parked.

Parking restrictions associated ${ }_{\text {with }}$ wheadside traffic controls, crosswalks at intersections, safety zones, ${ }^{*}$ fire hydrants and fire houses, and railroad tracks are generally the same in most states. However, knowledge of the local requirements is imperative.

Specifically, the car will not be parked:

$$
\text { Within } 30 \text { feet of a traffic light or sign located at roadside. }
$$

Within 20 feet of a crosswalk at àn intersection, except momentarily to discharge or pick up passengers. With this margin of clear space, right-turning vehicles can turn into the lane closest to the curb.
Between a safety zone ánd the adjacent curb or within 30 feet of the rear side of a safety zone, except to avoid a traffic conflict. Safety zones are meant for exclusive use of pedestrians.
Within 15 feet of a fire hydrant.
Within 20 feet of a fire station entrance or within 75 feet across from a fire station entrance, except momentarily to discharge or pick up passengers.
Within 50 feet of the nearest railroad track.
Z"No Parking" zones frequently are marked by curbs painted yellow.
In many communities, illegally parked cars are towed away by the police at the driver's expense. A tine is also imposed.
In addition to the traffic delay created by a car being parked, the sudden interruption of the traffic flow increases the likelihood of a rear-end collision. By "creeping" into a parking space the student will gain more time.for turning the steering wheel and for checking the car's position as it enters the parking space.
Parking on hills necessitates special actions to offset the effects of gravity.
By applying the parking brake before shifting to the park position, the load on the transmission and parking mechanism can be reduced. This sequence is the reverse of the procedure used on level roadways. Movement of the gearshift lever from the park position when'leaving the parking space will be easier if the "apply brake-shift to park" sequence is followed. Also, shifting to park or reverse is imperative on hills to keep the car from coasting.

Leaving on electrically operated controls and accessories, sucb as the lights and the radio, without the engine running will drain the battery if continued for an extended period. There is a tendency to leave headlights on when parking in a brightly lit area (shopping center, garage) or when driving with lights on in the - daytime (fog, rain).

The hazards of getting out of a car on the street side have prompted some states to forbid the jpening of car doors on that side.
Securing the car (closing windows, removing, ignition key, and loçking all doors) before leaving it will greatly reduce the chance of its being stolen. About 80% of stolen cars are parked with the doors ùnlocked. The chance of stolen ecars being involved in accidents is 200 times greater than for ownerdriven cars.

SKILLS

The student must:
Be able to perceive that' the size of a parking space is sufficient to accom. modate the car.
In the absence of signs and curb markings às guides, estimate the appropriate parking distances from "no parking" zones.
Develop the perceptual-motor coordination required to back the car slowly into a parking space while looking out the back window. The skill includes controlling speed with the clutch. (manual transmission) or the brake (automatic transmission), rather than the accelerator.
)

PURPOSE: To enable the student to leave a parking space safely without obstructing other vehicular or pedestrian traffic. .

The student must know tis importance of checking traffic and clearly communicating his intention to leave a parking space.

In one study, failure to check traffic conditions was an error committed by over 8% of the drivers taking road tests.
Failure to observe or signal before moving ranked thirteenth among all errors committed by drivers taking road tests in another study.
Activation of turn signal is not enough. A signal must be followed up with a visual check to confirm : he signal has been detected by other drivers. Sometimes an arm signa. .dy be more visible to other drivers than the mechanical turn signals.
Of all urban accidents, nearly 4% happen to vehicles leaving parking spaces, alleys, or driveways.
A check of the traffic in the opposing lane is necessary because the car may swing partially into that lane when leaving (or entering) the parking space.

Assurance of the car's clearance from other parked vehicles would prevent many accidents that cause minor damage such as dents in feniders and scrapes from sideswiping.

SKILLS

The student must be able to leave a tight parallel space in the fewest movements by the integration of very slow movements with shärp turning (i.e., slow backing, turning shafply toward the curb followed by slow forward movement with sharp turning toward the roadway).
,
Pedestrians, $\stackrel{\text { Cyclists, and Animals }}{ }$
PURPOSE: To enable the student to respond with safe and cautious actions when ençountering pedestrians, cyclists, and'animals.

CATEGORY	CRITICALITY				
	HIGH	MODERATELY HIGH	moderaté	MODERATELY LOW	LOW
Pedestrians	The student will yield the right-ofway to pedestrians at all times. He will watch children playing and other distracted pedestrians for indications that they are about to enter the roadway.	The student will look for padestrians near intersections, crosswalks, and school crossings. He will watch pedestrians for indications of their , tering the roadway noting particulady children, pedestrians who are running, and those who appear to be under the influence of alcohol. He will watch pedestrians standing on the-roadway who may make sudden movements to avoid traffic. When pedestrians alongside the roadway reduce the lane clearance, he will delay passing the vehicle ahead until both the car and the vehicle are beyond the pedestrians. During inclement weather, the student will 'watch for pedestrians whose visibility may be obscured by umbrellas, rain hats, or other apparel.	When passing pedestrians, the student will' provide maximum lateral clear: ance, using passing lanes if posssible. When the car is stopped at an inter." section where pedestrians carrying large or heavy objects:are waiting to cross, he will remain stopped to allow the pedestrians to cross. The student will drive through puddles slowly to avoid splashing pedestrians.		
Animals		If an animal enters the roadway, the student will: - Prepare to stop or to. swerve if traffic permits. - Hit the animal if swerving would jeopardize his own safety and that of his passengers, other motorists, or pedestrians.	\cdots	The student will watch out for animals in the roadway and pass them carefully. In doing so he will: - Slow down when entering animal crossing zones or when noting animals on or alongside the roadways. - Maintain a slow speed when overtaking and passing animals. - Resume normal speed after. passing the animals and beyond their range.	"

The student must know the importance of being alert for pedestrians approaching the roadway and of not depending upon pedestrians to pay attention to signals and rules.

Unsafe behaviors on the part of pedestrians are responsible for most of the - accidents in which they are involved.

A recent accident report showed that 17% of all- fatal accidents involved pedestrians. Most pedestrians killed by automobiles were never licensed to drived or didn't underst:2nd traffic problems.
Three-fourths of pedestrian fatalities occur when the pedestrian enters or crosses the roadway.
Crostsing between intersections is the greatest single pedestrian action associated 6 with pedestrian deaths and injuries, accounting for about 41% of the deaths and 24\% of the injuries.
\geqslant At intersections with signals, pedestrians starting across late may be trapped by à light change. The driver must appreciate the need to look for and yield to anyone crossing the intersection before he proceeds. In many states, vehicles have the legal right-of-way over pedestrians crossing at mid-block. However, the safe driver knows better than to demand the legal right-of-way. The right-of-* way must alweys be given to the driver; it cannot be taken.
Drivers must be particularly cautious when approaching pedestrians near drinking establishments, late at night when excessive drinking most often occurs, and when a pedestrian is obviously impaired by drinking.

- Statistics show that one of every four pedestrians killed in a motor vehicle : accident had been drinking.

On city streets, about one.half of those killed had drunk enough to impair their mobility.
While sharp swerving to miss a persòn or an animal in the roadway may possibly cause loss of car control or a collision with other vehicles, the student must know the advantage of evasive steering over panic braking when con* fronted with la pedestridn in the car's path.
'In a test of drive: reactions to a dummy pedestrian suddenly stepping into the path of the car, 27 of 33 drivers made a panic brake stop and hit the dummy headon.although the test was designed-so that evasive steering around the dummy was easily popsible.

\checkmark

SKilles

The student must be able to react extremely quickly yet corrẹtly to pedestrians or arimals who enter or approach the path of the car. -

PURPOSE: To enable the student to drive safely through or by an attended emergency area, or to provide
necessary assistance when he is the first to reach a severe accident.

The student should know the importance of being alert and keeping up the pace of movement through an attended accident or emergency scene.

An already poor traffic situation frequently becomes more difficult when drivers slow down to view an emergency area.

- Drivers who slow down unnecessarily increase the possibility of being hit from the rear and creating a multiple-car accident.
Driving in accident and emergency operation areas increases thè possibility of additional accidents because of the irregular movement of traffic.

When the car is the first to reach an accident after it occurs, the student must know that he has a moral, if not legal, responsibility to stop when it is apparent that assistance is needed.

PURPOSE: To enable the student to drive safely alongside parked and parking vehicles.

KNOWLEDGES •

The student must know the primary sources of potential trouble, and their cues, to be prepared for südden actions bȳ othērs.

Driving alongside pafked yehicles is potentially, hazardous because the driver's view is limited and hazards can appear when there is little time or space for* evasive action.
Three key sources of hazards are:
The spaces between parked vehicies through which pedestrians and - animals may dart into the street.

The parked vehicle that may suddenly move into the car's path. . .
Occupants of parked velicicles who may open the vehicle do.res to ğgt out r four. feet out from the parked vehicle will place it beyond the arco of a door 'being opened.
,
Usually, there are cues from parked :ehicles of impending entry into a driving, lane. Among the cues the student will find useful are:
${ }^{-}$Exhaust fumes. These indicate ${ }^{-}$the engine is running.
Back-up lights. For these lights to be activated, the ignition must be on and the gearshift lever in reverse. The appearance of back-up lights is often followed by a shift to a forward gear.
Brake lights. Moṣt drivers depress, the brake pedal, thus activating the brake lights, just prior to shifting to a forward gear.
Front wheels. The direction toward which the front wheels are pointed * may indicate whether the :vehicle is. ready to leave the space or still maneuvering-into a good position for leaving.
"Steering wheel. The steering wheels of yehicles pearked to the right of the - car can be seen from some distance. If a steering wheel is not visible, it may mean the driver is behind the wheel.
A separation of at least a car width from a vehicle that is being parallel parked is recommended to bccommodate the wide leftward swing of the vehicle's front end as it backs to the right.

SKILLS
Skill must be developed in-using peripheral and central vision to accomplish the finer steering control required to keep the car within its lane while maintaining a safe distance from the parked vehicles.

PURPOSE: To enable the student to accommodate a passing 1 :2aicle by adjusting the car's speed and/or ${ }^{\circ}$
position as necessary for the other vehicle to complete the pass quickly.
CATEGORY:

nowledges

The student should know that he has an active, not passive, role when being passed and must continunusly assess the chances for the pass to be safely completed within
 accommodate the pessing vehicle.

Leaving the roadviay by choice to permit the vehicle to reenter the driving lane is preferable to being forced off the road by the passing vehicle a short time later or to forcing a head-on collision between the passing vehicle and an oncoming vehicle.
Knowing that an illegal pass. is usually a dangerous pass, the student should be particularly watchful when a vehicle is, passing illegally, so that he may, if necessary, avoid a collision.

SKILLS

The student must be able to judge the ability of a vehicle safely completing a pass; of the car, using essentially the same cues as involved in passing another vehicle.
-

$$
4
$$

The student must be able to survey the situation rapidly and select the course of action that best suits the successful termination of the passing maneuver. He must be able to detect the actions of the passing vehicle in order to complement them.
: PURPOSE: To enable the student to drive ahead of other vehicles with a minimurn risk of rear-end collision.

CATEGORY	Criticality			
		MODERATE	$\begin{gathered} \text { MODERATELY } \\ \text { LOW } \end{gathered}$	LOW
Signalling	The student will signa s intended maneavers to the following vehicle driver. tn doing so, he will: - Use the directional lights and/or arm signals well in advance; to indicate a change in lane or direction. - Use the brake lights and arm siǵnal to indicate slowing and stópping - Use arm signals, in addition to directional or brake lights, when ćriving into bright sun glare.		$\cdots{ }_{2} \cdot$	\cdots
Observing Following Traffic	The student-will glance at the rearview mirror frequently to assess the traffic situation behind, with particular attention to the vehicle immediately following. He will: - Note the rate at which i'te vehicle is overtaking.his car. - Watch for the yehicle's directional signals as an indication it will pass his car. - When tailgated, gradually slow down to allow the yehicle to pass or to force it to follow at a safer speed. If in the passing lane, he will remain calm and will returin to the right lane at the first safe opportunity. - When the following vehicle is moving erratically, guide the car to the right, slow down, and, if necessary, drive onto the shoulder to permit the vehicle to pass.	$-\infty$	$=$	$=$ \cdots • •
Stopping	When the car is stopped, the student will look to see whether the following:vehicle has siopped or will be able to stop in time to avoid hitting the car. If a collision appears likely, he will: - Warn the passengers of the impending crash. - Remove his foot from the brake pedal. - Lower his body to the right so that his head and neck will be supported by the seat back.	The student will observe the roadway and traffic ahead to anticipate the need to stop. When stopping is required, he will slow down early and gradually rather than jam on, the brakes and risk-a rear-end collision.	\cdots	\cdots

KNOWLEDGES

The driver must know the actions to be taken to avoid conflict with vehicles following the car.

- The smooth flow of following traffic is dependẹnt upon the driver of each vehicle maintaining:
"The same speed as the traffic ahead of him.
A stable and adequate headway from the vehicle ahead. A slow-moving car or one whose headway varies will impede the flow of traffic following it. Slow-moving"cars also provoke following drivers to attempt hazardous maneuvers, such as risky and illegal passes.
Frequent robservations of the vehicle behind enable the driver to determine the rate at which the vehicle is overtaking the car. The spacing between the car and the vehicle will change from one observation to the next.
Signalling too early will confuse the following driver, especially when intersections or driveways" are spaced close together. Signalling late or not signalling at all will- etion the following driver , too little time to adjust his vehicle's movement to the car's actions. The result could be a rear-end collision.

SKILLS
$:$ -
-The student must be :able to perceive from the direction and speed of cars ahead relative to that of his own car, when he will be forced to reduce speed in order that he can signal following traffic beforẹhand.

PURPOQSE:. To enable the stúdent to adjusi his course as necessary when meeting oncoming vehicles, and to take evasive action when necessary to avoid a head-on collision.

Normal
Passing

- PURPOSE: To enable the student to adjust his course as necessary when meeting óncoming vehicles, and to take evasive action when necessary to avoid a head-o:- collision (Coritinued).

CATEGORY	CRITICALITY					
	HIGH	MODERATELY HIGH	moderate	$\begin{gathered} \text { MODERATELY } \\ \text { LOW } \end{gathered}$	Low	
Off-Road Evasive Action,		If the car must leave the roadway to avoid a collision with an oncominc, vehicle, thas student will: - Look for the first available space to leave the roadway. Select in decreasing crder of preferènce, among the following: - The shoulder. - A side street, drivewdy, or parking area if the car is moving, slowly enough to make the turn. - - A field or láwn: . - Shrubbery, small trees, sign posts, or other objects that will yield when hit by the rar: - Embankments. - Decelerate and then leave the roadway. In doing so,'he will: - Pump the brakes to decelerate rapidly without locking the wheels. - - When at slow speed, turn the wheels as gradually as possible. - - Release the brake pedal when crossing the edge of the shoulder.	,	\cdot	*	
	If forced to leave the roadway to avoid a head-on collision the student will: - Straighten the wheels as gradually as possible. - Slớw down by pumping the brakes, adjusting the pressure in terms of the surface conditions and the available stopping distance.	After the danger of a collision has passed the student will:	-		-	-
$\cdots \begin{array}{cc}* & \\ & \\ * & \\ \cdot & \\ \cdot & \\ \cdot & \end{array}$	- Apply the brakes steadily to stop the car when the speed is down to 10 miles per hour or less.	- Return to the roadway from a stationary position, once the precautions for entering traffic have been taken, by turning the wheels sufficiently to cross the roadway edge at a sharp angle. - Return to the roadway without stopping, if necessary, by releasing the brake pedal and steering toward the roadway as gradualty as possible.		.		

KNOWLEDGES
The student must know the many factors that could prompt an oncoming vehicle to cross the center line into the car's path and should be prepared to take precautions to reduce the risk.

Poor visibility, swerving to miss a pedestrian or cyclist, road defects or obstructions, poor judgment in speed and positioning of the vehicle, falling asleep, and alcohol and drugs are all factors that could cause a driver to allow a vehicle to cross the center line. In one year about 16%, of all-acc; tents involved vehicles moving in opposite directions.
The risk of meeting an oncoming vehirie can be reduced by positioning the car as far te the right as possible. Accident reports reviewed showed à substantial number of accidents that could have been avoided if the vehicles had been in their reșpective right lanes rather than in the median lanes.
Using low-beam headlights to help the oncoming driver to see better and as necessary, leaving the roadway are among other precautions against head-on collisions.
Evasive steering has been cited repeatedly as one of the most important means of preventing accidents and of reducing the severity of unavoidable accidents. Studies have indicated that swerving to the right affords a better chance of avoiding a: on-coming vehicle than swerving to the left, since the most likely \& evásive àction of an oncoming car is to turn to the left (its right).
When the car must leave the roadway to avoid a head-on collision, the car's speed should be reduced to a relatively low speed before crossing the edge of the roadway.

At moderate or higher speeds, the car might be thrown out of control.
About 5\% of one-car accidents were compounded by excessive speed and steering corrections on the shoulder.
If collision with some type of object is inevitable, the driver must be able to select rapidly some relatively yielding objects (shrubbery, sign posts) as preferable to rigid objects (bridge abutments, large trees, steel poles) which, in turn, are preferable to a head on collision with a mioving vehicle.

SKILLS
The student should:
Practice, evasive actions to the point , where evasion through steering, takes precedence over hard braking.
.Be able to modulate steering corrections, and braking when on shoulders to .. effect a cöntroiled yet rapid•stop.
$\bar{\Sigma}^{2}$. PURPOSE: To enable the student to safely overtake a vehicle ahead and to avoid having to initiate emergency"maneuvers.

KNȮWLEDGES
The student must know that overtaking a vehicle grądually will allow the driver time to formulate the alternative courses of action available, as dictated by the situation ahead, and, to select the best course of action without the pressure associated with emergency maneuvers.

Attention to, the situation to the sides and rear of the car is necessary preparation for any-required evasive action.
Accidents relating to overtaking vehicles have been caused frequenily by the driver's failure to note the actions of vehicles ahead le.g., a finoderate number of accidents are caused by a driver's failure to note traffic.stppped ahead for a left turn).
Another cited cause is failure to check traffic in the adjacent lane prior 'to' entering. it to pass and/or to avoid impạct with a stopped vebicle or traffic control device. However, many rear-end collisions could be avoided if drivers would attempt evasive steering or passing (after checking) rather than hard . braking.

SKILLS
The student must be able to judge the rate at which his car is closing with the . vehicle ahead in order to adjust his speed or initiate a pass at the proper time.

The primary perceptual cue in the daytime is the change in apparent size of the lead'vehicle.
At hight the primary cue is the distance between the taillights.
Size or brightness of the taillights are not useful cues.

NORMATIVE INFORMATION
The student generally bases his perception upon the light separation of a standard American vehicle and will frequently overestimate his distance from a compact or foreign small car.
' $\stackrel{\circ}{\infty}$ PURPOSE; To enable' the student to act safely when in the vicinity of special vehicles, viz., school buses, police, fire, and other emergency vehicles.
1.

KNOWLEDGES.
The student nust know the laws that govern cirivers' responses to special vehicles," the hazards associated with encounters with special vehicles, and the precautionarymeasures that should be taken.

Special vehicles include emergency vehicles-school and transit buses, and

- vehicles in a procession or convóy.

Oṭher eniu.yericy vehicles may be rushing to the scene and may be following the vehicles that prompted the student to pull over and stop; some, such as unmarked police vehicles, may appear to be ordinary vehicles. The cagreful driver knows that he should wait until hé is certain all emergency vehicles have passed before proceeding on his way.
The audibility of sirens is-limited in moving cars. The student should know how' to enhance his chances of hearing sirens by keeping the noise level at a minimum within the-car (e.g., radio'volume low) and a window open.
Funeral processiöns and convoys are typified by the physical similarity ofvehicles, a police escort, and vehicles with their headlights on. Having all vehicles driven, with the headlights on is a means of communicating to other motorists the nature and length of the line of traffic. Vehicles within a procession or convoy do not stop for traffic controls if the first vehicle has proceeded through.
Persons leaving a bus or rushing to get on frequently are not alerd to passing traffic. Also passengers who have left a bus may step from in front of the bus into the path of a car in an effort to cross the street.

PURPOSE: To enaḅle the student to approach an intersection and to react appropriately to other traffic and traffic controls.

KNOWLEDGES

The student múst know how to reach the intersection safely and, to continue through it in a safe, efficient manner.

Traffic controls are placed at intersections to facilitate the traffic flow. They may also serve as a cue to the driver that other traffic is generally present or can be expected in the area. Being aware of the significance of traffic controls." is crucial.

The length of time a traffic light is activated is fixed. it is important to gauge the length of time, if possible, and to anticipate the light changing from green to red if the areen has been on for some time. By doing so the student will be better prepared to stop if the light should shange.
The amber light usuaily warns that the red light will be turned on soon thereafter.
Intersections may be controlled by stop signs or yield signs. At some intersections all traffic is required to stop (four-way stop)' before proceeding.
Failure to yield'the right-of-way is often listed as a cause of rccidents. Regulátions regarding the right-of-way must be a part of cevery driver's knowl, edge if he is to be a safe, efficient driver.

When car and vehicle reach the intersection at the same time, the vehiole. from the right has been given the legal right-of way since it is the first to clear the two vehicles' line of intersection. This rule ápplies only when there are no other traffic controls.
At uncontrolled and four-way stop sign intersections, the driver who first reaches and stops at the. intersection has the right-of-way.
'In addition to observing laws covering' intersections, the student must guard against the unsafe acts of otherrs.
Slowing down.too early when approaching an intersection not only delays following traffic, but can cause a rear-end collision because following drivers may not be expecting deceleration. A following driver, may become , so irritated that he passes when it is unsafe to do so.
If a vehicle is seen approaching from either the right or the left at the intersection, removing the foot from the accelerator. and covering the brake provides an extra margin of safety. to respond to the diiver who is
a not obeying the traffic regulations. Never assume the other driver will yield.
The student should know local regulations covering approach to intersections.
. - .

Legal requirements- in many`states stipulate that a driver must signal his intention"to turn at least 100 feet before reaching the intersection.

- Statistics indicate that drivers signal right turns about half the time and left turns about two-thirds "of the time. The frequency of signalling turns is reduced when special turn lanes año directional arrow traffic lights are present.
The frequency of signaliing tends to increase with increased speed.at intersections.
Legal requirements in some 'states" stipulate that the driver.' enter the. correct lane for passing through, or turning at the intersection at least 100° feet prior to reaching the intersection.
- Using the center lane when proceeding through an intersection with three lanes in one direction avoids conflict with right- and left-turning vehicles.
Many times a car's position is a more obvious clue of intentions to other drivers than signals.

Most states prohibit stopping in an intersection or crosswalk.

- Using the center làne when proceeding through an intersection avoids conflict with right and left-turning vehicles.
An unobstructed view is important.
In a moderate number, of accidents, collisions occurred at intersections,
where vision was reportedly obstructed or limited by buildings, vegetation, or parked cars.
Roadside features that obscure the driver's vision at intersections should be reïated as if thè were traffic lights and signs requiringig the driver to stop. By stopping,, the driver has an epportunity to study the traffic ṣituation more carefully before proceeeding rather thạn haphazardly continuing.
$\overline{\mathrm{\sigma}}$ 'PURPOSE: To enable the student to proceed through an intersection prepared to react to changing. traffic conditions.

kNOWLEDGES

The student showidd know that a large-number of traffic accidents occur at places where two or more traffic flows come together: ${ }^{*}$

In 1968, 22.5\% of all accidents resulted from failuse' $\delta \delta$ yield the right-of-way passing a stop sign, or disregarding a-traffic light. Accident data were obtained from 'traffic authorities in 56 cities and from rural traffic authorities in 18 states:

Failure to honor. a stop sign and/or failure to yield to all cross traffic before procèeding past a stop-sign is a cause of a moderate percentage of accidents.
Failuife to note or honor a yield sign was the primary cause of a moderate number of accidents.
In 1969, one-third of all accidents' involved two vèhicles at intersections. In 1968; there were 7,100 fatal two-vehicle accidents-at intersections.
Of all accidents in 1968.16% involved vehicles enteting.intersections at an angle. Accident data were obtained from traffic aúthbrities in 290 cities with populations over 10,000 and from rųral traffic authorities in. 22 states.

- Of all city accid́ents, 20% are broadside collisions at intersèctions.as indicated by a 1969 publications.
In a survey of accidents, the impact in a number of them could have been reduced or avoided hard the driver of the car swerved to the right instead of braking and maintaining coúrse.
Accident reports show that a large number of collisious at intersections might have been"àvoided had the defennsive driving technique of checking cross traffic at the intersections beèn practiced.

Many intersections are coritrolled by lights, control signals, and signs.
Starting before the green light appearṣ will interfere with cross traffic

- The first three seconds after the light changes are the most dangerous. . 4. thorough searchof the traffic situation is required before proceeding.
Coming to a full stop at stop signs permits vehicles approaching from the left "to emerge from behind'the blind spot created by the carr's left doorvpost.

Vehicular and pedestrian ḑàffic,
A driver must yield the right of way to pedest ;ans ir he crosswalk whether or not ihe crosswalk boundaries are paiated.
Checking the intersection for-other vehicles at least twice is risesssary because
the driver has blind spọts that make one glance insufficient for driving safely. . Looking for traffic first from the lett is advisable since that traffic presents the -greater threat by passing the car's path at a closer distance.

A vehicle may intend to turn beyond the intersection. A signal is just \dot{a} warning, not guarantee that the vehicle will turn.
Failure to complete passage of the intersection will block cross traffic and is illegal in some cities.
The length of a sufficieielt gap in traffic will. be defined differently by, different drivêrs. Generally a seven- to eight-second gáp or lag in the flow of traffic is required before the driver should enter an intersection. During peak traffic hours this gap may be reduced by a second or two.
Drivers tend to underestinmie gaps in traffic from the left and overestimate gups in traffic from the right, owing to differences in angle of view. During peak hours, drivers ${ }^{\text {in }}$ a hụrry tend not to allow sütficient gaps intaffic from the right.
When a signal for a turn has not been given, it is important that the Jrivernot turn, because turning wouid not be expected by other drivers. Also, control of the ciar could be lost if the turn is attempted without prior deceleration, because the car's speed will be too fast for the turn. Proceeding to the next intersection to turn is the proper thing to do.

.SKILLS

When proceeding + . .ough an uncontrolled "intersection, not having the right-of-way, the student must be able to judge whether he can clear an intersection ahead of cross traffic. This judgment depends on his ability to:

Estimate :he speed and distance of an oncoming car or cars and judge the time that is available before the first car arrives ("lag') or between two approaching cars ("gap").
Judge the amount of time needed to cross the intersection. These judgments appear to be combined into a single perception of an ac'equate or inadequate "lag" or "gap".
$\ddot{\sim} \quad$ PURPOSE: To enáble the student to safely make a right turn at an intersection.
Preparing
to Turn

The student must know the following in order to turn safely at intersections:
In most states turning right on a red light is permitted only when an erected sign so indicates. Some states permit a right turn on a red light without an erected sign.
In addition to checking left, checking cross traffic to the right before initiating, a right turn allows the driver to see if a vehicle from the right may be passing in the lane in which the driver intends to turn.
Keeping close enough to the curb or parked vehicles when turning right prevents a following vehicie from passing on the right.
Slight acceleration helps to maintain stability and to prevent'a skid.
Excessive speed reduction interrupts the flow of traffic to the rear, causing delay and increasing the chances of a rear-end collision.

SKILLS
The student must master the basic skills invoived in making'turns (see "Turning") so that he will remain within the right lane throughout the turn, avoid striking or cutting across the curb with front or rear wheels, and cope with pedestrians and traffic while keeping eyes focused sufficiently well ahead.

He must be able to judge whether he can complete the turn ahead of, or merge with, traffic from the left. This requires:

Estimating the time available before the first car arrives ("lag") or between approaching cars ("gap").
Estimating the time that is required to complete the turn and accelerate to the speed of approaching traffic.

- These judgments appear to combine to form a simple perception of an adequate or inadequate "lag" or "gap".

PURPOSE: To enable the student to safely make a left turn at an intersection.

CATEGORY	CRITICALITY				
	HIGH	MODERATELY HIGH.	MODERATE	moderately LOW:	Low.
General		He will observe the traffic controls before making the turn (see Educational Objective on Preceeding Through an Intersection). The student. will signal his intention to turn well in advance of the intersection (see Educational Objective on Turningl. When turning loft at an intersection, he will check cross traffic and wait untir there is a sufficient gap in traffic from the left and right bofore proceeding to turn.	When turning left at an intersection the student will not pull halfway into the intersection if doing so will inter--fere with cross freffic.		\cdots
No Oncoming Traffic		When attempting to turn I at an intersection when there is oncoming traffic, the student : I turn into the far left lane.	When attempting to turn left at an intersection when there is no oncoming traffic the student will: - Pull partially into the intersectinn. - Begin the left turn before reaching the center of the cross street. He will enter the appropriate lane for normal driving after complating the turn (See Educational Objective on Lane Changing).	The student will check to be sure that the directional signal has been cancelled after completing the turin:	
Oncoming Traffic Stopped at Intersection		When oncoming traffic is stọpped at an intersection controlled by a grean arrow, the student will stop before turning left if the arrow disappears, unless he has already begun the turin:		When oncoming traffic is stopped at an intersectioncontrolled by a green arrow, the student will turn left across the path of oncoming traffic.	:

$\vec{\sim}$ PURPOSE: To enable the student to safely make a left turn at an intersection (Continued). \qquad

-

KNOWLEDGES

The driver must watch for information regarding local regulations about making left turns at intersections, and be concerned with oncoming traffic.

Some states permit a left turn from a.one-way street into a one-way street on a red light.
Although most states require the driver to turn into the far left lane when turning left, some states permit turning into any lane on the right halfoof the roadway. -••
.The driver should yield to oncoming traffic when he is preparing to turn left, even when the signal is changing from green to amber since the oncoming vehicle may continue through the intersection. Failure to yield to oncoming traffic before turning left at an intersection was noted 'in a modérate per. centage of the accident reports reviewed.
Frequently, oncoming traffic reacts to the end of the cross traffic's yellow cycle father than waiting for the green light; consequently it' is important to be sure, before turning left, that the oncoming traffic is not anticipating the green light. $\because \quad r^{*}=$
An "advanced green" traffic signial means that oncoming traffic is. stopped during the initial portion of the green cycle. Noting the length of time the advanced. green light is :activated should serve as a cue to the driver. In any case, turning-left at an intersection should be exercised cautiously, but especially if the advanced green signal has bëèn activated for several seconds.
A "delayed green" traffic signa! means that oncoming traffic is stopped during the final portion of the green cycle:
The presence of any ${ }^{\text {'traffic signal or sign is a warning of a danger zone }}$ regardless of the color of the light, or type of signal. Local regulations
regarding turns at intersections may regarding turns at intersections may vary.
The student should know the hazards present in a left turn and the means of minimizing these hazards.

Approximately a one-half-second greater gap is required than for making a right turn. About two-thirds of a second more is required than for proceeding
through an intersection:
Checking vehicle and pedestrian traffic to the left before starting a turn prevents being forced to stop in the line of oncoming traffic.
Occasionally an oncoming vehicle's left-turn signal may be flashing in error: it is important to make sure of the intentions of the driver of any oncoming vehicle before proceeding.
The driver should pause beforetrining ieft if he sees an oncoming vehicle signalling a right turn. The oncoming, vehicle's right turn signal may be flashing in error or the driver may change his mind.

Two foft-turning vehicles (car and oncoming vehicle) should cross to the left of center of the intersection. This allows both lines of traffic to complete turns without interfering with one another.
Proceeding to the cenfer of the intersection allows the left turn to be completed quickly when traffic, permits.

Keeping, the wheels straight ahead, instead of to the left, and keeping a foot on the brake prevents the car from being pushed into oncoming traffic if struck from behind.

- , The car should be positioned in the lane closest to the direction of the turn; unless otherwise marked. This prevents anyone from passing on the side in which the driver intends to turn and usually prevents the car from impeding other traffic.

SKILLS

The student must develop the ability to initiate as left turn at the appropriate time so that he enters the proper lane in the direction in which he intends to drive without impeding traffic. He must be able to:

- Judge closing distance and estimate the time it will take for oncoming traffic to reach the intersection.
.Judge the appropriate point at which to initiate a left turn in order to enter the appropriate lane.
"Determine whether the turn may be completed without interfering with other traffic from the right, left, or ahead to which he is required to yield.
.. Judge the speed and distance of approaching cars.
.Judge the time/available before the car arrives ("lag") or between two cars ("gap").
Judge the time required to clear the intersection and, in the case of traffic from the right, to acccelerate to the speed of traffic.

KNOWLEDGES
The student should know how to enter; drive through, and exit from a traffic circle safely, as well as the regulations covering right-of-way. The right-of-way is generally given to the driver in, the circle because to require him to stop would cause traffic in the circle to stop, thus impeding traffic and causing danger of a rear-end collision.

SKILLS
In entering a traffic circle, the driver must, be able to júdge "gap" or "lag"'as in a right-hand turn. Once"the circle is entered, the driver will frequently have to "sift through" traffic. to move to the inside or outside of the circle, with skills that are similar to those involved in lane changing.

On-Ramps
$\stackrel{\rightharpoonup}{\approx}$ PURPOSE: To enable the student to safely enter a main roadway froman entrance ramp with or without anyacceleration lane.

\therefore
(

힝 PURPOSE: To enable the student to safely, enter a main roadway from an entrance ramp with or without an asceleration lane (Corrinued):

The student must know, the procedures for safely entering the main roadway from an entrance ramp and the hazards involved.
On-ramps with short acceleration lanes tend to, have high accident rates when the entrance speeds are high.

On-ramps with minimum acceleration lanes (less than 900 feet) tend to be more dangerous than on-ramps with longer acceleration lanes, because drivers tend to stop at the end of them rather than using them for acceleration.
On short on-ramps the majority of accidents occur on the ramp itself rather than during the merge. Most of the accidents on the ramps are rear-end collisions resulting from failure to notice that the lead car had slowed or stopped.
On-ramps, while apparently less dangerous thàn off-ramps, account for a moderate percentage of freeway accidents. Ramps without acceleration lanes, scissor ramps (opposing traffic crosses the on-ramp), and ramps entering on the' left side speed lane are the most dangerous.
Stopping at the end of the on ramp not only causes a bottleneck in the oǹramp traffic, but also forces entry to the grain roadway at, a dangerously slow speed compared to the thröugh traffic speed:

SKILLS

The student must be able to:
Estimate the lag or gap size (see "Intersections") while travelling at a moderate or high rate of speed.
Have sufficient skill in steering to be able to maintain the proper path while taking his eyes off the roadway to observe traffic on the main roadway.
$\stackrel{\rightharpoonup}{\omega}$. PURPOSE: To enable the student to exit safely from the main roadway.
CATEGORY

. .
The student must knôw that to do when preparing to leave the roadway, when

More "accidents occur on off-ramps than on on ramps, due to (a) greater speed", (b) greater difficulty in controling a decelerating car, (c) presence of fixed objects (primarily signs) along the outside edge of a curve.
Off-ramp aćciderts are, more likely to occur at night and on ramps without deceleration lanes (e.g., direct cloverfeà:es). scissor ramps (a lane crosses the deceleration rampl, and ramps that exit from the left side of the road.
The major cause of left-hand off-ramp accidents is the driver's failure to enter
the left lane early enough or attempting to exit from the center or right lane. Most left-side off-ramp accidents occur during the diverging phase.
Slowing down ó the main roadway, while a major cause of all freeway accidents, is particularly critical in the case of left-hand exits. Faster speeds in the left-hand lane and the failure of drivers to expect deceleration in that lane are major contributing factors.
A significant number of all aiccidents on ramps involving fixed objects. occur on off-ramps.
-The design of exits and deceleration. lanes is related to safety and"driver - requirements.

Off-ramps with gradual turns and long decelèration lanes are the safest. Those with moderate rather than sharp turns are the most dangerous. This may be due to the failure of drivers to recognize the danger as easily as they do when : the off-ramp has a sharp curve.
4. The design of freeway exits is often complex. The directions of exits frequently vary markedly from expectation. Avoiding an incorrect exit or incorrect use of an entrance ramp requires close attention to signs.
. Controlling a car's speed and movement into the proper lane at the correct time are very important when pleparing to leave the main roadway.

Moving into the deceleration lane as soon as possible reduces the requirement for slowing down on the main roadway and minimizes the necessity for cutting in front of a veficle that is already present in the deceleration lane.

SKILLS

The student must be able to judge from the length and curvature of the "ramp the maximum speed at which the ramp may, be entered in order to do so safely without obstructing following traffic by driving unnecessarily slowly.

Once on the ramp, he must be able to judge from the rate of curvature how much more he must slow down before entering the curve.

- NORMATIVE ÍNFORMATION

Drivers tend to underestimate speeds when decelerating after driving at high speeds. Glancing at the speedometer to ensure appropriate deceleration prior to entering the off-ramp enables the driver to become aware of an excessive rate of speed. A recent study showed that drivers averaged 10.5 miles per hour over an estimated 40 miles per hour after driving 70 miles per. hour for 40 miles even though they were aware of adaptation and tried to avoid it. Significant adaptation to high speeds occurs after 15 to 20 minutes of driving.
$\overline{\bar{L}} \quad$ PURPOSE: To enable the student to negotiate hills safély and effectively.

-

$\downarrow \square \cdot-$ KNOWLEDGES

Trucks generally must downshift near the crest of hills or long grades. Thitis results in marked speed reduction.
Deceleration should be initiated prior to beginning the downgrade because if too much velocity is attained, it may be impossible to slow down of the downgrade.
To control speed, the car must be in gear, not coasting.
Continuous partial pressure on the brake pedal actually builds up less heat thán intermittent pressure because hard initial application of the brakes creates heat that is not quickly dissipated when the brakes are released.

Testing the brakes before beginning a downgrade allows the driver tơ discover a possible trake failure before actually travelling on the downgrade. If the brakes do fail, preparation for slowing down or leaving the roadway can be made more rapidly and safely.
If the car begins to overheat near the top of a hill, turning on the heater will dissipate the heat in the radiator temporarily by cycling the fadiator coolant through the car's heater unit,
ownshifting may sometimes be necessary when driving on hills.
Downshifting can increase pulling power to counter the effects, of gravity and* avoid ställing.

1

- Downshifting will cause the fan to turn at a higher speed, drawing in more air through the radiator.
The additional braking provided by the engine in low gear (it must turn faster and therefore provides more resistance) reduces wear on the brakes. Riding the brakes builds up intense heat, which is damaging both to the brakes and the tires. On steep hills, the brakes may not have sufficient braking power.

SKILLS

The student must be able to judge when to downshift while climbing a hill from the car's responsiveness, as well as the engine sound and vibration.

-Curves
PURPOSE: To enable the student to negotiate highway curves safely and comfortably.

KNOWLEDGES

The student should know the following:
The potential dangers involved in driving through curves:
Excessive speed while entering curves was noted as a significant factor in approximately 8% of a group of 1,000 accident reports.
Collisions resulting from failure to maintain proper lane position on the roadway while negotiating a curve have been noted in a significant number of accident reports.
According to one study, the accident rates where sight distances are short (less than 800 feet) are more than twice that where sight distances are not limited.

Speed must be :educed when taking a curve owing to the limitation in sight distance and the tendency of centrifugal force to pull the car to the outside of the curve.

Posted speed limits for curves are generally close to the maximum safe and comfortable speed.

If a car enters a curve at excessively high speed, the rear end will tend to swing out and the front end will cease to respond to steering. Braking hard-enough to lock the wheels will cause the car to run off the road in a straight line.

The chances of skidding are minimized by entering the curve slowly and maintaining a constant speed or acceleraţing slightly through the curve.
When traveling at high speed for a sustained period of time, it is difficult to estimate accurately the amount of speed reduction that is necessary. The driver should check the speedometer.
If a driver finds that he has entered a curye at too high a velocity, he should not attempt to brake but concentrate on steering to keep all the wheels on the paved surface.

While driving through a curve, the driver should focus on the farthest clear pathlof travel, i.e., he should "look through the curve". He should not fixate on the road immediately in front of him.

Moderately sharp curves are the most: dangerous because drivers tend to underestimate the degree of curvature.

SKILLS

In general, drivers attempt to maintain speeds through curves that produce between .2 and .3 g 's lateral accelération.

In adapting his speed to unposted curves, the student must be able to associate a visual perception of curvature and superelevation (banking) with visual, proprioceptive, and kinesthetic cues of'speed. This perception appears to be mediated to some extent by kinesthetic cues of lateral acceleration, that is, the driver develops a "seat of the pants" feeling for what is the maximum speed at which he can, iake a particular curve. .
-
\qquad

NORMATIVE INFORMATION

PURPOSE: To enable the student to select the appropriate lane for driving.

KNOWLEDGES

The student must know the general rules regarding lane usage. Some states. Kave limiting provisions on the usage of lanes for through móvèmèrit on roadways:with six or more lanes or at least three lanes one way. On such roadways the left and right lanes may be frequently stopped for vehicles turning onto the accéss roads. Generally keeping to the right avoids interfering with faster moving, traffic.

PURPOSE: To enable the student to drive'safely on different types of road surfaces; to enable the student to adjust his driving according to road surface conditions.

KNOWLEDGES

The student must know how road surfaces can affect driving, and how to drive on roadways with surface irregularities.

Loose or slick surfaces increase stopping distance and raise the likelihood of skidding.
Skid resistance of street surfaces is often. low at intersections because of the polishing effect of traffic.

Driving safely through potholes and ruts requires special care.
Continued application of the brake may lock the wheels and transfer an excessive amount of roadshock to the car when passing through the pothole or rut. Much of thishock is absorbed by the wheel if the brakes are released just prior to passing through the road surface irregularity. Therefore brakes should be applied before reaching the pothole or rut and then released to minimize the amount of roadsishock transferred to the car.
When driving through ruts in gravel or dirt roads the following procedure should be followed:

The car speed should be reduced.

The driver should assess the road surface characteristics adjacent to the rut and. the depth of the rut. If the rut is deep or the adjacent surface is firm and compact, the rut should be avoided if at all possible.
If it is necessary to drive through the rut, the steering wheel should be grasped firmly, and the student should proceed slowly. The wheel should be turned at a sharp angle when exiting the rut in order to provide sufficient lateral force to overcome the resistance exerted by the edge of the"rut?

SKILLS

In leaving a rut the student must, be able to judge how far to turn the wheel so as to climb out of the rut without swerving excessively. He must be able to countersteer quickly to avoid leaving the roadway or striking something.
$\overline{\mathrm{s}} \quad$ PURPOSE: To enable the student to drive safely on a wet surface.
Wet Roads

The student must be aware of, hazards created by wet roads and the precautionary , measures known to maximize safety when driving on wet surfaces.

Thirty percent of all accidents and 20% of all fatalities occur on wet, icy, or snowy roads.
Slippery surfaces accounted for 13% of Route 66 accidents.
Failure to modify driving behàvior in. order to compensate for wet, silick surfaces was a contributing, factor in 100 out of $1 ; 000$ accident reports recently surveyed:
A study of accidents on the Pennsylvania Turnpike showed a substantially higher accident rate for wet roadway conditions as compared with dry roadway conditions. The acsident rate for wet roadways was almost double the dry roadway accident rate.
Slightly more than 11% of a sample of 119 one-car accidents in Michigan were caused by steering abruptily on wet surfaces.

Foreign substances such as oil and leaves increase the dangers of driving on a wet surface.

The presence of water increases the stopping distance and the probability of skidding. Allowance should be made, for 50% inore required stopping distance when the pavement is wet.
Oil film on the roadway combines with rain to create a slick surface.
Water on a bridge or culvert will freeze more quickly than that on the surrounding roadway. The temperature of water on the surrounding roadway is somewhat stabilized by the ground beneath it.
Wet leaves are nearly as slipperyfas ice, especially on blacktop surfacis.
Water on the engine ignition system may cause the engine to stall.
Hydroplaning can oc:ur when water depth, roadway conditions, car speed, orcondition of the tires prevent the tires from penetrating the surface water and making contact with the road surface. The lack of traction greatly increases ${ }^{-}$ 'stopping distance and the chances of skidding. When hydroplaning, the front wheels are actually water skiing on a very thin film.of water. The stucient should not use the brake when hydroplaning. Braking would cause him to lose control of the car.

Lack of tire tracks from other vehicles indicates a "hydroplaning" condition.
.\quad Tracks are a result of partial displacement of the surface water.
Good conventional tread tires have-a squeeze effect on a wet pavement. Slick* or smooth tires do not and, therefore, hydroplane more readily.
When tire. inflation pressures arè between 16 and 30 psi, the corresponding minimừm speed ränge for full hydroplaning is about 40 to 57 miles per hour. Once the tire becomes completely waterborne; stopping distance. capability is lost.

The lọs of traction caused by hydroplaning dlso rènders stéering control nearly totally ineffective. Under. these circumstances, a small disturbing iorce (road irregularity, curve, or crosswind) will caute complete loss of directional stability,
Generally, large vehicles with tires that require higher inflation pressure are less likely to hydroplane than" spallér cars. Following such a vehicle closely is dangerous since the car may be hydroplaning and collide with the larger'vehicle if it slows down.
Driving at moderate speeds' reduces the hazard of spot hydroplaning, in which one or more tires are briefly, but fully, waterborne with no traction as the car passes through "puddles. Risk" of losing directional stability is high in spot hydroplaning conditions.

Accelerating and braking should be done carefully and gradually when driving on a wet surface.

On slippery surfaces, major acceleration changes may spin the rear wheels and cause the car to start skidding.
Taking'the foot off the accelerator suddenly on stippery surfaces may create an effect similar to the application of the brakes.
The sudden introduction of engine braking power can cause the car to skid. This can be avoided if the car is moving slowly at the time of shifting.
Brake failure can occur if the brake linings become wet. After driving through

- deep water the brakes can be tested by occasionally tapping the brake pedal. If the brakes fail because of moisture, all brakes fail including the front whele!, rear wheel, and parking brake.
Braking power is reduced when the brake linings have moisture on them; coñitinued application of the brakes will dry the linings.

SKILLS

The student must develop the ability to limit pressure on the brake pedal to cometo a safe stop on a wet surface without skidding.
is PURPOSE: To enable the student to deal effectively and safely with road shoulders.

.NOWLEDGES
The, student must know the effect that a roadway shoulder has upon operation of the car.

- A vertically misaligned road edge will tend to turn the front wheels. A vertical rise will turn them away from the roadway; a vertical drop-off will turn them towarid the roądway.
An attempt to stop the car abruptly when one wheel is off the roadway might put the car into a skid.
If an attempt is made ${ }^{2}$ to regain the roadway too sharply, the car might cross to the far lane(s) or swing sidẹways and roll over.
Failure. to bring the car under full control before attempting to regain the roadway was noted as a cause in 37% of a sample of accident reports surveyed.

SKILLS
The student must bé able to:
Avoid the natural tendency to apply the brakes when his wheels are on the shoulder.
Judge from the condition of the shoulder how much his speed must be reduced before attempting to regain the roadway.
Maintain control of the car when necessary to regain the road before reducing to a safe speed.

Judge the best place and angle at which to return to the roadway.
Countersteer upon returning to the roadway to avoid crossing to a'far lane.

푸 PURPOSE: To enable the student to deal sately with roadway obstructions and barricades.

公 KNOWLEDGES
The student should know that the appearance of road construction or barricades indicates the presence of workmen and equipment which may enter the roadway unexpectedly. Even in the absence of men and equipment a hazard is created by debris, sudden detours, or mispainted lines.

PURPOSE: To enable the student to drive, stop, and park safely on ice- and snow-covered roadways.

PURPOSE: To enable the student to drive, stop, and park safely on ice- and snow-covered rọadways (Continued).

 , must knownt

Heavy traffic will tend to polish ice, making the ice warmer.
Ice at 30° Fahrenheit is much more slippery than ice at 0° Fahrenheit.
Patches of roadway where ice is covered by a thin layer of water are extremely slick.
Patches of ice tend to linger in shady areas.
When most of the roadiway is covered with snow or ice, sunny areas are more slippery than the rest of the road surface because of the melting-ice.
Passing lanes are more likely to have patches of ice and snow than the outside lanes where the heavier traffic wears off ice and snow faster. Cars require more traction during the passing maneuver and could possibly obtain less traction in the passing lane.

The hazards involved when driving on an icy or snow-covered surface are apparent in accident statistics.

Thirty percent of all accidents and 20% of all fatalities occur on wet, icy, or snowy roads.
Failure to modify driving behavior in order to compensate for wet, slick surfaces was a contributing factor in 10% of the accident reports recently surveyed.
A study of accidents on the Pennsylvania Turnpike revealed a substantially higher accident rate for icy and snow-covered roadway conditions as compared with dry roadway states. The accident rate for icy roadways was eight times the dry roadway accident rate. The accident rate for snow-covered roadways was five times the rate for dry roadways.
Patches of ice or snow'on the roadway cause about one.third of the accidents on ice or snow-covered roadways.
When weather conditions become bad special local regulations may require the use of snow tires or chains on snow emergency routes.
Arterial roadways where obstructed by a vehicle stuck in the snowican create extensive delays.
In addition to providing, better traction, snow. ties and c̀hains can reduce - stopping distance. Howêver, any advantage chains may have with regard to traction and stopping distance can be negated by driving too fast for conditions.
Special procedures are required when driving on snow or ice-covered roadways. On accumulated snow or ice, keeping the front wheeis straight reduces the car's resistance to motion and therefore reduces the chance that the rear wheels will spin when power is applied. Also; the front wheels make a
-. path for the rear wheels, making it-easier to move into a plowed traffic lane. The wheels may be turned after the car has gained enough speed.
Higher gears are best to use when starting on snow or ic̣e because they apply less power to the rear wheels and reduce the chance of the wheels spinning.
Smooth steady acceleration minimizes rear wheel spinning.
While operation in high gear provides greater friction, the •resistance created by deep snow requires more power to be applied to the rear wheels. Low gear increases the power to the rear wheels and lessens the strain on the engine.

Driving on any icy or snow:coveréd pavement is always dangerous, but especially when other traffic is present. The Jocation where traffic is most concentrated is at intersections.

- "

Reducing speed well in advance of an intersection helps assure that the stop will be made prior to the intersection. In addition, snow or ice tends to remain longer near intersections, due to the effects of plowing and the reduced speed of vehicles passing through.
If the wheels of approaching vehicles are turning, the driver probably has control of the vehicle. If the wheels are locked and sliding, the driver probably does not have control and is likely to slide through the intersection.

Slick surfaces increase the probability of skidding when braking, changing speed or changing direction. The wheels are likely to spin on a slippery surface when the power is applied also:

Stopping on an upgrade in snow increases the likelihood that the wheels will spin when the power is subsequently applied because of the effect of the slope and poor traction.
The chances of skidding when driving on an icy surface can be minimized by pumping the brakes since this allows the wheels to revolve intermittently. Jamming on the brakes causes the wheels to lock, which is conducive to skidding.
In addition, depressing the clutch prior to stopping also reduces the chances of skidding.
Engine friction will not cause the wheels to lock as the orakes would, reducing the likelihood of a skid.

Potential hazards and problems accompany snow and cold weather:
Hot exhaust creates a pocket in the snow in which carbon monoxide can accumulate instead of blowing away. This increases the chances that carbon monoxide will seep into the car.
Snow forced up the tailpipe may stall the engine.
When the parking brake is frozen it can be released by carefully backing the car a few feet. The car should be moved oforward only after the brake is released; otherwise the automatic transmission or the clutch may be damaged.

SKILLS
The student must be able to:
Brake gently without going into a skid in order to drive safely on an icy or snow-covered roadway.
Regulate pressure on the accelerator pedal so that the rear wheels will not spin when he attempts to move forward or backward on an icy or snow-covered roadway.

- PURPOSE: To enable the student to drive safely on sand-covered roadways.

KNOWLEDGES

The student must know how to negotiate sand-covered highways.
Driving through a sand drift is similar to driving through deep snow.
When attempting to drive through drifts it may be necessary to use lower gears to increase power.

SKILLS

The student must be able to downshift smoothly at the proper time in order to keep the car moving through a sand drift. t. ~

玉 PURPOSE: To enable the student to perform a U-turn where legally permissible.

ḰNOWLÉdgés
The student must know the procedures for making a U-turn and the local restrictions regarding U-turns. The latest. recommended change in the Uniform Vehicle Code limits U-turns to the middle of the block to avoid possible cpllision with vehicles turning into the street.
skills
The student must be able to judge whether there is enough room to make a b-turn given the turning radius of the car.
$\vec{\infty}$ PURPOSE: To enable the student to turn around by means of a three-point turn, or a two-point turn using a driveway.

KNOWLEDGES
The student must know the, sequence of steps for making a three-point or two-point turn and when it is advisable to make such a turn

Three-point turns (Y-turns) are usually made on streets too narrow for U-turns, When making Y-turns the tail pipe could be broken if backing over a high curb.
The car's front and rear extend well over the curb before the tires touch it, and objects such as poles and hydrants on or near the curb are hard to keep in sight while backing and turning.

- Completing turns by forward movement into traffic is a safer maneuver than backing into traffic. Thren it is advisable to make such a turn.
'
Entering Off-Street Areas
'I PURPOSE: To enable the student to approach and enter off-street areas in a safe and efficierit manner.

. Knowledges

The student must know the procedures for approaching and entering off-street areas.

Signalling prior to an intersection may be confusing to drivers in following vehicles who may interpret the signal as an indication of intent to turn at the intersection.
Accident reports reviewed indicate a number of accidents were the result of a driver's failure to yield to oncoming traffic prior to turning left into an off-street arẹa.
Reducing speed inordinately or stopping will impede traffic flow. It will also increase the chances of a rear-end collision because following vehicles will not expect a speed reduction.
Upon entering the off-street areas a speed of between 5 and 15 miles per hour represents a safe speed. Speeds greater than 15 miles per hour may prevent reacting properly to hazards that suddenly appear. Speeds below 5 miles per hour may impede following traffic and result in obstructing the flow of traffic on the main roadway.
"Swinging "wide" that is, moving to the left before turning right may be interpreted by a following vehicle as a lane change and the vehicle may attempt to pass on the right.

PURPOSE: To enablr; the student to drive safely in and around off-street areas without impeding traffic flow. PURPOSE: To enabir, the student to drive safely in and around offstet areas without impeding trafio flow. \because

KNOWLEDGES

The student must know that slower speeds are required when driving in off-street areas because of the random movement of vehicle and pedestrian traffic and the limited visibility due to parked vehicles.

In a sample of 50 parking lot accidents approximately 15% resulted from failure to drive in marked traficic aisles.
Failure to yield to all cross traffic prior to exiting an off.street area and entering the roadway was noted in a moderate percentage of the accident reports surveyed.

PURPOSE: To enable the student to safely cross railroad crossings and to respond to possible dangers at such crossings. .

$\vec{\infty} \quad$ PURPOSE: To enable the student to safely cross railroad crossings and to respond to possible dangers at such crossings. (Continued)

KNOWLEDGES
The student should know the hazards involved in crossing railroad tracks. Accident statistics:

Approximately 1,600 persons were killed and 4,000 persons were injured at railroad crossings in 1968.
One-third of cafer train accidents, involve the car striking the locomotive or part of the traif behind it.
Sixty percent of car-train accidents happen in daylight lisually at a familiär crossing.
State laws generally require school buses, tank trucks carrying explosives or flammable liquids, and commercial carriers to stop for railroad crossings except under certain specified conditions.

Approximately 180,000 , or 80% of the nation's railway grade crossings have only signs to mark the grade locations and do not have additional protection devices to warn the motorist of an approaching train.
Railroạd crossing signals, should not be trusted entirely because they can malfunction.

The first train on a maltitrack railroad crossing may screen another train coming from the opposite direction and its sound may drown out the noise of the other train.

Killing ơ stalling the engine can be especially hazardous when crossing railroad tracks.

Accelerating smoothly will reduce the chances of stalling the engine when crossing the railroad tracks.
Shifting gears is especiatly dangerous when crossing railroad tracks because shifting gears increases the danger of stalling.
The car engine should be thoroughly warmed up before attempting to: cross railroad tracks.
-

WURPOSE: To enable the student to enter, drive through or across, and leave a tunnel or ' bridge safely and expeditiousy.

CATEGORY					
	HIGH	MODERATELY HIGH	moderate	moderately LOW	LOW
Approaching	\bullet	When approaching a narrow bridge or tunnel, the student will slow down for better control and remain to the right to provide clearance with traffic in the adjacent lane.	When approaching and after entering a bridge or tunnel, the student will look for any signals indicating emérgency situations ahead and for signs regarding the following: - Lane availability and usage. - Speed limit and passing restrictions. - Use or nonuse of lights in a tunnel.	The student will remove sunglasses before entering a tunnel.	
After Entering		After entering a, bridge or tunnel, the student will stop only if, the traffic flow re. quires or if an em:	The stadent will observe other traffic ano lane side structures after entering a.bridge or tunnel. When driving through a tunnel, he wild adjust speod to grade changes and obsarve the speedometer frequently in an effo.t to drive at a safe speed.	1	.
Leaving \div *			$!$	When leaving a bridge or tuninel, the student will observe posted. signs regarding exit information and speed limit ahead. - He will turn off lights uponㄱeaving a tunnẹl during daylight hours.	

The student must be aware of the appropriate procedures,-restricteions, and. regula: tiọns ing order to drike saffely-throúgh a tunnel or across a bridge. Thè potential for an accident on either of these structures is greatest when speeci is erratic and when the vehicle is stopped.

Stopping, standing, or parking is prohibited on bridges or other elevated structures on the highway as well as intunnels or yiaducts.
When traveling through a tunnel, drivers are frequently unaware that they have reached an upgrade and therefore tend to lose:speed.

SKIZLS

The student must be able to maintain directional control without impeding traffic ${ }^{*}$: while crossing a bridge er drivitg through a'tunnel.

$$
\cdots
$$

Frequently, bridges may be narrower than the roadway and tunnels may appear to be narrower because of the lighting and wall structure: Driving àcross"a bridge or through a tuncel requires soméwhat greater mastery of basic control skills than is required for driving in lèss confineä areas.
$\stackrel{\rightharpoonup}{\infty} \quad$ PURPOSE: To enable the student to negotiate toil plazas in a"safe and expeditious manner.

的 KNOWLEDGES

The student must know the procedures for approaching the toll plaza and toll booth, paying the toll, and leaving the plaza safely, and the reasons for following these procedures.

If correct change is available, an exact-change lane should be selected.
Exact-change lanes are generally faster since they are not occupied by drivers requiring change or requesting directions.
Leaving the car at a toll booth ịs hazardous and in many cases illegal.
It is generally worth a small additional cost to avoid the delay in șummoning an attendant to recover coins, which missed the toll basket. Automatic change machines will accept more than the required toll provided denominations are. correct.
: $\mathbf{\infty} \quad$ PURPOSE: To enable the student to drive safely during weather conditions that limit visibility.

When the view through the windshield is obscured by precipitation or road spray, the student will:

- Turn on the windshield wipers and adjust the wiper speed so it is fast enough to keep the windshield' as clear as possible.
- Use the windshield washers to free the windshield of dirt when precipitation is light.

He will turn on the defraster:
c To melt ice and frost. from the windshield when the wiper action alone, can not clear the windshield

When the view through the windshield is obscured by condensations from the occupants' breath orduring humid or cold weather, he will wipe condensation from the side win. dow(s) with a cloth.

When the side window is covered with dew or mist, he will roll the win. dow down and up to wipe off the moisture.

The student will turn on the wind shield wipers to clear the surface of precipitation or road spray only after there is sufficient water to wipe without smearing the wincshield.

Even with antifreeze in the solution, he will not use the windshield wash. ers during extremaly cold weather.

After turning on the defroster to clear the condensation from the windshield he will:

- Tum off the heater air flow to permit a concentration of warm air through the air ducts, which expe. dites clearing the windshield.
- Open the vent wiñdow to permit the, entry of additional outside air, which will help reduce the humidity level inside the car and the tempera. ture difference between the outer and inner windshield.
- If neciessary, remove heavy condensation with a cloth.

The student must know the adjustments in his driving that are required to accommodate the weather that limits visibility and, the compensatory procedures for attaining the best possible visibility.

Driving in the lane that permits greater separation from oncoming vehicles is advisable because reduced visibility increases the chances of an oncoming vehicle driver being confused and entering an opposing traffic lane. This is particularly true at night when water accumulated on pavement dissipates the light and obscures lane markings.
In addition to restricting visibility gand affecting roadway surfaces, rain also increases the noise fevel inside the car (e.g., drumming of rain on car body, sound of windshield wipers, splashing of tires through water) which may prevent the driver from hearing bther vehicles.
Rain is more frequently associated. with traffic fatalities and injuries than any other weather condition.
A large percentage of injuries and traffic fatalities occur on wet pavements.
Vacuum-type wipers that have slowed down will return to normal speed if the foot is lifted briefly from the accelerator.
By drawing in the relatively dryer air from outside, the defroster clears away condensation from the inside glass suiffaces and keeps additional condensation from foriming. Adjusting the temperature setting to counter the outside temperature will expedite the process, as would increasing speed of the defroster fan. An open window also helps create a cross draft, allowing more outside air to enter the car.
If the defroster is inoperative during freezing rain or snow, the windshield may be cleared by applying glycerine or alcohol on the outside of the windshield to keep it from icing.
Even if the washing solution contains antifreeze, windshield 'washers should not be used during extreme cold because the spray might freeze on the windshield and obstruct the view.
During fog or intense precipitation, cars with low-beam headlights can be seen , at much greater distances than can those without lights or with parking lights. Parking lights are inadequate.
Sidelights are virtually useless in fog because they often become visible only after the car is outlined.
Fog lights should be positioned low to be effective.
The color of fog lights makes no difference in effectiveness.
Fog or intense precipitation was cited as a contributing factor in 46 of 1,000 accident reports recently reviewed.
Fog, mist, haze, and smoke seem to cause fewer personal injury accidents. $\overrightarrow{H 6}$ wever, fog is the leading cause of multiple car accidents.

The student should know the relationship of glare to tracking accuracy, target detection, fixating, and age. Drivers' in accidents have complained that/glare had limited their visibility at the time of the accident. Wearing sunglasses will reduce the effects of glare.
Blowing sand could damage the car if filtered into the parts.

SKILLS

The student should be able to automatically select the most effective procedure or combination of procedures for improving his visibility quickly. He should also be able to locate and operate the accessories by touch or with no more than à glance.

$\stackrel{\rightharpoonup}{\sim}$ PURPOSE: To enable the student to drive safely and comfortably during extremely hot or extremely cold weather.

.7

KNOWLEDGES

The student must know how the car could be affected by'extreme temperatures and the procedures for avoiding or overcoming the effects.

During hot weather:
When the air conditioner is turned on for the first time during the day, the window should be open and the fan turned on to clear out stale_air. Prolonged high-speed driving should be avoided during extreme heat. because the high speed causes excessive tire wear, increases the chänce of a blowout, and heightens the danger of the engine overheating.
Racing the engine in neutral while standing in heavy traffic makes'the fan turn faster and cools the engine temperature more quickly. Racing, the engine slightly also helps to keep the car from stalling.
After a-long drive during very hot weather, the engine șinould idle a few minutes before the ignition is turned off. This practice helps to prevent vapor lock, which could prevent the car from starting again.

- When the temperature decreases' rapidly, the brakes should be tested periodic- 1 ally because moisture that collects on the brake linings may freeze and cause reduced braking power.

During cold weather:

Turning on the heater should be delayed until the temperature gauge indicates the engine has warmed. Otherwise, the air from the heater will be cold.
Keeping the fuel tank nearly full will reduce the amount of moisture formed by air condensing in the fuel tank. The water could freeze and block the fuel lines.

The parking brake of an automatic transmission car should bé left off during extreme cold because the brake linings may freeze to the brake drum, making it very difficult or nearly impossible to disengage the brakes.:

- Opening a window slightly will create a cross draft, allowing warm air to pass through the heater without operation of the blower.
:
$\stackrel{\rightharpoonup}{\triangleright} \quad$ PURPOSE: To enable the student to maintain directional control during a high crossiwind.

KNOWLEDGES

The student must know the procedures to be used when driving in a crosswind.
Wind force will alter the lateral position of the moving car. Continuing on a straight line course without steering corrections will cause the car to cross into the adjacent lane or steer off the roadway.
The siower the speed at which the driver is travelling, the more time will be available to perceive, react to, and correct lateral-movemènts caused by crosswirıds.

Even moderate crosswinds can disturb the car's operation if (a) its handling characteristics, (b) the driver's condition, or (c) the road surface, are poor.

Worn shock absorbers - ispension linkages, worn, underinflated or overinflated 'tires, or Ulに...n weight distribution can increase the car's vulnerability to wind force.
Fatigue, inattentiveness, and other conditions that affect driver's performance will impair the quality and speed of response to crosswinds.

Slippèry pavement, surface irregularities, and superelevation increase the vulnerability of the car to wind force.

Gusts produce rapid changes in the car's lateral positioning. High corrective steering rates are required to hold the car in its lane. Such frequent steering and countersteering increase the chances of overcompensation or oversteering.
An excessive steering correction may cause a violent lateral motion when the wind is suddenly removed.

High wind can cause the car to deviate from path and this action can be erratic - through canyons.

SKILLS

The student must have mastered basic steering skills sufficiently to be able to correct rapidly, turning the wheel just enough to regain the desired path, without overcorrecting. .

PURPOSE: To enable the student to drive safely during darkness:

* CATEGORY	CRITICALITY			- •		
	HIGH^{\prime}	$\because{ }^{2}$ MODERATELY HIGHi	MȮDERATE	MODERATELY LOW		LOW
General Night Driving	Between dusk and dawn, ón extremely dark da?s, and at night the student will: - Drive with the headlights on. - Maintain a speed that permits stopping within the distance illuminated by the headlights.	The, student will drive more slowly during darkness than under similar "circumstancices during daylight. The student will be more cautious when performing maneuvers at night than during daylight. For example, he will: - Maintain a lónger separation between the car and the vehicle ahead. - Allow a gredter passing distance than would bẹ acceptable during day.light. To avoid becoming tired and to maintain good eyesight, he will make sure the car is well ventilatted.	As a general rule, the student will position the headights on low beam in all but rural areas. To avoid becoming tired and to maintain good eyesight. when driving for a long period, the student wilbstop frequently, to rest. At dusk, he will take off his sunglasses or replace tinted eyeglasses with clear ones.	The student will refrain from using matches or bright lights, such as the dome and map-reading lights.	σ	
Before Driving at-Night		Before driving at night, the student will' look to see that the taillights, stoplights, and directional-signals are working.	Before driving at night, the student will turn on the headlights. Before driving at night the student will place the headlights in the appropriate beam position. li necessary, the student will adjust the panel light to a lower intensity for better visibility of the roadway while still bright enough to read the critical instruments. Observe whether the headlights are on when leaving a parking space, particularly in a brightly lighted area where unlighted headlights may not be immediately noticeable.	When starting out at night, the student will flick the beams up and down to verify the lights are working.		*

PURPOSE: To enable the student tọ drive safely during darkness (Continued)..

- Night Driving

The student must know the additional actions that are dictated by darkness and the modificațions in normal maneuvers that ars required as a result of reduced visibility. The student must know the effect of darkness on visual acuity. He should know. that peripheral and central vision become poorer as the amount of illumination decreases, but that peripheral vision is more efficient than central.

As a standard of performance. most states require that a driver, be able to \because see an object 350 feet ahead with the high-beam headlights or.;

Sunglasses must be removed at night because they decrease the limited amount of"light reaching the eyes. However, wearing tinted sunglar ies during the day, prior to driving at night, aids night vision* because less time is required for dark adaptation. Once the eyes have become darkadapted, it is important to preserve their adaptation because recovery from exposure to brighter light takes a long, time. During the recovery
, period night vision is significantliy ìmpaired. Bright lights are to be avoided in the car because they reduce visibility by producing glare on the windshield and windows.
High altitude, smoking, and carbon monoxidé adversely: affect visưal efficiency at night. 'Good ventilation will reduce the effects of smoke and . carbon monoxidé.
Hiyhway lighting standards are based on the average vision of. $20^{\circ} \cdot$ year-old -drivers. Since-night visión deteriorates with age, there are many drivers on the road who cannot see very well. Drivers 50 to 70 years old require considerably more light to drive by than 20 -ÿear-olds. Drivers who, are 40 - and older are invoived in about three times as mány accid́ents resulting in injuries-when driving on unlighted roads as they are when driving on lighted roads.
The student should know the range of the car's headlights.
Low beams in good condition are effective for: about 150 feet: "High deams in goọd condition are effective between 350 to 500 feet.
Maximum visibility 'for high beam headlights with' no glare" is 540 feet. This is equal to the stopping distance for new tires on wet roads at 60 miles per hour.
Assuming effecive low beam headlight distance of 150 feet, and currecting for the decrease in seeikg distance due to speed, clear sight distance is 90 feet at 30 miles per hour. The stopping distance at 30 miles per hour, assuming a three-fourths second reaction time, is approximately 78 feet. This estimate does not include allowance for slightly farther visibility on 'wet roads, or consideration of the possible limiting effects of precipitation on visibility.
Use of parking lights for driving at dusk is illegal in some states because parking lights are too weak.

The sudent should know the relationship between speed and visibility.
To determine whether speed is appropriate to visibility, the driver may employ the following procedure: (a) estimate stopping time by dividing speed by 20 and adding-2 (e.9., 30 . miles per hour $=30 / 20=1.5$ plus $2:=$ 3.5 vsec ? nd); (b) count the seconds between the time the object becomes visible and the time the object is passed. If the estimated stopping time (a) is greater than (b), it will not be possible to "stop in time to avoid an object or person even if the brakes are applied upon first sight. 'Therefore, speed is excessive.
Clear seeing distance decreases in the daytime about 20 feet for each increast of 10 miles pèr hourw in speed. At night, these distances are further reduced. For example, at night-the driver can see 80 feet-farther at 20° miles per hour than he cań at 60 miles per hour.
Conditiọngss associatẹd with rural road́s, such as curves, 'hills and narr ww roadyâys essentially limit safe speeds to 50 to 60 miles per hour.
In a study comparing headlight visibility on wet and dry roadways, the driver's own headlights gave two to five meters shorter visibility undry roads than on wet roads.
In another study with no opposing vehicle, the wet road gave five to ten meters more visibility. This is attributed to wet roads having less light diffusing quality. Less light from the car headlights is reflected back to driver's eyes and - more light is reflected ahead toward object.

The student must know the impact of opposing headlights on the driver's night vision.

Visibility is affected considerably by opposing headlights at dijtances even in excess of 3000 feet.'
High bearis may blind the oncoming vehicle driver, compounding the problem of driving on a wet and possibly slippery surface.
Distance and speed estimation for oncoming vehicles at night is almost equal to that of daytime driving, in the case of standard size vehicles. However, since distance perception at nighti is based upon angular separation of headlights, the distance of a small foreign or compact car may be overestimated.
Concentrating vision $\partial_{\text {et }}$ the right side of the roadway beyond the oncoming vehicle oftsets the Blinding effect of headlight glare. Peripheral vision will keep the car driver cognizant of the oncoming vehicle.
Maximum visibility when both car and oncoming vehicle are using low beams is 200 feet.
Maximum glare trauble occurs at 100 to 150 feet.
̈ㅇ․ At 100 feet away, it is very difficult to see objects beside or beyond the oncoming vehicle. Vision does not return to nornial for some time after lights have been passed. The average pupil contracts in one second. When exposed to bright light, the pupil requires at least 7 seconds to readjust and even more time is required for the eye to become-dark adapted again. Therefore the driver actually travels a distance when he is effectively blind after passing a pair of brilliant headiights, e.g., at 50 miles per hour, a total of $\mathbf{7 , 3}$ feet is traveled before recovery. In a study of 162 drivers involved in night aćcidents, 62% suffered noticeably from glare blindness.

The student must know the procedures for following and overtaking a vehicle. Dimming the car's headlights" when overtâking a vehicle will reduce the adverse effects of glare caused by the headights shining in the other car's rearview mirror.

On the average, drivers are able to perceive closure with the vehicle ahead 'at between 1200 and 1500 feet.'
The distance between the taillights and, to a lesser degree, the brightness of the taillights of the vehicle ahead are the cues, the driver uses to determine his distance from that vehicle. The driver perceives he is closing with the vehicle ahead as the taillights appear farther apart and brighter.
Drıving at twilight is more dangerous than driving duiring daylight, Drivers overestirnate their ability to see at twilight. Shadows increase the difficulty in judging the speed and distance of other vehicles. Many drivers are also fatigued at dusk enroute home from work. One.fifth of motorists in fatal traffic accidents were fatally injured between the hours of $5 \mathrm{p} . \mathrm{m}$. and $8 \mathrm{p} . \mathrm{m}$.
. SXILLS
T.he student must:

Be able to ke rext of an oncoming vehicle with his peripheral vision and to maintain his casin its path by focusing along the right edge of his lane until, the oncoming vehicle has passed.

- Develop the skills of judging, distances, closing rates, and performances of all other normal daytime driving behaviors under conditions of alterect, reduced, or distorted visual information. -
Learn to overcome the stresses produced by the perceptual problems of night driving since these stresses can seriously alter his judgment, perception, and psychomotor ability.

领 PURPOSE: To enable the student to adjust his driving behavior to compensate for the effects of towing a trailer. \qquad電

䍂 PURPOSE: To enable the student to adjüst his driving behavior to. compensate for the effects'of towing a trailer (Continued).

KNOWLEDGES
The student must know that towing a trailer requires some modifications in normal driving behavior, extra care to perform maneuvers gradually. and smoothly, and the performance of behaviors peculiar to tewing.

- Towing a trailpr alters the center of gravity in the car and affects. its handling characteristics
A trailer also adds more cirag on the car.
The procedures for pe:forming the usual driving tasks with trailer in tow-such as starting, negotiating hills and curves, interacting with traffic, driving in wind, stopping, and backing-are described in the performance section above.
Additional procedures related to the trailer, such as frequent checks of trailer security and tire condition, steps for eliminating sway, adherence to special speed limits, and pulling into a turn-out area to permit a line of following traffic to pass are also listed.

SKILLS.
The student must be able to judge the effect of a trailer on his ability to accelerate and decelerate and upon thè steering and braking cilaracteristics of his car.

PURPOSE: To enable the student to adjust his driving behavior to compensate for the effects of hauling heavy loads within Hauling Loads or on top of the car.

KNOWLEDGES

The student must know the effects of a load on the car's accelerative, braking- and steering capabilities and the procedures for accommodating the load effects'.

A loaded car requires more braking distance and more highly inflated ctires.
Placing heavy loans within or on top of the car alters the center of gravity, with consequent cinanyes in the car's handiding characteristics.
: F
Failure to adjust driving behavior to compensate for heavy loads has been cited as a cause of numerous accidents.

SKILLS

The student must be able to detect citanges in the car's responsiveness and perform ance as the result of a load on top, and to respond quickly with compensatory adjustments in his driving.
̈̈ PURPOSE: To enable the student to react safely when a car's malfunction endangers its occupants isnd other. road users.

5	CRITICALITY.						
	HIGH	 MODERATELY HIGH	MODER:ATE	MODERATELY * LOW		LOW	
Accelerator Pedal Stuck		If the accelerator pedal is stuck in the down position, the driver will: - Observe the available unobstructed or clear distance ahead. - Not reach down to try to free th. pedal and thereby divert his attention from the roadway, even when there is plenty of clear distance available.	Ifthe accelerator pedal is stuck in the dơwn position ị heavy traffic, the driver will: - Turn off the ignition. - Brake gradually. - Downshift if possible. - Leave the roadway at the first safe opportunity. - If the car is equipped with power steering and power brakes: - Shift into neutral or depress the clutch. - Apply the brakes. - e. Leave the madway as soon as safely possible. - Stop the car. - Turn off treignition immediately.	If the accelerator is stuck in the down position and the distance ahead is clear, the driver may attempt to pull the accelerator up with the toe of his shoe or have a passenger try to pull it up.		$\cdots \cdot$	$?$
Brakez Faiture	If the braking function is completely lost, the driver will: - Pump the brake pedal in an effort to build up pressure. - Apply the parking brake with his hand on the release lever. - Shift to a lower gear. -: Steer onto the shoulder, over the curb or into a field if possible. - If necessary, look for an object to sideswipe, succh as brush, a snowbank, a guardrail or evẹ̃n a parked car. - Sound the Jom or activate the four-way flasher units to warn other drivers that the car is out of cuntrol.	If the brakes begin to fadgon steep downgrades or after repeated stops from high speeds, the difiver will: - Leave the roadway'as soon as it is safely possible. - Stop the car off the roadway and wait awhile to let the brakes cool off. If the brakes fail when a quick stop is vital, he will leave the roadway, taking care to avoid a collision with ${ }^{\circ}$ fixed roadside objects suc̣h as signś, poles, or trees. If the brakes are unresponsive after driving through deep, water, he will depress the brake pedal lightly with the Iefit foot while accelerating in an effort to dry, the brake linings and restore them to normal operation.	If power brakes fail, the driver will: Depress the brake pedal as far as it will go. - Apply increasing force on the pedal to stop the car's motion.				\cdots

PURPOSE: • To enable the student to react safely when car's malfunction endangers its occupants and other road users (Continued).

Loss of Oil Pressure

The student must know the signs of malfunctions in order to prevent emergencies from cccurring. and $b e_{\natural}$ able to respond quickly to emergencies that arise.

- If the accelerator is stuck or the brakes fáil slowing down the car is necessary but difificult.' Downshifting will allow éngine compression or "drag" to help slow the car down.
If the brakes fail a manual transinitsion car in motion may be shifted into low gear to slow the car. This can be done without stripping the gears by shiftiny into second gear and then into neutral. Once in neutral, the clutch pedal should be released and the accelera: scpressed to race the engine. Racing the engine will speed up the gear revolutions and elininnate gear clash. While the . engine is racing, the clutch should be pressed in, followed by a shift to low gear. This procedurre is called double-clutching.
"Power brakes/will fail any time the car stalls. To engage the brake reserve when - power brakes fail, considerably more pressure is required on the brake nedal * than would be necessary if the power brake unit were frenctioning, properly.
'Dual' brakes in newer cars have nearly eliminated the chance of a complete loss or the braking fuhction. Partial loss of the braking: function will alter the brake:'s response. Loss of the frent brakes is quite serious and could cause the car to spin around when the brake pedal is depressed.
- Assuming the driver can control the car, the loss of the front brakes appreciably increases the stopping distance.
A loss of the rear brakes will increase the stopping distance somewhat.
'Attempts to restart a stalled engine in a moving automatic transmission car should be made with the gearshift lever in neutral only, never park. Placing the gearshift lever in park while the car is in motion will damage the transmission. A blow-out or sudden flat tire farcefully aiters the car's direction. It. is imperative, therefore. for the student's initial effort to be directed toward maintaining a straight course through firm seering. Hard braking, if done first, ' ' ' could.lock the wheels and cause the loss of steering control.

A sudden loss of oil pressure necessitates stopping the car-immediately, with no further sattempts made to drive it. Without bil to reduce the friction between the moving parts of the car, irreparable damage could be done if the car is driven.

SKILLS

The student must:
Learn "double clutching," which requires precise coordination of clutch and accelerator.
Be able to react quickly to a blow out, avoiding the "natural" tendency to apply, the brakes and maintaining a firm grip on the steering wheel.
Overlearn the procedures to the point where he recalls the appropriate responses easily at any time.

PURPOSE: To enable the student to respond appropriataly to malfunction indications although the apparent malfunction may be unlikely to affect the safety of the driver or other road users. \dot{z}

KNOWLEDGE
The student must be able to recognize and respond appropriately to noncritical'mal functions.

Clear cues of malfunctions are frequently evident before a breakdown from -observation of tine display panel gauges or the driver's senses.
The driver who frequently chocks the gauges or warning lights will readily detect signs of overheating, battery discharge, or low fuel.
He can feel a tire ; sing flat in time to leave the roadway at a place suitable for tire changing. He must know the procedures for leaving the roadway, for remedying the problem, if possible, or be aware that he should cautiously proceed to the nearest service facility.

PURPOSE: To enable the student to deal safely with breakdowns that disable the car while on the road.

CATEGORY ${ }^{\text {- }}$	CRITICALITY				
	!	$\because \cdot$			
	, HIGH	MODERATELY HIGH	MODERATE	moderately LOW	LOW
Leaving Roildway	-	If a malfunction occurs when driving in the left lane(s) of a multilana highway, the. driver will pull onto the median if traffic prohibits moving to the right.	When a malfunction necersitates leaving the roadway, the driver will: - Drive off the roadway at the first safe opportunity. • - Allow the car to coast off the roadway if the engine is inoperative.		${ }^{\circ}$
Parking Car		If possible, the dritar will get out of the parked disabled cer on the side opposite to the traffic flow.	When parkiny a disobled car immediately adjacent to the roadway, the driver will: - Position the car well off the traveled portion of the roadway. - Move as far off the roadway as possible when in fog. - Turn on the fuur-way flasher.		
Car Stopped on Roadway		• .	When the disabled car is stopped on the roadway, the driver will: - Turn on the four.way flaslier. - Turn on the directional signal on the roadway sida of the car if the car is not equipped with a four way flasher. - If on an incline, attempt to coast the car off the roadway by shifting to neutral and also depressing the clutch in a car equipped with a manual transmission. ${ }^{\text {a }}$	If a manual transmission car is stopped on the roadway and needs to be moved a few feet, the driver will: - Shift to low or reverse gear. - Release the clutch pedal. - Press the starter switch to move the car.	*
Car Cannot be Moved From Roadway		When the car cannot be moved off the roadway, the driver will activate the four-way flasher unit.	When the disabled car cannot be moved off the roadway, the driver will provide advance warning to rear-approachining vehicles. In doing so, he will: - Place emergency flaros at least 100 feet behind the car in the lane and along adja. cent lanes. - If flares are not available, position himself or passengers to give advance warning of distress.		$\cdots \cdot$

The student must know the proceduras for parking a disabled car off the roadway, for moving a car that has stopped on the roadway off the roadway, and for handling the situation when the car cannot be moved off the roadway.

The student should know the standard distress signals so that a police vehicle pr motorist will stop to give assistance.
. Ample warning must be given to rear-approaching traffic whether the car is on . or off the roadway.

Emergency flares or warning devices should be placed an ample distance behind the car to alert rear-approaching traffic of the car's presence. At night, 200 to 300 yards is appropriate.
A white cloth tied to the left door hancle or the radio antenna and a raised hood and trurk lid ara signals that assistance is needed.
A vehicle parked alongside the roadway in fog is particularly dangerous. If, it is not lighted, it may be struck by another vehicle pulling off the roadway; if it is lighted. it may misluad a vehicle ar , the logation of the roadway.
If another vihicle is inmediately behind the car that has stopped on the roadway, the other exive should be asked to help push the car off the roadway with his vehicle;
With the help of passengers, a car may be pushed off the roadivay if visibility and traffic conditions are favorable. Everyone siosuld puch from tine side away from the roadway.
In a manual transmission car, pressing the starter will turn the engine and niove the car simutaneously if it is in low or reverse. The procedure is hard on the startar motor and will drain the battery, but it is a way to move the car a iew feet in an emergency.
When the car cannot be moved from the roadway, the correct procedure is to wait for assistance, not to leave the car to search for help. Waiting outside the car and off the roadway is safer than sitting inside the car, even with the warning devices in place.
$\underset{\sim}{\sim}$ " PURPOSE: To educate the student to remedy various on-road emergency malfunctions.
:

n

唇

The student must know how to correct on-road malfunctions that can be readily accamplished $י$-ji' ' a minimum of basic toois:

The stident should know how to extinguish a fire. Most car fires are, caused by a short circuit in the electrical system.
The student should know where fuses are located in the car and show to. replace them. Spare fuses should be carried in the glove compartment.
The student shoüld know that water or slush could cause the engine to fail and not restart. He should know how to check parts, of the ignition system for moisture and condensation.
An excessively overheated.engine requires an inspection of the condition of the cooling system parts for loose connections, wear, and leakage. If the radiator, hoses, and fan belt are in sound condition, the procedure is to wait for the engine to cool, with the hood up. Radiator caps must be removed with care even when the engine is cool because the coolant in the radiator may be under considerable, pressure. Steam and hot water, may spew from the radiator opening and scald the driver if the cap is removed without first releasing the pressure.

PURPOSE: To educate the student in the meinods, procedures, and hazards involved when being pushed or pushing another vehicle. (There are no performance objectives for this unit.)

KNOWLEDGES

The student should know whether one vehicle may legally push or tow dnother vehivile, and be aware of the problems associated with pushing and towing.

The bumpers of a poshing vehicle and the vehicle being pushed must match in contotir and height.
.. When bumpers are not perfectly matched, attempts to push will result in the Lumfers locking or physical damage to unprotected portions of either or both cars.
Pushing should not be attempted when the two vehicles are on different levels of the road surface.
Cars shòuld not be pushed around corners. They should coast around corners and stop cefore pushing is again attempted.
Four-way flashing inints should be used when pushing and being pushed.
Traffic must be watched and traffic signals obeyed during pushing. operations.
If the pushed car does not start within one-half mile, the pushing effort sihould. be discontinued because of possible damage to the transmission.
The driver of the car beil.g pushed should: -
When a manual transti: ision car is to be pushed to start the engine:
-Turn on the ignition.
Depress the clutch pedal and release the brakes.
Shift to hign gear. However, it is sometimes easier to start the engine in second gear.
When the car speed reaches 15 to 20 miles per hour, signal the driver

- behind to drop back and let up on the clutch pedal fairly slowly.
if iraffic corditions or available distance necessitates trying to start at very low speers:

Signal the driver of the pushing vehicle to drop back peiore letting up the clutch.

Turn on the ignition.

Move the gearshift lever to the drive position to start the engine. The forward movement of the car will turn the engine, which enables the engine to start:

- Pushing is a dangerous activity, especially with a pushed automatic transmission car which necessitates the pushing vehicle to travel at a speed that is hazardous for the visibility available. The pushed car, if equipped with power steering ò power brakes, has no power for either.
The driver pushing another vehicle should:
When the car is pushingia manyal transmission vehicle:
Move the car up slowly unṭil the bumpers just touch.
Begin to push gradually.
- Accelerate the car to 15 to 20 miles per hour if the vehicle is to be - started at a higher spèed, or accelerate to a lower speed if the driver of the vehicle being pushed is going to try low-speed starting.
Look for a signal from the vehiclé driver and drop back to ayoid touching the vehicle when the driver lets up the clutch. When the clutch is released, the vehicle will nose down slightly, which causes the rear end to rise. Thi• position could result in locked bumpers or ari override if the bumpers are touching at that moment.
When the car is pushing an automatic transmission vehicle, it is possible to use the same procedures as for pushing a manual transmission car, with the exception of speed. The necessary speed for atcomatic transmission cars is 30 to 35 miles per hour.

The car should be towed when longer distances are invoived or when the car cannot. be driven.

Only a tow truck should be used for towing, the car, not another passenger vehicle.

Bring the clutch up quickly to start the engine.
Depressing the clutch quickly to disconnect the engine before the slow speed is reached can kill the engine again.
When an auto:natic transmission car is to be pushed:

Put the gearshift lever in neutral and leave the brakes off.

- When car reaches the required speed of 30 to 35° miles per hour, signal the driver of the vehicle behind to drop back.

The car should not be towed to start the engine because the car will leap forward when it starts and-strike the velicicle towing it."
Automatic transmission cars should not he towed more than 12 miles unless special mechanical precautions are takeh to avoid damage to the rear wheels, drive shaft, and transmission. Automatic transmission cars should be towed with the rear wheels elevated.

K
V.

The driver who is pushing a vehicie with his car must be able to exercise precise enough speeci control to maintain bumper-to-bumper contact.
\therefore,

The student must know how is plan for trips, and how to use highway information to safely and efficiently travel to his destination. Trip planning entails equipping the car 'for emergencies, ensuring that the car and ciriver are in sound condition, charting the best route to unfamiliar destinations, and determining the best time to 'travel, among other things. Knowledge of what_to expect and preparing for the worst can help the driver and his passengers to contend with adverse seasonal conditions, accidents, and car breakdowns. Clear demarcation of the route to the destination can reduce frustrations, distrations, effects of hazards, and the time required for the trip.

To be prepared for emergencies:
The following items should be carried in the car at all times:

When preparing for a long trip over unfamiliar territory, the student should know where to obtain up-to-date maps, how to read maps, and the criteria for selecting the safest, most convenient, and most economical route. The driver who has selected his route after studying maps and has become familiar with the route's characteristics. as represented' on the map should have minimal navigational difficulties. He will have an idea of the nature of the roadway ahead and be somewhat prepared for key events, such as entering or meeting junctions.

Automobile clubs, service stations, chambers of commerce, highway departments, and insurance companies are good *sources of maps that reflect the latest roadway situation.
Familiarization with the legend is required for accurate interpretation of the symbols and markings on the map. The compass card and mileage scale provide the directional orientation and perspective of the area representit on the map.

Both large area maps and, more detailed regional or state maps are useful in trip planning. Strip màps contain only the route and are useful for navigating, particularly when a driver is alone.

A map covering both the departure point and the destination provides ars overall view of the distance tq be traveled and a gross idea of the major routes and highway , types available, for example, interstate, federal (U.S.) or state routes and highways that have controlled access, pavement, or are graded. The backs of large areà maps, such as those of the entire çountry, frequent!y have charts or tables that provide total mileage and travei tinte between key points. Alternate routes should be markedoñ the map.
Regional and state maps cover smaller areas, but represent the routes in greater detail. The routes marked on the large maps should be identified. on these more detailed maps and studied to select the route that best meets the driver's needs. The selected route should be marked so that it is n readily distinguishable from the ofiginal map lines. In selecting_the route, factors to be considered are:

Route length. The mileage between towns and junćtions is marked in. -black; milęage between key" poihts is marked in red. Finè uetermination of-the mileage 'for the alternate routes will- usually entail the addition of some-red and some black numbers.
Highway type (e.g., interstate, U.S., state, secondary). In contrast to the coritrolled access, multilahe, straighter, steady, and high-speed newer roads that more and more interstate routes are using, secondary routes are likely to be on narrow, two láne. - winding, hilly, variabie-speed, poorly surfaced roads that pass through many small \cdot towns.

The symbols of routes on maps usually are shared like the route, signs on the road. The sign shapes are distinct for the various types of highway and are readily recognizable.
Route signs-have the route number on them. The numbers of interstaté and.U.S. routes indicatè the direction of travel. Odd one- and two-digit numbers generally designate north-sóuth routes, with the lowest numbered IJ.S. routes in the- east and the lowest numbered interstate routes in the west. Even' oneand two-digit numbers génerally designate east-west routes, with the lowest numbered. U.S. routes in the nörth and the lowest numbered interstate routes in the south. For interstate three: digit numbers, an odd first digit, designates, a route into the city, while an even first digit designates a route through or around the city.

Roadway classitication (e.g., controlled access, divided, number of lanes, paved).
Current and seasonal weather conditions and their effects on the roadway surfac̀e.
Toil roads, bridges, and tunnels. On some. toll roads, like turnpikes, the toll is collected at the exit inierchange. The card given to the driver at the entrance to the road ligts the cost from tiax mierchange to each, subsequent interchange. On oiner roads a fixed toll is collected periodically, as on the Garden State Pärkway in New . Jersey. On the back of some maps the estimated cost per mile is provided so the driver can gauge the total expenso for using the roadway.
Locátions of service stations, restaurants, 1. ols or motels, or campsites. This information, together with that on places of interest and scenery, can be obtained from the back- of the map. The student should know alse that interstate routes generally have no service stations, restaurants or hotels/motels on the road. Such accommodations are available near interchanges. Rest areas are provided, along sections of the roadway, some of which have picnic areas.
Rocies through, around, or into metropolitan areas. The backs of regional and state maps have small riaps-of selected cities in the area with these routes represenied ier detail.
Strip maps or route cards are of speciai benefi^ to drivers traveling alone because the driver can coniirm his,recollection of the route at a glance. Strip. maps may be obtained from tutiomobile clubis and entrance bootis on most turnpikes. However, str:p imaps or roǔte carcs can be made easily and should include ròute trpe (interstate, U.S., or state), number or - \because name, direction, and.junctions.
inemorization of the èntire route or a leg at a tinie reduces dépèndence on maps witile driving. If avai!able, a passenger should aid the-driver by réadíng ihe maps, giving hire directiogsmlooking for critical juncticns, and locating the tiital destination.
-Selecting the right time of the travel can determine the level of comfort and the length of time the trip will require.
 corsidered enough driving for one day. However. gèturng sufiisient rest before sriving is more impartant to maintaining driver peiformance than restricting •
 lack of, rest, appears to affect perceptual-motor skills negligibly.
A time cushion should ,be allowed for service and rest stops, possible 'bad weather, traffic congestion, detours, and other unexpected delays.

By starting and stopping early int the day, the driver probably will encounter less trafuc, will find s!litaḅle lodging more easily (if not previously arranged), and will avoid night driving when-navigation is more difficult.
The driver can save time and frustration by avoiding known bottlénecks, including cities, bridges, and tunnels at peạk traffic hours. Week-end and holiday travel should be avoided too, if possible, because of the traffic jams and the higher risk of accidents. More people are killed during the first 12 hours than during any other 12 -hour holiday period. The hours from 6:00 to 9:00 p.m. are the most dangerous. On holiday week-ends, traffic deaths are about 25% higher than on nonholiday week-ends.

To reach a destination in a strange city, the driver needs explicit directions from a reliable-Person or a city street map, preferably both. The student should know how to use the riap efficiently.

The destination should be located in the index on the back of the map. The - index lists local communities, streets, and public and private buildings. Churches;' colleges, hospitals, libraries, parks, restaurants, and theaters are among the sites indexed. Each lọation is coded by letter(s) and number(s) tisat frame the map.
The letter and number of the destination represent a column and a row which intersect at à square on the map. The destination can be locatéd within the square and should be marked.
The rqute from the departure point to the destination should be marked with atiention giveń to the following factors:

Theroughfares that divide the city north-south and east-west.
The rumber of streets the oestination is from the driving thoroughfare.

- The cross streets that berder the destination.
* The streefis to the traveled and where turns should be made. The names of streets preceding required turns should also be noted, in order to position the car in the proper lane in advahce.
The one-way streets and thèir direction of travel. Cities commonly make thetr streets one-way to expedite the flow of traffic. Adjacent paralle! - \quad streets usually have traffic moving in opposite directions.
- - Through parallel side streets. They may be less congested and offer better travel time than the main thoroughfares.
When the roads are covered'with ice or snow, the student should know how to plan his route along major roadways. They are the first to be sanded. or cleared, Also, steep hills are to be avoided, and usually can be by using-parallel streets that frequently are less steep. Taking a few minutes more to detour around the;hill is - preferable to taking the chance of being stuck on the hill.
> -

[^0]路

原。

$\mathbb{K} \quad$ PURPOSE: To enable the student to load objects securely in the passenger area, trunk, and on the roof.
Loading

N KNOWLEDGES
The student must know the different ways in which the objects can be loaded and the best means of loading them.

Tlıe load must be limited to the car's load-carrying capacity,
The objects.should be positioned so that the distribution of weight in the car is uniform.

When placing objects'in the trunk:

Loads should not extend over 6 inches to the right side of the car or rast the line of the fender on the left.
A red cloth should be placed on the back of an overhanging load.

Extreme care must be exercised when objects are carried in the passenger area.

 A sudden stop may send the load side-to-side or forward in the car, endangering the front seat passengers or breaking the windshield.:

Knowledges

-The student must know the procedure for attaching a trailer to the car and the best manner of loading objects into the trailer. In order to avoid sway while traveling, the trailer tires should all be inflated to the same pressure.
When using a trailet to ${ }^{\text {h }}$ haul loads, both the'car and the trailer must be properly equipped. The car suspension system should be adequate for hauling the extra load side rear-view mirrors should be used when the trailer is especially wide, and all lights should be operable añd visible to the drivers who may be following.

The driver must be able tos.
Judge the effect of the trailer and load upon the car's accelerative and braking response.

Judge the path the trailer will make in turning corners'in order that both car and traiter remain within limits prascribed for turning.
Be able to associate turning motions of the car with those of the trailer in backing in order that both car and trailer remain on)the desired path

:

\begin{tabular}{|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{CATEGORY} \& \multicolumn{2}{|r|}{CRITICALITY} \& \multicolumn{3}{|l|}{!}

\hline \& HIGH `. \& MODERATEEY HIGHं \& $\because /$
MODERATE \& $$
\left\lvert\, \begin{gathered}
\text { MODERATELY } \\
\therefore \therefore \text { OKW }
\end{gathered}\right.
$$ \& LOW

\hline Alcohol \& The driver will limit alcohol consumption before driving. If he drinks before driving, he will pace drinks to no more than one per hour. \& When several alcoholic beverages are consumed in a shorte: ' period of time, the driver will wait, before driving, one hour for each drink taken. \& \& \% \& - ${ }^{\text {a }}$

\hline Drugs \& | The driver will avoid driving after consumption of the following drugs: |
| :--- |
| - Analgesics, sedatives, hypnotics, stimulants, and' amphetamines in large amounts. |
| - Antihistamines, sulfonamides, muscle relaxants, and antibiotics if they have previously caused drowsiness. |
| - Tranquilizers during initial stages following taking of the medication and before any obvious reactions have been noticed. |
| - Halluçínogens, marijuana. |
| He will nọt drive after taking drugs if it is prohibited by state law. | \& The driver should obtain from a physician and/or literature the probable effects of drugs on driving performance. \& \[

:
\] \& , . ${ }^{\text {- }}$ \&

\hline Both Alcohol and Drugs . \& The driver will not drive after taking both alcohol and a drug. \& 柯 - \& \& . \&

\hline
\end{tabular}

KNOWLEDGES

The student must be thoroughly familiar with the effects of alcohol and drugs on his ability to drive safely and efficiently. Personal factors and social conditions often provide strong pressures that lead people to drive after having.consumed alcohol, drugs, or both. Drinking and drug use reduce a person's ability to function mentally and in many cases diminish motor skill abilities used in driving. Knowing the possible effects of alcohol and various drugs on driver performance, as well as the penalties imposed when convicted of driving under the influence of either, wifl it is hoped, provide the student with the incentive to avoid driving after consuming alsohol or drugs.

Alcohol is absorbed into the bloodstream through the lining of the digestive tract, carried to all parts of the body including the brain, and eventually elimininated: As the alcohol concentration in the bloodstream increases, body functions arte affected. How different people are affected varies. In addition, the same person, may react differently at different times. For example:

Use of alcohol retards the driver's reflexes. His reaction time maybe increased by as much as four times the normal, if he has been drinking. Mușcular coordination is also impaired. These effects are critical when stopping disțances and the ability to maneuver and control the car are considered. Typically, the
intoxicated driver begins slowîing down too late, oversteers, weaves, andivaries speeds indiscriminately.
Alcohol has a detrimental effect on vision. Use of alcohol reduces visual efficiency in dim light, reduces the distance at which objects can be clearly. seen, and decreases contrast sensitivity. Generally, there is a decreasing ability
to detect pedestrian-size objects with increasing percentages of alcohol in the
blood.
Alcohol ténds to make a driver feel he is more perceptive and.skillfulthan he really is. Even a small amount of alcohol 12 ounces of beer or 1 ounce of whiskey) can affect driving. Since alcohol impairs judgment before other functions or skills, its influence is difficult fore the driver to detect. The exhilaration it may produce compounds the effects of lessened driving effi-- ciency.

Use of alcohol affects the emotional and behavioral makeup by weakening a person's inhibitions and heightening existing moods such as anger or elation. Reduced inhibitions can be a factor in taking greater risks while driving. Preoccupation due to a highly emotional state of mindoremoves one's concentration from the driving task to other areas.

The optimum performance level for everyone occurs when alcohol is not present in the bloodstream. Most people who have consumed some alcohol exhibit a lessened ability to drive competently. Ideally, if a person drinks anything with alcoholic $\underset{\sim}{\mathcal{W}}$ content he should not drive, but this is seldom put into practice. If a person realizes . he is going to have a drink before driving he should take some measures to
minimize the effects of the alcohol. The person can either wait for a period of time after, having consumed the alcolol before driving or he can eat some foods or do both. By eating prior to or at the time of consuming ${ }_{6}$ alcohol the blood alcohol concentration can be reduced by as miuch as one-half. Foods with high carbohydrate content are considered the best to counteract the concentration of alcohol in the bloodstream.

- Many highway accidents and fatalities can be linked to the use of alcokol. The student'should be àware of this association. This, selationship is exemplified by numerous statistics and accident report data.

Alcohol consumption prior to driving, ranging in degree from the drivers' admissions of having had "a drink or two" to" complete intoxication, was noted in 230 of 1,000 accident reports surveyed. \cdot s
Known alcoholic drivers had nearly twice as many accidents and violations as other drivers.
A recent Alcohol and Safety. Highway Report shows that only 1% to 4% of all drivers have blood alcohol concentration of $.10 \%$ or more. Of.the drivers who are-fatally injured in all types of crashes, about one-half were found to have blood alcohöt-concentrations of $.10 \%$ by weight.
Drinking drivers and pedestrians are-involved in 25,000 deaths per year.
Between one-third and one-half of fatal accidents involve a drinking driver and more than one-half of the drivers in fatal Christmas holiday accidents had been drinking.
The probability of being in àn accident' increases sharply as the amount of alcohol in the blood increases. Data from-studies on driving and alcokol show that the effects of alcohol increase approximately as the square of the blood alcohol concentration. For example, $.06 \%$ concentration is not twice, but four times as bad as $.03 \%$. Opinion among experts varies on the likelihood of a crash when the driver's blood alcohol content is below .05\%. Evidence shiows that the likelihood of a crash increases at around the $.05 \%$ level and becomes progressively and disproportionately greater at higher concentrations. Increasing the blood alcohol. concentration is dependent upon a person's weight. For a' 150 -pound person, the concentration is increased by approximately $.02 \%$ with each drink.

Based upon research" conducted to date, it appears that, while drug, use may be responsible for some highway accidents, it is apparently not making as great a contribution to such incidents as alcohol. One explanation for this may be the relatively smaller proportion of drug users to alcohol users among drivers. The
incident.rate may also be deflated as a result of the inability to test for hallucinogenic drugs and because certain drugs, such as amphetamines, are not easily detected through blood samples. Nevertheless, it is important that the student be, aware of - the known effects of various ydrugs and how. they could affect his driving performance.

Narcotics are the most powerful and dangerous type of drugs. They produce drowsiness, inhibit concentration, impair vision, and tend to make the individual sluggish. Morphine, cocaine, and heroin are typical examples of narcotics and can be legally. dispensed only when prescribed by a physician. One should not drive after taking any narcotic since concentrating on the driving task would be difficult and vision àffected.
Marijuana, also known as "grass", "pot", and so forth, has been known tp cause hysteria in the early stages and sleepiness or a stuporous condition in later stages. Hallucinations may result from heavy dosages. Marijuana intoxication will distort a person's perception of time and space, making driving extremély dangerous.
Use of amphetamines increases alertness and efficiency for a short period, but these temporary effects may be followed by headache, dizziness, fatigue, irritability, and a decreased ability to concentrate. Hallucinations may result in making driving particularly hazardous.
Tranquilizers and antihistamines c.il cause drowsiness especially if excessive dosages are used or used repeatedly. Trạnquilizers can also cause blurred vision if the dosage" is too great, while antihistamines may cause such side effects as inattention and confusion.
Barbiturates should never be taken if a person intends to drive because it is difficult to predict the effect on any one individual. Individual reactions vary depending upon dosage and can include drowsiness, confusion, difficulty in thinking, and even inability to coordinate muscular actions.
A number of other drugs such as dramamine (a motion sickness remedy), penicillin, sulfañlamides, and hallucinogens such as LSD can produce effects that can adversẹly affect driving ability. Dramamine may cause drowsiness, düll mental alertness:' and slow a person's reaction time. Penicillin and sulfa.* nilamides may cause violent and abnormal reactions. LSD and other hallucino--genic drugs affect the nervous system, producing changes in mood and \# "behavior, and distorting one's perception of reạity. Sight, hearing, and timie percéption are affected.

The total effect experienced by a person taking drugs in combination with aicohol is greater than the sum of the two effects. The intensity or magnitude of the effects is a function of the type of drug and alcohol taken, as well as the quantity of each. In addition, each individual's biological and emotional makeup plays a role in how he will react to alcohol and drugs taken separately or in combination. Studies
regarding the interaction of alcohol and drugs have shown that when taken in combination they adversely affect performance' on driver-related skills such as steering and tracking.

Depressant drugs, such as tranquilizers and antihistamines, taken with alcohol can-produce unpredictable multiplicative effects. There is a greater chance that a person will become drowsier than if, the depressant grug had been taken without alcohol.
Stimulants taken with alcohol in some cases counteract the effects of low concentrations of alcohol. Subjective feelings of increased alertness result, although they are not actuaily accompanied byi.improved rrotor skills. At other times, the depressant effects and skíl. impairment resulting from the.alcohol are increased by the stimulant.

A review of driving records . of known or convicted drug users shows that these people have inuch higher violation rates and in some cases higher accident rates than do average drivers.

A study:of the driving records of over 200 drivers convicted of illegal drug use indicated that these drivers had no more accidents, but nearly twice she number of violations of other drivers.
The typés of violations prevalent among drug users are similar to those for young drivers-speeding, deriective equipment, improper registration, and driṿing while a license is revoked.
, "The, driviing records of a group of drug-dependent persons showed that their accident rates were about twice as high as expected for their age, sex, and driviing exposure. Most of the excess was attributed to heavy amphetamine users, many of whom admitted having taken amphetamines prior to the accident. Those using barbiturates and alcohol, barbiturates alone, or tranquilizers had accident rates that were lower than expected, based on accident rates for all drivers.

The student should be aware of the regulations regarding driving when under the influence of alcohol and drugs and the penalties rendered if convicted for driving under their influence: \qquad
Most states use a concentration of $.10 \%$ alcohol in the blood as the measure for presumption of $8 r i v i n g$ "under the influence of intoxicating liquor." To. comply with the federal standard, those states still using a $.15 \%$ will have to adopt the lower limit.
A person convicted of driving under the influence of alcohol or drugs may be punished by imprisonment of 10 days to 1 year and/or by a one hundred. to one thousand-dollar fine. Subsequent convictions are punishable by at least 90 days in prison, a fine up to one thousand dollars and revocation of driver's it license.

Physical and Emotinnal Conditions
PURPOSE: To enable the student to become aware of physical and emotional conditions that may affect driving ability and how to compensate for such conditions.
CATEGORY

KNOWLEDGES

The student must know the relation of a driver's physical and emotional condition to his ability to drive safely.

The safe driver is mentally alert and able-tb receive and register various cues from the driving environment. His capacity for receiving and responding to these cues is dependent upon his physical and emotional condition. The driver must know how to compensate for physical limitations and the impottance of maintaining a stable emotional state when driving.

Temporary or permanent visual and auditory ailments limit the quality and quantity of cues the driver receives. His actions may be inappropriate for a particular driving situation, not because he is ignorant of the techniques and methads. of a safe efficient driver, but because of a failure to receive cues due to a physical ailment. The American Optometric Association estimates that at least 35% of all drivers have visual problems which may be dangerous ${ }_{\text {en }}$ and 15% of these drivers are unaware of the :zact.

The requirement for good vision is further shown by accident stavistics and studies investigating the association of accidents with visual defects.

Tests on accident repeaters have shown that 58% had tunnel vision and that three-fourths of their .ecidents were sideswipes.
Studies of drivers with one bad eye who had accidents at intersections indicate that the vast majority had their accidents on the side with the defective eye.

Driver failure to wear prescribed eye glasses was specifically noted as a factor in a number of the accident reports reviewed.
Data obtained under experimental conditions show that accident repeaters cqunseled about their visual defects reduced their accident rate by two-thirds, while repeaters who had not been counseled increased their accidetit rate by nearly one-half.

Some familiarity with the relationship of visual defects as a function of age and some recommended visual standard's for drivers serve to indicate the need for assuring that one's vision is adequate for the driving task.

People should not drive if they have one of the following visual defects:
Less than 20/70 vision (corrected).
Between 20/40 and 20/70 vision (corrected) at night, during bad weather, or where visibility is restricted.
Visual field less than 140°.
Eye imbalance if it produces double vision suddenly.
Total color blindness.

In general, the total field of vision is at a maximum between ages, 16 and 35 and-decreases thereafter for both sexes. By age 60 there is ineasurable shrinkage.
Glare resistatios is best between 20 and 29 years of age, but one in seven in this group below average. In the $30 \cdot$ to 39 age range, one in three is substandar 4 . After age 50, only one in seven has normal glare resistance.
The abili, to perceive cues from the side is critical to accurate estimation of car velo.5ity. The Association of Motor -Vehicle Administration recommends that a driver should be able to see at least 70° sideways (one eye) when lookinitis straight ahead. A normal eye can cover 90°. Tunnel eyes may not do bette; than 10°.

At ieast 90% of the cues that the driver must háve to guide nim in traffic are visual. The visual requiremients can become demanding on-long drives or in instances where there is a concentration of driving cues directly to the front, as in freeway driving. The eyes. typically make short horizontal movements in the process of scanning the environment. When the driver scàns the area over a prolonged period, a strain on the eye muscles generally results. In äddition, wher the driver is physically or mentally exhausted, drowsiness sets in whether or rot there is eye muscle strain. the effects of fatigue upon diving and driying performance are:-

When the eyes beçome tired the ; normal amount of eye coordination is, reduced. When eye fatigue occurs, there may be a reduction in depth perception. This reduction is an important factor in judging distances. With tired eyes, the field of vision is also decreased and peripheral vision is impaired.
As fatigue sets in, objects seem farther avray to the driver. A distortion of this type can be fatal if the driver is required to stop suddenly.
Perceptual skills and courtesy tend to deteriorate after several hours of continuous driving, but the driver's ability to control the car's directicn and speed seems to remain constant despite fatiçue. Over prolonged periods of driving, a decrease in driver attention is evidenced in a general tendency toward increased steering reversals, accelerator reversals, and speed variation. Withiǹ this, trend, however, there are wide individual differences.

Good hearing is needed to detect sounds of emergency situations including horns, sirens, and screeching brakes. The ability to hear these sounds may prevent an accident from occurring.

Studies have shown that drivers with hear/ng problems have a greater number of accidents and violations than those with normal hearing.
A person with normal hearirig is able to hear an ordinary spoken voice at 20 feet.
Because a developing hearifig loss is frequently not noticed by the individual experiencing it, frequent hearing tests are needed. particularly in later years.

Fatigue effects can be minimized by countermeasures.
The eyes may become fatigued as a result of giare from the sun, shiny objects, or oncoming headlights. Sunglasses should be worn on bright days and when driving at night the driver sheuld avoid looking at the headlights of oncoming traffic.
Carbon monoxide poisoning may aggravate or intensify normal driving fatigute and drowsiness. In addition to keeping at least one window open, certain precautionary measures can be taken to minimize the chances of carbon monoxide poisoning:

When traveling in slow-moving traffic or when driving through tunnels the air intakes should be temporarily closed; the engine should be sheut off if delays are expected to be longer than a few minutes.
The garage door should be open if the car is inside the garage and the engine is running.
The muffler and tailpipe should be replaced if clogged or corroded. In adidition, a beni or broken exhaust tailpipe should be straightened, repaired, or replaced.
Changing driving speed abost every 15 or 20 minutes helps to prevent or overcome highway hypnosis, of which there are three forms: (a) velocitization-when affected with this condition the driver is unable to reckon his actual speed ir ierms of stopping distance; (b) high-speed hypnosis is a result of a trance caused by too smooth and straight high-speed driving: and (c) hypnogogic hallucinations is a corndition in which the driveŕ slams on. the brakes to avoid striking a nonexistent object.
By shifting the eyes over the whole area of vision when driving, rather than keeping them steadily in à fixed position, the driver is léss likely to become drowsy.
Talking, singing, chewing gum, eating, and drińking aiffee or a soft drink aid in overcoming fatigue. In cars equipped with radios, the ciriver should tune in on sports and news programs or to some lively music.
Pulling over to the roadside or to a rest area at least every two hours helps to prevent or offset fatigue. While stopped the driver can stretch or exercise. The eyes can be closed during a rest stop to relieve any eye fatigue that has developed. If a concession is nearby, the driver should buy coffee, tea, or coke to offset fatigue. Washing, the face and neck with water is also helpful.

Many accidents occur because the driver is exhausted due to physical exertion or mertal activity. Both conditiors can result in the driver falling asleep at the wheel. Supporting accident date show that:

An extremely high percentage of one-car accidents are caused by the driver fełting asleep; on U.S. Route 66 there has been an unusually high persentage of accidents that can be attributed to falling asleep or dozing while driving. A
straight cross-country high-speed highway such as U.S. 6 G̣ generally has a high proportion of accidents that are caused by falling asleep.
Extreme fatigue resulting in-delayed reactions orfalling asleep at the witegl was a primary cause.in the sample of the accident reports received.
The driver should, if possible, refrain from driving when fatigued. In cases where it is necessary to drive, the driver should realize that his reactions are probably . slowed, and should drive at a reduced speed, maintain greater following distance and shoúld allow for a greater stepping distance.

It is questioniable whether people suffering from chronic diseases o: impairments should ndrive. The type and severity oi the diseases and impairments are the deterninants.

Peciple suffering from the following diseases should never drive: uncontrolled diabetes, savere hyperthyroidism, \rightarrow hasers hyper-and hypoparathyroidism, acromegaly, .immonds' disease, Cushing's disease, Addison's disease, abnormal heart conditicn, hypotension, or carotid sinus sensitivity leading to syntope, epilepsy with seizure history, Meniere's syndronae, severe arthritits, cerebral . palsy, or laxer stages of muscular dystrophy.
Whèn driving.if an acute pain or feeling of siscomiort develops, the driver should pull over, stop, and obtain assistan:ce.

- Special equipment hys been designed for automobiles so that orthopedically disabled persons sian drive with only their arms or only their feet.
Medically controlled epileptics and diabetics" have been able to perform adequately in the diiving environment.

Some çata ofr the accidenr and traffic violation rate of people with cardiovascular disease, điabetes, and histories of epilepsy compared to peoplë without 'medical conditions reveal the followint:

Drivers known to have curdiovascular diṣease had 1.6 times as many,accidents and 1.3 times as many vidjations as normal drivers; diabetics had 1.8 times as - many accidents and 1.4 timis the violations, and epileptics had 2.0 times the accidents and 1.4 times as hany violations. Thesé age-adjusted comparisons were based ón accidents per milion miles and violations per 100,000 miles.

Other data show that in a significant number of the accident reports surveyed, drivers suffered a heart attack or blackoist spell at the wheel even though in most' cases they were awrare of this possibility from previous occurrences. '. .
Emotions play an important role in the drivish task. The manner in which a driver sesponds to the traffic situation depends largelt: upon his omotional state. Driving can be a frustrating task and can induce emotions ein people süch as anger or worry.

Whether one enters the driving situation in an emotional state or whether such a state develops as a result of the driving environment and task, the result can be the same; driting performance can be affected in a detrimental fashion. Both perception and fudginent can be affected by a person's emotional state. Accident reports riviewed have shown that a moderate'y, high percentage of the accidents listed the driver's emotional state! as a contributing cause.

In addition to visual and auditory, défects, fatigus, chronic illnesses, and emotiónal condition's, the temporary effects of alcohol can affect driving performance. Certain precautionary measures should be taken by the driver if it becomès necessary to
drive after having consumed some alcohol:

$$
0
$$

He should realize that his performance is somewhat impaired even though he feels well and particuliarly qualified.
He should keep to the right and drive: at a slower speed than he normally drives.
He should watch closely for surrounding trafilic and if possible isolate his car from other traffic, by increasing his following arid lateral distances.
He should view the rondway and roadside closeiy for pedestrians, particularly at night. Close surveillance is necessary because consumption of alcohol reduces. visual contrast sensitivity and decreases a driver's ability to detect. pedestrians at night.
He should take measures to offset fatigue as described above, keeping at least one windsw partially open for fresh air stimulation.

N PUR;OSE: Fo educate the studerit to maintain the car in sound operating condition through routine care and.servicing.

in PURPOSE: To educate the student to maintain the car in sound operating cóndition through routina carn and servicing (Continuec).

-	Griticality				
CATEGORY	HIGH	MODERATEL:i HIGH		MODERATELY LOW	LOW
Battery, Electrical System (Continuad)				- The battery case and cables chocked' for damage, cracks, or corrosiori. - Laose :lamps and cable cannactions tightened, damaged or worn rables replated, and a damayed bottery carrier rupaired or replaced. He will wissally insprec the slectrical circuits that are visiblo under the hood for lonse connections and dam. ayed wiring. As necussary, ha vill: - Tighten loose connections or have them tightened. - Have damaged, worn, or frayed electrical wiring raplaced.	As necessany, the driver will replise the battery if is is warperd, cracked, or otherwisa domaged. If the battery and cables are corroded, he or a selvice station attendant will: - Remove the corrcsion with a baking-soda and water solution. - Coat the battery terminal posts and. cables with petroleum jelly to provent further corrosion.
Steering and Suspension System	$!$		The detiver will test the steering wheel for oxcessive play and havp it adjusted if it can be turnad two or more inclins beffera the front wheels begin to turn.	At least once a monith the driver, wrill check the suspension system. He will: - Look to see if the car lists or sans. W so, inn will havs the car checked for worn or broker spriness and dofective or badly adjusted torsion bars. - Pusli dowin the humpar and observe the car's vertical motion. If the car continues in a dawnuesd mntion after the force has been removed, he will have the stiock absorbers checked.	
Braking System		\bullet	The driver will check or have the braking system checked monthly. Hic * will: - If the brake, pedal sinks forward.	In checking the braking systern, the driver will look for signs of brakefluid leakage near the master cylinder and at the wheels.	- . .

N PURPOSE: To educate the student to maintain the cor in sound operating condition through routine care and vicing (Continued).

KNOWLEDGES

The student must know that his car must receive routine care and servicing to reduce the chance of excessive wear on the parts, of breakdowns on the roadway, and of accidents resulting from malfunctions. Some inspections are part of predriving tasks to be performed each day; others are to be performed on each refueling trip to the service station; some inspections should be made monthly.

Burned out light bulbs or sealed-beam headiight units usually can be easily and inexpensively replaced.
The student should know that the tires should bet inspected at least monthly and know how to use a gauge to check inflation pressure. The automobile manufacturer's recommended inflation pressurè should be followed, to include specific adjustments for oversized tires, esfimated load weights, anticipated driving speed, and the differential for front and rear wheel tires. Tires should be inflated or deflated to the proper pressure, but the pressure must not be reduced if the tire is hot.

Underinflation shortens the life of a tire. In addition to causing excessive wear on the outside of the tread, underinflation also causes flexing of the tire cords, which in turn results in excessivg heat buildup and weakening of the side fabric. Steering is also harder with underinflated tires.
Overinflation may cause excessive wear in the middle of the tread and degradation of the tire's capacity for absorbing road shock.
Proper tire pressure plays an important role in car performance on a curve. Cornering ability'tends to improve with an ircrease in pressure at a constant load, due to the increase in sidewall stiffness.
Worn tires are a significant factor in the degradation of car stopping capability. A bald tire skids more easily and has increased probability for blowout or punctures. A groove depth of $1 / 16$ inch tread remaining is a minimum acceptable requirement and tires should be replaced if less tread is remaining. The disablement rate rises sharply for tires with less than $1 / 16$-inch tread remaining. Sorrie tires possess a tread bar marking which becomes visible when the tread remaining is at the minimum atceptable limit.
About 2% of accidents during normal driving are caused by tire failures. Of 1,000 accident reports recently surveyed, excessively worn, damaged or underinflated tires were noted in a significant number of cases.
A monthly check of the windshield washer fluid level insures that fluid will be available when it is needed. A small amount of windshield washer liquid (antifreeze) mày be'used for better cleaning in warm weather.
The car manufacturer's recommended type of coolant for the season should be 1 used.

A fully charged battery and properly functioning ignition system make it easy to start the engine quickly. Several million drivers experience roadway malfunctions each year because of battery failures.
Proper maintenance of the steering and suspension system is important to the accuracy of steering control and the stability of the car. For example, properly furctioning shock absorbers increase cornering ability as they work with friction and gravity to combat centrifugal force. Poor maintenance in this area was cited as a contributory cause in numerous accident reports surveyed.

Too much play in the steering wheel diminishes steering control and indicates either wear in the steering column, which can be adjusted, or worn tie rod ends. If the situation is not corrected, tho much play in the steering wheel could result in failure of the steer ${ }^{\text {ing }}$ gystem and complete loss of steering control,
Defects in the suspension system can degrade the steering and stability of the car. l.owering' of the front end just an inch or an inch and one-half may reduce the maximum safe speed of the car 10 or more miles per hour (e.g., 65 to 55 milles per hour) by affecting the car's stability.
A poorly maintained braking system was noted in á signiificant number of accident reports reviewed.
Oil servas to lubricate the engine and to reduce the 'friction between its moving parts. Regular checks when the engine is hot will minimize the possibility of the oil level dropping to a low level. If the oil level is so low the oil pump cannot circulate the oil properly, the engine can be damaged.

The ignition must be turned off:;in order for the oil to be checked. Waiting a few minutes before checking will allow the oil to settle in the crankcase and will, yield a more accurate feading.
Without adequate oil to keep the moving parts of the engine well lubricated, the parts will rub together and generate a grea: deal of heat. Both the friction and excess heat will-cause damage to the engine very quickly.
Regular oil changes every few thousand miles are necessary to remove dirty oil. Oil picks up dirt, water, acid, and other substances that lessen its lubricating effectiveness and çould cause additional friction between the parts if cycled through the system.
Use of the same grade and brand of oil is recommended by most mechanics to avoid mixing additives that may be incompatible. Additives vary among brands, and different additives may not work together properly.
Overfilling with oil is wasteful and may also harm the-engine by foaming and failing to lubricate effectively.

The amount of resistance or "play" in the clutch can be a clue to malfunctions.

Too much play in the clutch pedal (i.e., it sinks to the floor quickly) may indicate that the clutch isn't disengaging completely and difficulty in shifting gears may occur.
Too little play may signal a slippage and could result in excéssive wear of the clutch mechanism. if not corrected.
Mufflers and taitpipes are'subjejct to rust on both the interior and exterior walls. A worn mufffer is less effective in reducing noise, and a worn tailpipe will not coṇtrol the exhaust emissions as intended. Moisture from exhaust gases collects on the inside of the muffler and tailpipe and causes interior rust. This situation, occurs mostly as ; result of short-trip driving where the exhaust system doesn't get completely warmed up. Dual exhaust systems rust quiçer' tharr single exhaust systems because they warm up slower. Water, snow, and salt from winter streets' cause exterior rusting of the muffler and tailpipe.
Rëfueling. the gasoline tank when the tank is one-fourth full or more cuts down on the probability of condensation forming in the tank and reduces the chance of pumping sediment through the gas line and. of running out of gas.

出 PURPOSE: To educate the student to have the car inspected and serviced in accordance with the recommendations of the manufacturer.
CATEGORY
knowledges
The student must know that a systematic program of inspection and servicing will, help, to identify existing and potential car malfunctions, serve as a preventive measure to lessen the number of accidents due to car malfunctions, andilessen the number of car breakdowns.

Headight defects are prevalent, and misalignments of even a degree or two greatly affect visioility. For example:
'Of $3,000,000$ cars checked on the highways in one year, 69% had headiight defects.
Staie inspection programs founci headlight defects in 20 to 30% of the cars inspected.
A national safety check found defective headlights to be the second most preyaient defect.
Headlights aimed one to two degrees upward will reduce the normal visibility of an oncoming driver by 25%. Lights misaligned downward have lietle effect on oncoming drivers. However, headlights misaligned downward by one degree reduce the driver's visibility by 50%.
The steering and suspension system, the front end alignment, wheel, balance, and condition of the tires seem to present frequent problems.

State inspections were failed in 43% of car front ends.
Wheels frequently are found to be 6 to 12 ounces out of balance. Wheel imbalarice causês a vibration which is a considerable fatigue factor, especially at higher speeds. Excessive or uneven tire vear is another resuit. of wheel imbalance.
Of the estimated breakdowns in one recent year, 20% were attributed to - tire problems.

Tires smould be rotated every 5,000 miles to ensure even wear. The : 5 recommended method for rotation is: left front to left rear, left rear to right front, right front to right rear, right rear to spare, and spare to left front. Tires will get up to 25% more wear when the spare is included in the rotation scheme. Some experts denounce tire rotation entirely. They feel that good tread is so important that tires should be replaced when wear is noticeable rather than 'rotated for even wear. If replaced when worn, rotation becpmes unnecessary.
in one year, battery and electrical problems accounted for 43% of the estimated automobile breakdowns.
Brake defects were found in 10° to 20% of the cars that underwent state inspection.
\qquad
The exhaust and smog control system should be inspected periodically and adjusted to maintain the desired levels et crankcase and exhaust emissions.

PURPOSE: To educate the student to have the car repaired in response to breakdowns, symptoms of malfunctions, arid deficieñies noted during inspection and servicing:

Repair

in PURPOSE: To educate the student to have the car repaired in.response to breakdowns, symptoms of malfunctions, and deficiencies noted during inspection and servicing (Continued).

NOOWLEDGES
The student must know that repairs should be performed whenéver deficiencies are noted during routine care, periodic inspection and servicing, breakdowns, or normal driving.

The car wandering from side to side may indicate unequal tire inflation, faulty wheel alignment, faulty shock absorbers, or a broken spring.
If the car steers hard it may be due to unequal or underinflated tires, inadequate lubrication, improper wheel alignment, or worn or improperly adjusted steering system parts.
If the car pulls to one side when the brakes are applied, the brakes should be checked for damaged wheel cylinder, bent wheel, or grease on the brake lining. If all four wheels are not braking equally, the braking distance will increase. and steering may be unpredictable.
A scraping sound when the brakes are applied may be due to worn wheel bearings which may be caused by either the drum rubbing on the backing plate or drag on the brake shoes.
A thumping sound in the chassis as the wheels rotate suggests that the tires should be checked for blisters. The wheel bearings and pinion bearings should be checked for wear and tightness. The sound may also be due to improper lubrication of the drive shaft.
A growl or rumble in the higher ranges of each gear can be indicative of excessive wear in the transmission parts.
Thesmuffier and exhaust pipe should be checked for damage if loud noise cortres from the exhaust.

Occasional "missing" of the engine at idling or low speed may be due to an improper fuel mixture, dirty or defective spark plugs, or improper "operation of the distributor and ignition timing.
The generator/alternator may be, malfunctioning if the ammeter shows discharge even though alh of the electrical switches are turned off or when the engine is running rapidly.
(PURPOSE:
解

nNowLedges
The stuc must know the procedures for obtaining a driver's license. He must also know the rollowing regarding car certification:

When buying a car or maving to another state the driver must obtain a registration certificate and license plates from the state motor vehicle department. All cars driven must be registered and have license plates displayed to indicate that semeone has legal custody of the car.
The owner of the car must have a certificate of ownership.

- The car registration should be carried on the driver or in the car at all times. The registration certificate must be renewed prior to expiration date.
The car ownership certificate should be placed in a safe place in the home. It shouid not be kept in the car.

The student must have the inspection sticker displayed as.directed by staţe authorities. The student must be aware of any regulations requiring inspection andior insurance before registering the car.. .
\tilde{O} PURPOSE: To educate the student on the post-accident responsibilities-of the driver.

（

The driver must know he has post-accident legal responsibilities.
He "must report the accident, obtain accurate information 'rom parties involved in the accident and any witnesses, and must file an accident report to the proper authorities.
In most states the drivers involved have the legal responsibility to report an accident if there is a personal injury or if property damage appears to equal or exceed $\$ 100$.
Any driver involved in an accident must comply with giving his name, address, vehicie registration, and any assistance required.
If a driver fails to stop and/or render assistance, or give the required information, he may, upon conviction, be imprisoned for 30 days to as much as one

- year and/or fined a minimum of one-hundred dollars to a maximum of one-thousand dollars, in addition to having his driving privileges revokzed.

Obtaining accurate accident information is critical.
Carrying an accident information form in the car for such Emergencies would facilitate collecting all the information required. '
Obtaining signed statements from witnesses would protect the driver against excessive damăge claims and are important if criminal charges are filed against him.
Obtaining signed statements from bystandèrs who deny having seen the accident would prevent them from appearing as witnesses against the driver at ' a later date. This should be done if a driyer feels that the bystanders did in fact see the accident.

All states have an accident report requirement or, financial responsibility laws requiring ruports.

Financial responsibility laws of most states require drivers involved in accidents to - ${ }^{\text {anj }}$ fablish their ability to pay justifiable claims. Liability applies to injury and property damage.
Any person knowingl; giving false information in an accident report can be fined up to one-thousand dollars and/or imprisoned for up, to one year.
Failure to report an accident to the insurance company could result in cancellation of the driver's policy.

Rendering assistance to the injured should be done only after certain protective precautions have been taken.

Assistance is offered to the injured person if he is conscious and is given only with his permission. If the injured person is unconscious, permission is obtained only from a blood relative (spouse, parent, sibling, or offspring of
legal age). If no blood relative is available, first aid is performed to the best of the driver's knowledge and ability, with the materials available.
If assistance is refused, the driver can not touch the injured person, without placing himself in a precarious legal position.
If permission is granted to remove the injured from the roadway, the spot where the person was lying should be marked. It is alsco helpful to know how the person was lying.

辰

辰

辰

$\|_{n_{n}^{2}}^{0}$

㛈。

层。

践

原

辰

腔。

F

侄。
 i

$$
\begin{aligned}
& \begin{array}{l}
\therefore \\
1 \\
1
\end{array} \\
& \text { Low criticality items }
\end{aligned}
$$

\square
\square

$\overbrace{0}^{0}$

$$
\begin{aligned}
& \text { response the student can make. } \\
& \text { (ho!pu }
\end{aligned}
$$

$$
\begin{aligned}
& \begin{array}{l}
\text { If several things happen more or less at once, make sure you pick the situation you will } \\
\text { score before it it time for the student to respond. Otherwise you may tend to pick those } \\
\text { on which the student has made a mistake. }
\end{array} \\
& \text { gu! }
\end{aligned}
$$ all. What is important is that you decide in advance. which. ones you will score.. The following

suggestions may help:

 first block. You can even use.two blocks on the same line if the student should pass on one
occasion and fail on another.
The test will work best if you use the same route repeatedly. In this way you will know likely to occur more than once, additional blocks have been provided above the first block. It
doesn't matter in which order the blocks are used as-long as it is one of the blocks above the
 score sheet by placing a check in the block under "P" if you feel the student has passed, or in

this test follows these instructions.
Administration
 include Other Vehicles, Lane Changes, Pedestrians and Cyclists, Weather Conditions, Special labeled "Unplanned Situations" and consists of situations that are beyond your control. They includes Passing, Emergency Planning, and Evasive Action. Ond includes the situations Intersections, Hills, Curves, Freeways, Bridges or Tunnels, and
Oreas. The other group consists of events that you will stage for the student and those situations that you will be able to arrange. One group is concerned with the roadway
and includes the situations Intersections, Hills, Curves, Freeways, Bridges

Content
 This test is. only as good as you are. All it does is to list a number of situations to which
drivers 'must respond. It is your responsibility to spot these situations when they occur and to

. 10tpult!u!up \forall ayf dof suoujondsul

1531 SNOIL \forall กLIS $\operatorname{\text {ONIAİd}}$

辰
ately Low Criticality stencinis. To pass the test the student should receive a score of at least

> рә!!ел ләчunu + passed ләqunu
> (
$\begin{aligned} & \text { "Unplanned Situations" part and place it to the left of the "Planned Situations" score sheet. } \\ & \text { This will allow you to score both parts at one time. }\end{aligned}$
When you .have completed the test, remove the score sheet from the back of the
SCORING
$\begin{aligned} & \text { only. If you score only when the student makes a mistake (e.g., drives too fast, or } \\ & \text { follows too closely') you will give a false impression of the student's performance. }\end{aligned}$
$\begin{aligned} & \text { Signs) is passed and car following only when the brake lights (Other Vehicles-Slowing, } \\ & \text { Overtaken) light up on the car ahead. Score the student's responses in znese situations }\end{aligned}$
$\begin{aligned} & \text { Two driving activities, car following and speed control, are continuous operations. You } \\ & \text { are to score the student's speed when and only when a speed sign'(Traffic Signals and } \\ & \text { Signs) is passed and car following only when the brake lights (Other Vehicles-Slowing, }\end{aligned}$

s	Driving Situations Test Summary of Planned Situations	ns
. $\%$ Situation	Nature of Observation	When'Observation Performed
Emergency Planning Rear Vision Collision Avoidance Brake Failure	Student's use of mirror to check traffic behind Student's tendency to scan roadside when approached by an oncoming car Student's tendency to scan the roadside for escape route whem appısaching an intersection	When followed closely by different types of vehicles When approached by an oncoming car .When approaching an inter-section-may be preselected
Curves	Student's ability is enter, drive through, and leave curve safely	'At moderate to sharp curvesmay be preselected
Bridges or Tunnels	Student's ability to apprọach," enter, and exit a bridge or tunnel safely	Whenever the student approaches a brides or tunnel-may, be preselected
Passing JudgmentOncoming Car, Judgment-. Roadway. Restriction Passing Restrictions	Studentt's ability to judge the passino, distance of an oncominy car Student's ability to judge passing distance to some roadway restriction Student's knowledge of safe and unsafe passing zones Student's ab:lity to pass $\checkmark_{\text {safely }}$	When approaching an oncoming car visible fọ a long distance When passing distance is restricted by the roadwaymay be preselected Safe and unsafe locations selected by administratormay be jrepienned Whenever initiated by student or administrator an any.type of highway
Off.Street Areas	Student's ability to drive into;-through, and out of an off-street'area	A preselected off-street area
Evasive Action	Student's ability to leave . the roadway, drive onto the shoulder, and return to the roadway safely (Continued)	At a preselected location where the shoulder is firm enough to be driven on safely

$⿷ 匚 ⿱ 乛 ⿰ ⿺ 乚 一 匕 ⿷ ⿻ 上 丨$

paljodiuoo parsajasad ib	yэeodde of Ki！！！qe s，tuapnis	unn \perp みә7 －ио！ุэวรมวјบ
palloriuos patэajasərd $\mathfrak{7} \forall$	 yэeodde cl Ri！！！̣e s，fuapnis	чбполчд би！pәәэоля －uо！̣ээsдаңи！
suoliorsaju！panonuosun pue peloriuoos paropasad iv	ue te unt 7zə e ayeu pue ．yreordde of Ku！！！ge s，子uapnis	
1591 peos 241 	Alajes ग！yent دəұua of Kı！！ge＇s，子uapmis．	э！fex биимлеәา pue би！дәıиヨ
uolienn6！juos anb！！qe дapo do dwes e to sueau रq pa！ кемй！ч sรәээе－рәи！ш！！ 10 Remssordxa fo zuambas zoys 	Кемәац！e ＇лaıua of Kı！！qe s，ıuapms	sкемәдл」
	pue 시jes I！！е имор pué dr an！p ol Ku！！！qe s，？uaprits	SII！ H
	uoprasasqo jo ammen	uorzenys
（panu！uuoj）．suonemen！s pouueld		

pouys e＇snq paddorse Aq 	peloads ol Alazeidordde puodsaı ol Kul！！qe s，zùapnıs	รај！чa＾⿺𠃊！
ри！м ашадхха (ε) ＇amperadшаг ашанхх（ $($ ） ＇mous＇zaaps ‘ued Aq pasne К K！！！q！｜！ кq разиддиоэ далаиачм	suo！！！puos 1כeat ol Alu！！qe s，子uannts	sto！！！puoj зачгеам
лалир ачъ јо кемреод ayt u！do＇גatua ol inoge＇ol 	 зo әวuasad aчt u！Alages sue！ 12 sapad ol Alajes 九כead ol אıו！！qe s！ 4 pue oz uo！uuane s，zuapnis	
－． sulind деэ раұдед е далаиачм әวичал ражұед е шодұ sячб！！e uossad e далаиачм	э！нedl גazua O2 2 no fu！lind saes payued kisnoinald ol zכeas pue ared ，－t！lue ol Al！！！qe s，fuapnis әว！чวл paxлed e wor бипич！！e suosiad ol puodsal pue ared －！？nue ol Kı！！！ge s，zuapnas	2no bullind dej Eu！ payted －sajગ！чaへ дачıO
иауедало би！ая 	иауедало би！ая але гечг sppuyan oz zכead oz кı！！！ge pue uo！yuane s, ，uapnis Gu！моㅣㅇㅕ д！！чм реб̈че pue uo！nuane s, ，uapnes	иауедало би！̣ая аэ！чал
uo！？วэsazu！ ралогs е иечъ дачго кемчб！ 4 sачэеодdе әэ！чəл далаиачм	легич！！ jo uol！dzวad s，子uapnis	
рашлодад ши！елазчо чачм		บonenus

揟。

EFEFE

侤。

$\stackrel{1 \pi}{\sim}$

昍 日 \boxplus 田 \because ？

Unplanned

田日

$$
\begin{aligned}
& \text { 日㫜田? } \\
& \text { 田 田 }
\end{aligned}
$$

日

pouusld

\square

$\square \square$

$$
-\quad 0
$$

Make sure your name and your teacher＇s name
are written on the answer sheet．
When you have completed the test，close the booklet and wait for further
instructions．＇Make sure your name and your teacher＇s name
are written on the answer sheet．
important．Remember to write on the answer sheet．
 p（ 9

恉 － p

Example number 1 on the answer－sheet．This indicatss that＂stop＂is your．response．

（c）slow down （d）turn

（a）：continue driving ．．
A red light means that you are to：
（a）：continue driving
\square Example o
Example of a question：． important．Remember to write on the answer shees，so write just what you think is most

The first 97 questions are＂multiple choice．＂Several possible answers are given for
each question，from－which you are to choose the one you think is best．

Instructions

D ．Instructions，
ISE1 Э9OG7MONY פNIAIBO

陡。

苂

辰

$\underset{\sim}{*}$

18. When you begin to get tired when driving, it's a good idea to: (a) turn on the heater (b) focus your eyes on the road directly in front of the car -(c) listen to lively music (d) close the car windows
19. Even a small amount of alcohol affects driving. A driver's judgment is affected by drinking alcohol in quantities as small as: (a) 1 ounce of whiskey (b) 2 ounces of whiskey (c) 16 ounces of beer (d). 24 ounces of beer
20. Kapid accèleration followed by sudden stops: (a) is not dangerous (b) invites rear-end collisions* (c) does more harm to the car than anything else (d) is a normal practice of expert drivers in stop-and-go situations
21. Sudden strong wind gusts on highways: (a) generally affect only the movement of large vehicles (b) cause only visual problems because of dust and dirt blown about (c) can move a car sideways into another lane (d) do not affect the car's movement
22. When approaching areas on freeways where other vehicles are entering, a driver can help the traffic flow by: (a) slowing down (b) moving to the middle or passing lane (c) speeding up to get clear of the area (d) adjusting his speed to equal the speed of the entering vehicles
23. In this State the legal separation distance you must maintain from an emergency vehicle is: (a) 200 feet (b) 300 feet (c). 400 feet (d) 500 feet
24. Motorcycles should be followed at a greater distance than automobiles to lessen the chances of a collision because: (a) they can stop faster than four-wheeled vehicles (b). motorcyclists tend to drive dangerously . (c) motorcyclists cannot drive dependably because of poor rear vision (d) motorcycle brakelights are not as reliable as artomotile brakelights ,
If you are following a driver who is soon to leave an expressway, your greatest danger is that he will: (a) slow down on the roadway rather than the off-ramp (b) turn into the off-ramp at the last minute (c) leave the expressway at too great a speed (d) fail to signal in time

(d) drive near the center of the roadway where the water is considerably more
shallow due to the slant of the pavement

Where should you expect to find the most slippery surfaces?
(c) steer to the "inside" of the curve
(d). steer to the "outside" of the curve (b) accelerate slightly to' reduce the chances of skidding If a curve tums out to be sharper than you expected. you should:
(a) slow down by releasing the accelerator and lightly applying the brake if (d) is strictly for the race track (a) is usually a dangerous
(b) reduces your chances of skidding if your original speed was slow enough
(c) helps speed up traffic Accelerating slightly through a. curve
(a) is usually a dangerous practice

[^1] slows the car down by reducing the pulling power of the engine
slows the car down by increasing the pulling power-of the engine Downshifting:
(a) slows the
(b) long and the freeway speed is slow
(c) short and the freeway speed is high
(d) long and the freeway speed is high (a) short and the freeway speed is slow,

On freeways you should be particularly alert as you approach entrances where
acceleration lanes are:
(d) you must proceed with caution when oncoming traffic begins to move (adr oncoming. traffic will get a green signal in advance of you
(c) oncoming traffic may proceed while you are stapped. A traffic signgl showing an "advanced green" means'that:
(adr onsoming traffic is stopped during the early period of the green signal $-$

＂ひ్囚

E

58. If your brakes fail yhile you are "on the roadway, the first thing you should do is: (a) keep your fopt on the brake and wait until you get brake action again (b) shifft into a lower gear (c) leave the roadway (d) pump your brakes a few times
59. 'If power brakes fail due to loss of power', the driver should: (a) steer the car onto the road shoulder where it will stop as it loses speed (b) not try to exert more pressure on the pedal since it will not help (c) exert more pressure on the pedal (d) try pumping the brake pedal .
60. If your car is running low on fuel and there are no service facilities nearby, you should: (a) ${ }^{\prime}$ drive fast th reach a service station before the fuel runs out (b) continue at your present speed until you reach a service station (c) : reduce speed to about 30 mph for maximum conservation of fuel (d) stop the car and flag down another motorist for help
61. Prescription drugs taken in combination with alce' slic beverages: (a) can cause trouble unless the drug was prescribed'by a licensed physician (b) will tend to have their effects cancelled by the effect of alcohol (c) will cause trouble if you drink too much (d) can produce extremely harmful effects
62. The most important reason to have a car's mechanical condition inspected "periodically "is: (a) to spot a dangerous situation (b) to meet a state inspection requirement (c) to become better acquainted with the way the car works (d) to avoid breakdown on the road
63. When is the best-time to pull back into lane after-pissing another car? (a). when the other driver signals with his-turn indicator (b) when you can, see the other car-through your rear window (c) when the other car's left-headight is visible in the rearview mirror (d) when both of the other car's headlights are visible in the rearview mirror
64: When turning right into an angle parking lane, which points on your car are the niost likely to strike other cars? (a). left and right front fenders (b) right front fender and right rear door (c) left front fender and left rear door (d) left front fegnder and right rear door.
65. 'When making a right turn from a busy street.into a narrow siḍe street you should: (a) come almost to a stop before beginning the turn (b) slow down a little more than usual (c) swing a little to the left before beginning your turn (d) shift into first before beginning the turn
66. Which of the following is most important in determining how fast you can drive in fog? (a) how far you can see (b) how quickly you can stop (c) amount of traffic (d) whether it is day or night

(d) tụn on your high beams as soon as.it begins to get dark
69. If you come úp behind a compact car at night, it will: (b). turn on your parking lights as soon as it begins to get dark
(c) turn on your low beams as soon as it begins to get dark
(d) turn on your high beams as soon as.it begins to get dark
(d) are not.much different from untinted lenses
71. What is the main reason that it is unsafe to pass
(b) are better in general than sunglasses

08

(d) when approaching a hill (b) when driving at night
(c) after leaving an expressway 79. When is it most important. to check your speedometer?
 78: If you have had too much to drink and want to drive; a few cups of strong black
coffee will:
(a) do no good
(b) help you sober up-ä little (d) sideview mirror, rearview mirror, and then sideview mirror again
78: If you have had too much to drink and want to drive; a few cups of strong
 77. Before pulling out to pass a ciar you should check the:
 (b) hesitate for a moment until you're sure one way or the other
(c) speed up a littie to pass more quickly 76. You are about to pass another car. Suddenly you see a third car approaching you from
ahead. If you're not sure whether or not you can make it, you should: (c) when the other car is coming up on a car ahead of it
(d) under any condition
 75. Under which of the following conditions should you sound your horn before passin?
another car?-

原

104. If you stopped at a railroad crossing with more than one set of tracks, why should you wait
at least 10 seconds after the train has.passed befose you start driving across the tracks?
105. Why is it dangerous to drive with the windows closed and the radio playing loudly?
106. Passing behind another car on a two- or three-lane road is dangerous because:

107. When you hear the sound of a siren on an emergency vehicle, you should:
 99. What should you do if a tire blows out while you are driving?
 96. In heavy traffic, a driver:
(a) has to change lanes often to get through to his destination in a reasonable time
(b) should help prevent traffic jams by changing lanes
(c) should siay in one lane as much of the time as possible
(d) should change lanes every so often
108. When turning at a crowded intersection, you should:
(a) try to move very carefully through the flow of pedestrians
(b) try to move through wherever there is a gap in the flow of pedestrians
(c) wait until there are no pedestrians actually in the intersection
(d) wait until there are no more pedestrians near the intersection
\therefore (c) a complete stop isn't necessary as long as you proceed slowly enough
(d) you don't have to stop at the stop sign if you stopped earlier for cars in front
109. In heavy traffic, a driver:

1.96
,

110.

∞

辰

0

sxoxa ПT -

恩

 tions. Statistics show that these pedestrians are the most likely to be killed by an 30. Many pedestrians are not drivers and do not understand an automobile's limita (d) is correct. whenever a school bus far side of a divided high way, but not any four-lane highway. Answe 29. While a school bus should have his warning lights on, you had better stop 28. Braking hard will caise the front wheels to lock and the car will skid. Once this (b) is correct. wilting the brakes will put the car in a skid and make it totally uncontrollable. Answer will put him right in the path of Car B should Car B attempt to return to his own lane course he could escape a collision if the other driver altered his course; however, he is
more likely to be killed or disabled for life. Attempting to reach the shoulder on the left into the shrubbery. This way he risks only minor injury and damage. By maintaining his 27. The best conurse of action for Car A in this situation is to pull off the road and
 upon nearing an exit. Answer (a) is correct. until they reach the offramp. You should be prepared for the driver ahead to slow down 25, Many drivers when planing to lane an 24. Most motorcycles can stop more quickly than automobiles, so you should
23. This is just a memory item. Xf́ you don't know the answer, you should ask your
 disruption in the speed of traffic. Since the speed of other cars is hard to judge, your 22. Moving to another lane will allow cars to enter the freeway without any at a high speed, you can easily be moved into another jane before you can notice an
react. Answer (c) is correct. 21. Sud̈den strong wind gusts tend to push your car sideways. If you are traveling
high speed, you can easily be moved into another lane 'before you can notice and traffic, you can help "smooth out" the overall flow of traffic by accelerating and braking
gently. Answer (b) is correct." thing. Stopping suddenly almost invites him to run into ycu. In ordinary stop-andggo 20. When you accelerate rapidly, the driver behind you is likely to do the same 19. Any amount of alcohol will affect driving. One ounce of whiskey is the smallest
amount listed and therefore: Answer (a) is correct. you awake. However, don't play it so loud that you can't hear warning signals like sirens.
Answer (c) is correct windows, are good ways to make yourself even more tired. Lively music will help knep automobile from a faulty exhaust system. Answer (a) is correct.
 severe accidents-most accidents occur because drivers are simply not paying attention. least likely to produce \mathfrak{r}_{1} skid. Answer (d) is correct.
 when you are backing up. Answer (b)sis correct. the wheels are turning in a reverse direction. Therefore, your stopping distance is greater

廆

("yonux Kıəл funoo 7، usəop
 After all, it was your "goof:" Attendants are 'usually pretty busy and driving through
without paying is against the law. Leaving your car to
 help is a good way to freeze to death. Answer (a) is correct. running both to keep you and the engine warm. However, remember to keep a window
 the accelerator. Attempting to increase your speed or shifting to a lower gear will supply

 traffic coming the other way, the better. If a car suddenly comes across the center line or
median, you want ar, much time to react as is possible Anser (c) is necessary in order to pass other cars. The more distance you can put between you and

 and to turn back on the roadway only. when you've reached a safe speed. Answer (a) is
correct. as this will tend to put the car in a skid. The correct procedure is to slow down gradually
 41. On wet pavement stopping distance is increased about 50%. Hard-packed snow,
incidentally, increases stopping distance 200%, while glare ice increases it 500% ! Answer
(b) is correct.
 Answer (b) is correct. ignition system. However, if you do notfshift into a lower gear, you are likely to stall. effect on the road surface. Answer (d) is correct.
39. You must 38. Continued slowing down of cars near intersections tends to have a polishing and find yourself in a skid. If you are going too fast, accelerating won't help nor will the down. This is best done by applying the brakes lightly so you will not. lock your wheels Answer. If a curve turns out to be sharper than you expected; you will have to siow reduces ydur chances of skidding, assuming you are driving slowly enough to begin with.
 35. Downshifting reduces the speed of a car but increases the pulling power of the
engine. It also causes the fan to tum at a faster speed. Answer (b) is correct. you should be particularly alert near short acceleration lanes. Answer (c) is correct. 34. A short acceleration lane makes it difficult for an entering car to build up
sufficient speed when the speed on the freeway is high. If you are traveling on turn. However, you should watch oncoming cars closely so you can tell when they have
gotten the green light. Answer (a) is correct After making sure that oncoming cars will remain stopped, you can go ahead with a left

El

 '7sexәұu!

 effects in combination with alcoholic beverages. Even a qualified physician may not know
how a particular drug will mix with alcohol. It - best not to take any chances. Answer
 are better at this speed than a higher speed. Answer (c)' is correct. 60. Your engine runs most efficiently and will give the longest mileage at about 30 the foot off the accelerator to slow down. However, the brakes will still work; it just
takes a little bit more pressure on the pedal. Answer (c) is correct.
 but with bad brakes you want to stop. Leaving the roadway is a little drastic at this
point. Answer (d) is corre 58. If your brakes fail suddenly, the first thing you should do is to pump them
several times to try to build up pressure. Shifting to a lower gear will slow you down,
 *Also, remember to pull in at the nearest filling station and have them inspect your for heaven's sake, try to reach it with your hand; it's too easy to lose control of the car. 57. If your accelerator becomes stuck in the down position, don't fool around-turn
the ignition off. Once the engine is off, you can try to pry it up with your foot. Don't other driver can't see either. Answer (c) is correct. his own medicine." Your chances of having a head-on collision are even greater when the your eyes along the right side of the road. This minimizes the effects of the glare and 56. If you are blinded by headlight glare from an oncoming car, you should focus more than five times what they would be if he were not drinking. Any more than one
drink an hour is dangerous. Answer (c) is correct legal standard is therefore a real merace. In fact, his chances of having an accident are whiskey before reaching the $.10 \%$ level of blood alcohol concentration that is becoming
the standard of intoxication in most states. Anyone who is found to have more than the 55. A 150 -pound person could actually consume five bottles of beer or "shots" of
whiskey before reaching the $.10 \%$ level of blood alcohol concentration that is becoming becoming intoxicated, it is better than drinking on an empty stomach.' Answer (c). is 54. A lot of food in your stomach, particularly carbohydràtes, can reduce alcohol
concentrations in the blood up to one-half. Although eating won't keep you from
becoming intoxicated, it is better than drinking on an who have been drinking. Alcohol is the number one cause of automobile fatalities.
Answer (c) is correct. 53. Approximately one-half of the nation's highway deaths are caused by drivers dangerous. Answer (a) is correct. distance by placing the car in first gear and pressing the starter. It's far better to the to the push the car hand, or to leave it on the roadway, both of vich are
than 52. If your car with a manual transmission won't start, you can move it a short slightly. Answer (c) is correct.解 51. When standing in heavy traffic, you want to keep water moving through your rain will reflect in your own eyes and make it difficult to see. Four-way flashers are for them on low beam. High beams will not only blind oncoming cars but in heavy fog or railroad crossing behind any one of them. Answer (d) is the best. you are approaching a

 check both mirrors and the side window, and to look over your left shoulder. Remember
 available passing distance is getting smaller all the time you are trying to decide. If the
 intending to pass is coming up behind another car that he may be intending to pass. should be saved for times when it's needed. One of these times is when the car you are in (d). procedure. There is no point, however, in backing across two lanes of traffic as is shown to avoid this is to back into the driveway from the highway. (c) shows the correc
 them. Answer (a) is correct. potential hazards before they appear directly, in front of you. One of the bigges

 72. Your greatest danger from the car you are passing comts as you move through right-hand lane without signalling or looking. Answer (c) is correct:- . help very much with sunglare, but it can reduce your ability to see at night. It's wise not
to use tinted contact lenses formight driving. Answer (c) is correct. 70. Tinted contact lenses can reduce the amount of light up to 20%. This won't should slow down well before reaching a car ahead. Answer (b) is cor. For this, reason you taillights look. Since the taillights on a compact car are closer together than those on a

 see you. They can see your headlights better than your parking lights. However, use your

 roadway. Many accidents occur because drivers assume there is nothing in the roadway;
they believe that if they can see the road, they are safe. Answer (a) is correct. driving slowly, enough to stop before reaching any obstacle that suddenly appears in the १ behind you may think you're planning a left tuin and try to pass you on the right.
 at a normal intersection. However, since the car behind you will not expect you to turn
at this point, even though you've signalled, you should not slow down any more than 65. When pulling into a narrow side street, slow down a little more than you would enter the parking lane, your car will be moving to the right, making your right rear door 64. When you turn right into an angle parking lane, you will tend to start as'far to
the left as you can. This makes your left front fender a danger poin't. However, as you
traffic noise. To have the radio playing loudly with the windows closed makes it almost
impossible. directions. This is true even if there are signals-they don't always work. across the tracks as soon as a train passed and were struck. by a train coming in the
opposite direction. Never cross a railroad track unless you have clear vision in both
 you out very much since he may not be able to see you until too late leave you enough room to get in behind him. In addition, the oncoming car can't hel top of you. Or, if he does complete the pass and return to the driving lane, he may not The driver ahead of you may not complete the pass until roadway is a xisky business. you tell them. "Many rear-end collisions are caused by drivers stopping, without warning
in order to park. you tell them.' Many rear-end collisions are caused by drivers stopping, without warning 102. The first thing to do before you slow down to pull into a parking place is to so you can hear better, and look around to see if you can find its source. It is not
necessary to pull over and stop unless you can see that it is approaching you. 101. When you hear the sound of a siren you should slow down, open the window
so you can hear better, and look around to see if you can find its source. It is not test them occasionally to make sure you have them when you need them. You should try to sleer a, straight course. Ease up on your accelerator and depress the brake cnly
after you've slowed down. brakes. Using the brakes could cause your car to skid. Grab the steering wheel firmly and
try to steer a, straight course. Ease up on jour accelerator and depress the brake chly won't be legally responsible for the accident will not make a whiplash injury less painful.
99. The most important thing, to remember if your tire blows is not to use your While you may feel safer, you run a risk of being struck from behind. The fact that you
won't be legally responsible for the accident will not make a whiplash injury less painful While you may feel safer you than the traffic flow increases the chance of an accident. hand, you will hold up traffic if you wait for pedestrians that are not even near the
intersection. Answer (c) is correct. 97. Whenever pedestrians are in the street they have the right-of-way. On the other vers much. Drivers should stay in one lane as much of the time as is possible. Answer (c)
is correct.
 traffic approaching; you can gauge its speed better if you're completely stopped. Answe
(a) is correct. stcpping you give it a chance to come out where you can see it; finally, if you do see if you are stopped; secondly, if an approaching car is hidden by your door post, by three -good reasons for this rule: First, it's easier to detect cars approaching from the side-

[^0]:

[^1]: (d) has no effect on the, rate of speed at which the fan turns (c) causes the fan to turn at a lower speed and prevents the car from overheating

