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Abstract

A great interest is focused on driver assistance systems using the head pose as an indicator of the visual focus of

attention and the mental state. In fact, the head pose estimation is a technique allowing to deduce head orientation

relatively to a view of camera and could be performed by model-based or appearance-based approaches. Model-

based approaches use a face geometrical model usually obtained from facial features, whereas appearance-based

techniques use the whole face image characterized by a descriptor and generally consider the pose estimation as a

classification problem. Appearance-based methods are faster andmore adapted to discrete pose estimation. However,

their performance depends strongly on the head descriptor, which should be well chosen in order to reduce the

information about identity and lighting contained in the face appearance. In this paper, we propose an appearance-

based discrete head pose estimation aiming to determine the driver attention level from monocular visible spectrum

images, even if the facial features are not visible. Explicitly, we first propose a novel descriptor resulting from the fusion

of four most relevant orientation-based head descriptors, namely the steerable filters, the histogram of oriented

gradients (HOG), the Haar features, and an adapted version of speeded up robust feature (SURF) descriptor. Second, in

order to derive a compact, relevant, and consistent subset of descriptor’s features, a comparative study is conducted

on some well-known feature selection algorithms. Finally, the obtained subset is subject to the classification process,

performed by the support vector machine (SVM), to learn head pose variations. As we show in experiments with the

public database (Pointing’04) as well as with our real-world sequence, our approach describes the head with a high

accuracy and provides robust estimation of the head pose, compared to state-of-the-art methods.
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1 Introduction
The increasing number of traffic accidents in the last years

becomes a serious problem. The enhancement of traf-

fic safety is a high-priority task for different government

agencies over the world such as “National Transportation

Safety Administration” (NTSA) in USA and “Observa-

toire National Interministériel de la Sécurité Routière”

(ONISR) in France. In addition, automotive manufactures

and researcher laboratories are also contributing to this

important mission. Some preventive systems such as alco-

hol test and speed measurement radar are deployed to

reduce the number of traffic accidents, but it is obvi-

ous that hypovigilance remains one of the most principal
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causes. In fact, hypovigilance is responsible for 20–30 %

of road deaths and this statistic reaches 40–50 % in par-

ticular crash types, such as fatal single vehicle semi-trailer

crashes [1]. Moreover, there are no standard rules to

measure the driver vigilance level; the unique solution

is to observe the signs. The first hypovigilance signs are

itchy eyes, neck stiffness, back pain, yawning, difficulty to

stabilize speed and to maintain trajectory, frequent posi-

tion changes, and inattention to environment (road signs,

pedestrian). Fatigue, sleep deprivation, soporific drugs,

driving more than 2 h without break, and driving in a

monotone road are the main causes of hypovigilance. The

appropriate reactions when those signs appear are to stop

driving immediately and take a break, but unfortunately,

the drivers are not aware of their vigilance level and over-

estimate it. For this purpose, several studies have been

conducted to develop intelligent systems for continuously
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estimating driver vigilance level and emitting visual and

acoustic alarms to avert the driver against abnormal state.

The warning signals could also activate the vibration of

driver’s seat or even a mechanism that stops the car at the

roadside.

The literature regroups three categories of safety systems

distinguished by the type of signals used to determine

the driver vigilance level. (i) Studying physiological signals

consists onmeasuring signal changes represented by brain

waves or heart rate using special sensors such as elec-

troencephalography (EEG), electrocardiography (ECG),

and electromyography (EMG) [2]. Only few works are

proposed in this category since the process is highly intru-

sive because of the necessity to connect sensing electrodes

to the driver body. (ii) Monitoring vehicle signals can

reveal abnormal driver actions indirectly, by studying sev-

eral parameters such as vehicle velocity changes, steering

wheel motion, lateral position, or lane changes. Some

commercial systems already use these techniques since

the signals are significant and their acquisition is quite

easy compared to the previous category. Mercedes-Benz

proposes in 2009 a commercial system named “Attention

Assist” based on sensitive sensors allowing precise moni-

toring of the steering wheel movements and the steering

speed. The system is active at 80–180 km/h and cal-

culates an individual behavioral pattern during the first

minutes of each trip. Audible and visual signals are emit-

ted when typical indicators of hypovigilance are detected.

The major disadvantages of such system are the limita-

tions caused by the dependence to vehicle type, driver

experience, and road conditions. (iii) Approaches based

on physical signals utilize image processing techniques

to measure the driver vigilance level reflected through

the driver’s face appearance and head/facial feature activ-

ity. These techniques are based principally on studying

facial features, especially eye state [3–5], head pose [6,

7], or mouth state [8]. According to the study performed

in [9], monitoring driver eye closure and head pose are

the most relevant indicators of hypovigilance. Different

kinds of cameras have been used for such systems: visi-

ble spectrum (VS) camera [10], infrared (IR) camera [11],

stereo cameras [12], and also the Kinect sensor [13]. The

Kinect sensor provides color images, IR images, and 3D

information. However, this sensor is not very adapted to

the real driving conditions since it is designed for indoor

use and it is conceived to be placed in a minimal dis-

tance of 1.8 m from the target. The IR camera is adapted

when driving at night, but it is not recommended when

driving at daylight conditions, since the acquisition will

suffer from color distortion. The VS camera is the cheap-

est one, and it provides robust acquisition even if the light

is reduced. However, it is a big challenge to monitor the

driver vigilance level using a single VS camera without

depth information and IR information.

In our previous work [10], we have proposed a real-

time system using a very cheap VS camera to deter-

mine driver fatigue and drowsiness by analyzing mouth

and eyes, respectively. This system suffers from missed

detection when the specific facial features are not visi-

ble because of non-frontal head position. The aim of this

paper is to develop a head pose estimation approach that

reveals rapidly driver inattention from monocular visible

spectrum images, without prior facial feature extraction.

To construct a robust head pose estimator, we follow

an appearance-based head pose estimation architecture

instead of a model-based one. These two architectures are

detailed in Section 2. In fact, themodel-based architecture

is incompatible with our problem since it requires facial

features to construct the face geometrical model, whereas

the appearance-based one uses the whole head struc-

ture characterized by an image descriptor. Actually, the

performance of the appearance-based estimator depends

strongly on the image descriptor, which should be cho-

sen carefully in order to reduce the information about

identity and lighting contained in the face appearance.

In this work, as detailed in Section 3, we first propose a

novel descriptor resulting from the fusion of four most

relevant orientation-based head descriptors, namely the

steerable filters (SF), the histogram of oriented gradi-

ents (HoG), the Haar features, and an adapted version of

SURF descriptor. Second, in order to construct a compact,

robust, and pertinent subset of the descriptor’s features,

a comparative study is conducted on some well-known

feature selection algorithms. Finally, the obtained sub-

set is subject to the classification process, performed by

the support vector machine (SVM), to learn head pose

variations. In Section 4, an evaluation of the proposed

head pose estimator on the public Pointing’04 database

is performed to validate our approach and to compare it

with the most representative and the best state-of-the-art

methods. After that, we have acquired and annotated a

driver video sequence simulating attention and inatten-

tion states in order to validate the proposed estimator in

a real environment. Finally, we present a conclusion and

discussion in Section 5.

2 Related works

2.1 Overview of head pose estimation techniques

In computer vision, head pose estimation can be defined

as the ability to deduce head orientation relatively to a

view of camera and it can refer to different interpretations

[14]. At coarse level, a head is identified by a few discrete

poses, but it might be estimated by a continuous angular

measurement according to multiple degrees of freedom.

The discrete representation is adapted to the applications

requiring the knowledge of limited number of pose classes

instead of the whole possible pose angles corresponding to

the continuous representation. Even if muscular rotation
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of head influences its orientation, it is often ignored and

human head is considered as an incorporeal rigid object.

This hypothesis allows to represent head pose using only

three degrees of freedom which are pitch, yaw, and roll.

Pitch corresponds to up and down motion around the X

axis, yaw refers to left and right direction around the Y

axis, and roll represents tilting the head towards left and

right direction around the Z axis (see Fig. 1). Another

hypothesis to be considered when building head pose esti-

mator is the pose similarity assumption, which means that

different people at the same pose look more similar than

the same person at different poses. In literature [14–16],

three requirements are established to define an efficient

head pose estimator.

(R1) Perform head pose estimation from monocular

cheap camera. Potentially, the accuracy can be improved

using stereo techniques that need additional equipment

cost, computation, and memory requirements.

(R2) Ensure autonomy by avoiding manual initialization

or adjustment.

(R3) Guarantee invariance to identity and environment in

order to make the system more efficient and robust.

In literature, many techniques have been proposed to

estimate head pose for diverse applications including

monitoring driver state systems. These techniques can be

categorized into two main groups [17], namely model-

based techniques and appearance-based techniques.

2.1.1 Model-based head pose estimation

Model-based techniques require specific facial features

to estimate head pose. In this category, we can find

geometric approaches that determine head pose from the

relative locations of facial features such as eye corners,

mouth corners, and nose tip. The most recent systems

based on facial geometry are proposed in [12, 17, 18]. In

[18], the authors propose a method for automatic head

pose estimation using three features (the eyes and nose

locations) ruled by the concept of golden ratio, whereas

the majority of geometric approaches require at least five

features. The golden ratio is the proportionality constant

adopted by Leonardo Da Vinci in his master-work called

The Vitruvian Man.

Flexible models based on fitting non-rigid models to

the facial structure of each subject also belong to this

category since comparisons at feature level are made

rather than comparisons at global appearance level. Flex-

ible models include methods such as active shape mod-

els (ASM), active appearance models (AAM), and elastic

graph matching (EGM). In [19], authors present a prob-

abilistic framework which do not need user initialization

unlike most of flexible models which do not respect the

requirement (R2).

Model-based techniques are dependent to the perfor-

mance of the facial feature localization which is, in addi-

tion to high-resolution requirement, the major disadvan-

tage.

2.1.2 Appearance-based head pose estimation

Appearance-based techniques work under the assump-

tion that the 3D face pose and some properties of the

2D facial image are linked by a certain relationship [20].

Appearance template methods [21, 22] define this rela-

tionship by matching new head images into discrete head

templates using image-based comparison metrics. These

Yaw

P
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c
h

Roll
Fig. 1 Head pose representation using three degrees of freedom
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methods are the most sensitive to lighting conditions. In

our previous work [21], we use a robust descriptor based

on steerable filters to construct a reference template for

each discrete pose of the training set, and a likelihood

parametrized function is learned to match the templates

to new entries.

Another way to determine the relationship is the use

of classification techniques on a large number of train-

ing data in order to learn an efficient separation between

pose classes. SVM classifiers are quite used in literature

to classify head poses [23–25] since they are adapted

to real-time applications. In [23], the authors show that

the multi-scale Gaussian derivatives, which are a particu-

lar case of steerable filters, combined to SVM give good

results. In [26], normalized faces are used to train an

auto-associative memory using the Widrow-Hoff correc-

tion rule in order to classify head poses. In one of the most

recent works [27], the authors consider that object detec-

tion and continuous pose estimation are interdependent

problems and they jointly formulate them as a structured

prediction problem, by learning a single and continuously

parameterized object appearance model over the entire

pose space. After that, they design a cascaded discrete-

continuous inference algorithm to effectively optimize a

non-convex objective, by generating a diverse proposal to

explore the complicated search space. Then, the model is

learned using a structural SVM for joint object localiza-

tion and continuous state estimation and a new training

approach which reduces the processing time. Among the

experiments, the authors perform the head pose estima-

tion over the Pointing’04 database without considering

the detection task, since they note that the images con-

tain clean backgrounds. Before applying their method, the

heads are cropped manually and the HOG descriptor is

applied on three scales. Based on the relationship between

the symmetry of the face image and the head pose, the

authors in [28] propose a face representation method for

head yaw estimation which is robust against rotations and

illumination variations. First, they extract the multi-scale

and multi-orientation Gabor representations of the face

image, and then they use covariance descriptors to com-

pute the symmetry between two regions in terms of Gabor

representations under the same scale and orientation. Sec-

ond, they apply a metric learning method named KISS

MEtric learning (KISSME) to enhance the discriminative

ability and reduce the dimension of the representation.

Finally, the nearest centroid (NC) classifier is applied to

obtain the final pose.

Regression techniques are also utilized to address head

pose estimation problem when the pose angles are

ordered, but they are more complex since they need pow-

erful unit process to respect real-time constraints. In this

case, the relationship is defined by learning continuous

mapping functions between the face image and the pose

space [29–31]. In [31], authors extract head feature vector

using the robust 3-level HOG pyramid and then the par-

tial least square (PLS) regression is used to determine the

coefficients modeling the relationship between the head

and its pose. In [24], authors use a dense scale invari-

ant feature transform (SIFT) descriptor to construct fea-

ture vector and the random projection (RP) is applied to

reduce the vector dimension. Similar to [32], the authors

combine classification and regression to obtain an accu-

rate estimation of head pose but this kind of approach is

time consuming.

One can also include tracking approaches in the

appearance-based techniques since they are based on

head appearance to estimate poses in addition to temporal

continuity and smooth motion of the heads in the video

sequence. Particle filters (PF) [6, 33] are the most used

technique to track head poses; in [6], authors propose a

hybrid head orientation and position estimation system

for driver head tracking based on PF. While tracking tech-

niques can achieve high accuracy, they usually require an

initial step such as frontal view or manual initialization

which does not respect the requirement (R2).

The major part of the appearance-based techniques

presented above is applied on features that verify the

pose similarity assumption. In addition, the descriptor

must be fast, must be robust to variations of lighting

conditions, and should be representative of head orien-

tations in order to respect the requirements (R2) and

(R3). Gabor filter [34], steerable filters (SF) [21], SIFT

[24], and HOG [33] are the most used descriptors veri-

fying these requirements. Some dimensionality reduction

methods can be used to seek a low-dimensional continu-

ous manifold constrained by the pose variations. Principal

component analysis (PCA) and linear discriminant anal-

ysis (LDA) are the most used dimensionality reduction

techniques for head pose estimation [14]. In [35], authors

propose to represent each head pose appearance neigh-

borhood by a query point to reduce the size and then

apply a piece-wise linear local subspace learning method

to map out the global nonlinear structure for head pose

estimation.

Each category suffers from some disadvantages. Even

if model-based methods are fast and simple, they are

sensitive to occlusion and require high-resolution images

since the difficulties lie in detecting the specific facial

features with high precision and accuracy. Appearance-

based approaches are not affected by these limitations,

but they are sensitive to information about identity and

lighting contained in the face appearance. However, when

using a robust and efficient head pose descriptor, the

appearance-based techniques become invariant to iden-

tity and lighting.

In the following, we expose some head pose estimation

techniques for monitoring driver vigilance state.
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2.2 Driver head pose estimation

A great interest is focused on driver assistance systems

that use driver head pose as a cue to visual focus of

attention and mental state [6, 11, 36, 37]. A commercial

product called Smart Eye AntiSleep [36, 38] is developed

and corresponds to a compact system equipped with one

VS camera and two IR flashes designed for automotive

applications. AntiSleep measures 3D head position and

orientation, gaze direction, and eyelid closures. Authors

use a tracking approach and a geometric method as ini-

tialization step based on a 3D head model containing the

relative distances between specific facial points localized

using local Gaussian derivatives [39], SIFT, and Gabor jets

[40]. The probability distribution of each point descriptor

is learned from a large set of facial training images. Then,

an initial head pose is estimated from the positions of the

facial features and the generic head model. The detected

facial features are then tracked using structure-from-

motion algorithms. During tracking, the driver-specific

appearance of each generic feature is learned for different

views. The obtained information is used to stabilize and

speed up tracking. This commercial product is limited to

controlled environments and therefore is essentially used

for simulation purposes.

Themost popular research laboratory working on driver

assistance systems is the CVRR Laboratory at the Uni-

versity of California, USA. This team proposes several

approaches to monitor driver vigilance [6, 7, 16, 37, 41].

In [6], the problem of estimating driver head pose is

addressed using a localized gradient orientation descrip-

tor on 2D video frames acquired by a special camera

(sensitive to IR and VS lights) as the input to two sup-

port vector regressions (SVRs), one for pitch and the other

for yaw. This team has equipped a prototype car with

many sensors allowing to look in and look out of a vehicle.

Such equipment is too expensive to be widely used in car

industry. Unfortunately, we cannot compare with these

approaches since their database is not accessible and the

systems are not detailed enough to allow reproduction.

The goal of our global work is to propose a system for

monitoring driver vigilance level based on low cost equip-

ment. In this paper, we focus our attention on estimating

driver head pose respecting the requirements (R1), (R2),

and (R3). In Table 1, we summarize the properties of some

methods presented above and we precise with the signs

“∗” and “+” the approaches that will be used for com-

parison in Section 4. The sign “∗” is associated to the

most used references for benchmarks in literature, and the

sign “+” corresponds to the recent works providing the

best results. From literature, it is obvious that appearance-

based techniques are more adapted to our purpose since

they respect the requirement (R3) when the descriptor

used to construct the feature vector is chosen carefully.

Therefore, we propose an efficient and robust fusion of

themost pertinent head pose descriptors and we decide to

use the SVM classifier since it is adapted to the real-world

applications and it proves its efficiency in literature.

3 Discrete head pose estimation for monitoring

driver vigilance level
When analyzing the impact of head orientations on driver

inattention, we can observe that the driver is attentive to

Table 1 Overview of the most relevant literature approaches

Reference Year Type Methods R1 R2 R3

Our(+,0,4) 2015 Cl Descriptor fusion + SVM
√ √ √

[17](1) 2012 GM Face symmetry
√ √

×

[12](0) 2012 GM 3D geometry
√ √ √

[18](+,4) 2013 GM Golden ratio
√ √

×

[19](2,3) 2010 FM Face model
√ √ √

[21](+,4) 2013 AT SF + LPF
√ √ √

[31](+,4) 2012 Rg HOG + PLS Rg
√ √ √

[24](+,4) 2012 Rg SIFT + RP
√ √ √

[23](+,4) 2013 Cl Multi-scale SF + SVM
√ √ √

[27](+,4) 2014 Cl Joint detection and estimation + SVM
√ √ √

[28](+,4) 2014 Cl Gabor + covariance + learning
√

×
√

[26](∗,4) 2007 Cl Associative memory
√ √ √

[32](∗,4) 2008 Cl+Rg SVM + SVR
√

×
√

[35](∗,4) 2007 DR+Cl LDA + linear learning
√ √ √

[6](0) 2008 Tr Tracking using particle filters
√ √ √

Best result approaches (plus sign), most used references for benchmarks (asterisk). Databases: “0”: Own; “1”: FacePix [48]; “2”: BU [49]; “3”: MIT [50]; “4”: Pointing’04 [34]

GM geometric model, FM flexible model, AT appearance template, Cl classification, Rg regression, Tr tracking, DR dimensionality reduction
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the road in frontal position. However, the driver needs

to look at the dashboard, the rear-view mirror, and the

side-view mirrors which correspond to moving the head

to down, up, left, and right positions for a brief time.

These positions must be maintained for few seconds; oth-

erwise, they are representative of inattention. We can also

conclude that the driver attention is not influenced by

the orientation according to the roll angle, which allows

us to reduce our degrees of freedom to pitch and yaw

angles. According to [32], when one or some head pose

labels are considered as a class, the head pose estima-

tion is addressed as a classification problem and if the

pose angles are ordered, the problem can be thought as

a regression problem. After these observations, we can

formulate our problem of estimating head pose to detect

driver inattention as the problem of classifying head poses

into 3 classes for pitch and 3 classes for yaw presented as

follows:

• Pitch: frontal head, up position, down position
• Yaw: frontal head, left profile, right profile

In this work, we study different head pose descrip-

tors able to detect variations in driver head pose and we

propose an efficient fusion approach providing a good

discrimination of pose variations. Since we address the

problem of classifying human heads into discrete poses,

we evaluate the ability of these descriptors to represent

pose variations by testing their efficiency using the SVM

classifier. In the following, we present a brief overview of

our global system for monitoring driver vigilance level.

3.1 Global overview of our system for monitoring driver

vigilance level

In this subsection, we present an overview of our global

system for assessing driver vigilance level, while in the

next sections, we focus our attention on studying driver

inattention by estimating head pose. The principle of

detecting inattention is based on the assumption that

driver head is in abnormal position when it is maintained

for a certain duration in a non-frontal pose for both pitch

and yaw angles. Our system illustrated in Fig. 2 and can be

synthesized as follows:

Duration

Video frame

Skin color filter

Driver head

Fused head 
descriptor

Head feature vector

Pitch-SVM

Top FrontalDown

Duration 

>  Th

Inattention 

Yaw-SVM

Left FrontalRight

Localize 
Eye/mouth

Analyze left eye 

Open

Analyze mouth 

Count open 
mouths Yawning 

High 
freq

Fatigue

Analyze 

right eye 

Count closed 

eyes

Micro-sleep

Drowsiness

Driver 

inattention

Driver 

hypovigilance

No

>Th

Yes

Yes

Duration Duration

>Th

Open

No

Open

>Th

Yes

Yes

Yes

Yes

Yes

Yes

Fig. 2 Our system for monitoring driver vigilance level
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Detecting driver inattention:

1. Extract the head from video frame using skin color

segmentation.

2. Extract head pose descriptors to obtain a

representative feature vector.

3. Apply Pitch-SVM at first since we assume that

maintaining head in down position for a certain

duration corresponds to the most critical pose and

can reveal sleep.

4. If head is in down or up position, observe duration of

fixed position and emit inattention warning when it

is important.

5. If head is frontal according to pitch, apply Yaw-SVM.

6. If head is in left or right profile, observe duration of

fixed position and emit inattention warning when it

is important.

7. If head is frontal for both angles, proceed to

hypovigilance detection (Fig. 2) detailed in [10].

In the following, we focus our attention on studying

the most appropriate features to propose a robust fused

descriptor representing driver head pose. Moreover, we

evaluate the performance of the SVM classifier for esti-

mating head poses.

3.2 Proposed approach for head pose estimation

As mentioned above, we present in this subsection several

image descriptors frequently used in literature and judged

to be the most representative of head pose variations.

Next, we expose feature selection techniques allowing to

select the most pertinent attributes among these descrip-

tors. We use the SVM classifier to decide in which class

each head image (characterized by its feature vector) is

related.

3.2.1 Head pose descriptors

We chose to study four descriptors to characterize head

pose variations which are SF, HOG, Haar features, and

speeded up robust features (SURF). These descriptors are

invariant to the common image transformations corre-

sponding to image rotation, scale changes, and illumina-

tion variation. Hence, they respect the requirement (R3)

allowing them to be used in order to build a head pose

estimator.

• Steerable filters : The steerable filters [42] are used
due to their ability to analyze oriented structures in

images. We have proved their robustness in our

previous work [21] for estimating head pose using

likelihood parametrized function (LPF). Another

motivation is given by their capacity to filter an image

at any orientation using only a linear combination of

its filtered versions obtained by a small set of basis

filters. This concept reduces considerably the

processing time. We chose a simple SF

corresponding to the derivatives of the circularly

symmetric Gaussian function f (x, y) = exp(− (x2+y2)

2σ 2 )

to describe head poses. In this case, the basis filters

are the first derivatives of f according to x and y and

correspond to the filters at orientations 0◦ and 90◦,
respectively. Hence, a filtered image by an orientation

θ can be expressed by Rθ
1 = cos(θ)R0◦

1 + sin(θ)R90◦
1 ,

where R0◦
1 and R90◦

1 correspond to the image filtered

by the two basis filters (see [21] for more details). The

performance of the SF depends of the number of

filters applied on the image and also the orientation

of each filter. We have conducted several

experiments, and we find that the following values

provide the best result:

– Number of filers = 2

– Size of reduced patch image = 15

– Angular displacement = 50◦ (i.e., Filter 1 at
θ = 0◦ and Filter 2 at θ = 50◦)

– SF feature size: 450 (15 × 15 × 2)

• Haar features : The Haar features [43] represent a

dense overcomplete representation using wavelets.

The two-dimensional Haar decomposition of a

square image with n2 pixels consists of n2 wavelet

coefficients corresponding to a distinct Haar wavelet.

The first wavelet is the mean pixel intensity value of

the whole image; the rest of the wavelets are

computed as the difference in mean intensity values

of horizontally, vertically, or diagonally adjacent

squares. The contrast variances between the pixel

groups are used to determine relative light and dark

areas. The Haar coefficient of a particular Haar

wavelet is computed as the difference in average pixel

value between the image pixels in the black and white

regions. From the experiment, we find that the

following number of wavelets provides the best

estimation of head pose:

– Number of wavelet = 32

– Haar feature size : 1024 (32 × 32)

• Speeded up robust features : SURF [44] is a fast and

enhanced version of SIFT. It is an algorithm for local,

similarity invariant representation and comparison.

The algorithm is structured into three steps:

detecting interest point, building the descriptor for

each interest point, and performing descriptor

matching. In our paper, we use an adapted version of

SURF since we do not need to perform descriptor

matching allowing image comparison. Hence, after

obtaining the descriptors of interest points, we sort

them according to their orientations. Then, we divide

the sorted descriptors in groups before computing
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the average of elements of each group. The descriptor

size and the number of groups for decomposition are

the parameters that influence the SURF performance.

We find experimentally that these following values

provide the best result of head pose estimation:

– Descriptor dimension = 64

– Number of descriptors = 4

– SURF feature size: 256 (64 × 4)

• Histogram of oriented gradients : The basic idea of
HOG [45] is that object appearance and shape can be

represented by the distribution of local intensity

gradients or edge directions, even without precise

knowledge of the corresponding gradient or edge

positions. This concept can be implemented by

splitting the image into small regions (cells) with a

defined size adapted to the size and resolution of the

object. For each cell, the occurrences of gradient

orientation over all the pixels are accumulated in a

local histogram. Each orientation histogram divides

the gradient angle range into a fixed number of bins.

The parameters influencing the HOG are the number

of cells per rows and per column in addition to the

number of bins. The best performance for head pose

estimation using HOG is given by the following

configuration:

– Number of cells per image row = 3

– Number of cells per image column = 3

– Number of histogram bins = 10

– HOG feature size: 90 (3 × 3 × 10)

3.2.2 Feature selection techniques

In our driver head pose estimator, different descriptors

are used to extract image features. We choose to extract

features as diverse and rich as possible in order to take

advantage of their complementarity, but we did not ignore

the possibility of redundancy. The aim of the feature selec-

tion step is to find a compact, relevant, and consistent

set of features for classification task. Feature selection

searches through all possible combinations of attributes

in the data to find which subset works best for predic-

tion by employing two tasks: search method and attribute

evaluator. The search method generates subsets of fea-

tures and attempts to find an optimal subset while the

attribute evaluator determines how good a proposed fea-

ture subset is, returning somemeasures of goodness to the

search method. We have evaluated three popular search

methods (BestFirst, GreedyStepwise, and Ranker), and we

find that the Ranker provides the best results. This can be

explained by the individual evaluation of features by the

Ranker instead of subset evaluation performed by the two

other methods. Therefore, we study three attribute evalu-

ators that can be associated with the Ranker method. The

gain ratio (GR) evaluates the worth of an attribute by mea-

suring the gain ratio with respect to the class. The OneR

performs evaluation using a simple classification that gen-

erates one rule for each predictor in the data and selects

the rule with the smallest total error as its “one rule.”

The evaluation performed by the ReliefF (RF) consists on

repeatedly sampling an instance and considering the value

of the given attribute for the nearest instance of the same

and different class. In Section 4, we will evaluate these fea-

ture selection techniques and the best one will be retained

to construct the fused feature vector of head pose.

3.2.3 SVM classifier

The SVM is based on structural risk minimization the-

ory [46]. Given a set of training vectors (x1, y1), . . . , (xl, yl)

composed of observations xiǫR
n and interpretations

yiǫ{−1,+1}, the binary SVM optimizes a hyperplane to

separate positive and negative training samples using their

feature vectors. Different kernels could be used to map

the classification problem to a higher dimensional feature

space. For multiclass problems, the original learning prob-

lem must be decomposed into a series of binary learning

problems. A standard solution for this problem is the one-

against-all approach, which constructs one binary classi-

fier for each class. A faster andmore accurate approach for

small number of classes is the pairwise classification [47]

which is based on transforming the c-class problem into
c(c−2)

2 binary problems, one for each pair of classes. For

our experiments, we used the pairwise classification mul-

ticlass SVMwith RBF kernel, available in the free software

WEKA.

4 Experimental results
Since there is no public database containing various driver

head poses, we have acquired video sequences repre-

senting a driver in different head poses to perform our

experiment. However, this is not enough to prove the

robustness of our system which requires to be compared

with the state-of-the-art approaches. To guarantee unbi-

ased comparison, we perform experiments on the public

Pointing’04 database [34], which is themost used database

in literature for head pose estimation [14]. Moreover, this

database could represent the driving environment since

the distance between the subjects and the camera is com-

parable to the one between the driver and the dashboard,

where the camera is mounted.

4.1 Experiments on public database

4.1.1 The Pointing’04 database

The Pointing’04 database contains head poses labeled

according to pitch and yaw angles, and it is composed

from 15 sets of near-field images. Each set contains two

series of 93 images of the same person at 93 discrete

head poses [34]. These ones span both pitch and yaw
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included in the set {0;±90;±60;±30;±15} and the inter-

val [−90◦;+90◦] with a displacement of 15◦, respectively.
The subjects range in age from 20 to 40 years old, five

possessing facial hair and seven wearing glasses. Each sub-

ject was photographed against a uniform background, and

head pose ground truth was obtained by directional sug-

gestion. In Fig. 3, we show the frontal pose (pitch = yaw =
0◦) of the thirty Pointing’04 folds.
We perform several series of experiments on the Point-

ing’04 database using 80 % as training set (2232 images),

10 % as validation set (279 images), and 10 % as test set

(279 images). In the following, the results are given on

the test set. We first present the results of the optimiza-

tion step to fix the best system parameters and also the

performance of separate and combined descriptors.

4.1.2 System optimization

In our paper, we deal with the problem of estimating

driver head pose according to two degrees of freedom

(pitch and yaw angles) in order to identify three classes

(cl) for each angle. However, the Pointing’04 database is

composed of 9 poses for pitch and 13 poses for yaw. We

propose to cluster the poses into three classes for pitch

and three classes for yaw to match our problem formula-

tion. For SVMs, we find that the RBF kernel with γ = 0.15

provides the best classification results. The optimal values

of descriptor parameters are presented in the Section 3.2.1

(SF = 450, HOG = 90, SURF = 256, and Haar = 1024).

In Table 2, we show the results of each descriptor evalu-

ated separately in addition to all possible combinations of

these descriptors (two, three, and four elements), in terms

of accuracy and kappa statistic for both pitch and yaw

angles. The accuracy (Acc) is the overall correctness of the

model, and it is calculated as the sum of correct classifica-

tions divided by the total number of instances, while the

kappa statistic (κ) is a chance-corrected measure of agree-

ment between the classifications and the true classes. The

highest values of Acc and κ correspond to the best system

performance. We also show the processing time in sec-

onds (time) needed to classify one image by pitch-SVM

and yaw-SVM. It is obvious that increasing the number

of descriptors conduce to increase the processing time of

one frame. However, the Haar features are more expensive

in terms of computational time because of the large size

of their feature vector. From this table, we observe that

SF features provide the best result when the descriptors

are evaluated separately. The best result of combining two

and three descriptors are given respectively by the feature

vectors SF, HOG and SF, HOG, SURF. When we combine

the four descriptors, the results are less advantageous than

those of the best combination of two or three descrip-

tors. This could be explained by an interaction between

the attributes of the overall feature vector, which produces

contradictions at the decision process performed by the

multi-class SVM. This problem could be solved by intro-

ducing a feature selection step on the combined descriptor

Fig. 3 The frontal pose of the thirty Pointing’04 folds
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Table 2 Evaluation of separate descriptors and all possible combinations of them on the test set

3 classes for pitch-SVM 3 classes for yaw-SVM

Descriptor Acc. κ Time Acc. κ Time

SF 87.2 0.80 0.05 94.3 0.91 0.03

HOG 85.6 0.77 0.01 94 0.90 0.01

SURF 83.8 0.75 0.04 93.7 0.90 0.04

Haar 85.9 0.78 0.2 93 0.89 0.2

(SF, HOG) 89.3 0.83 0.07 96.3 0.94 0.06

(SF, SURF) 89.0 0.83 0.13 95.3 0.92 0.12

(SF, Haar) 86.7 0.79 0.5 94.7 0.91 0.47

(HOG, Haar) 88.8 0.82 0.24 94.5 0.91 0.21

(HOG, SURF) 87.2 0.80 0.06 94.9 0.92 0.06

(SURF, Haar) 87.3 0.80 0.35 94.6 0.91 0.32

(SF, HOG, SURF) 89.1 0.83 0.15 95.4 0.93 0.11

(SF, HOG, Haar) 85.6 0.77 0.28 95.1 0.92 0.29

(SF, SURF, Haar) 77.9 0.64 0.53 92.3 0.88 0.48

(HOG, SURF, Haar) 87.8 0.81 0.19 94.9 0.92 0.17

(SF, HOG, SURF, Haar) 87.5 0.80 0.53 94.9 0.91 0.52

Italic values in Table 2: Best results obtained by all possible combinations of one, two, three and four descriptors

that allows us to keep the most relevant attributes and

reduce the processing time.

4.1.3 Evaluating feature selection techniques

In Table 3, we show the results of evaluating the fea-

ture selection techniques presented in Section 3.2.2 using

the Ranker as search method, which is equivalent to the

evaluation of the performance of three attribute evalua-

tors (Attr. Eval.): GR, OneR, and RF. A first set of tests is

conducted on the best combination of three descriptors

(SF, HOG, SURF) using the 400 most relevant variables

from a total of 796, which corresponds to a reduction of

attributes by half. According to Table 3, the best result of

these tests is given by the ReliefF algorithm. Hence, in a

second set of tests, we apply the ReliefF attribute evaluator

on the combination of the four descriptors and we evalu-

ate the impact of varying the number of selected variables

on the system performance. We chose to retain 400 rele-

vant variables using ReliefF as the best configuration, since

it provides a good compromise between processing time,

accuracy, and kappa coefficient. In the last test of this sub-

section, we show the result of the best configuration when

using the k-fold cross validation (CV) process with k =
10. The cross-validation reorders the database and divided

it into 10 equal parts. Then, for each iteration, one part

is used for the test and the other nine parts for learning

the classifier. All results are collected and averaged at the

end of the cross-validation. From the last line of Table 3,

we note that the result obtained by cross-validation (CV)

improves the conventional test, which proves that the

Table 3 Performance on the test set of the studied attribute evaluators on the best combination of three and four descriptors using

the Ranker search method

3 classes for pitch-SVM 3 classes for yaw-SVM

Descriptor Attr. Eval. Acc. κ Time Acc. κ Time

(SF, HOG, SURF) (GR,400/796) 87.0 0.79 0.06 94.5 0.91 0.05

(SF, HOG, SURF) (OneR,400/796) 86.4 0.79 0.05 94.6 0.91 0.05

(SF, HOG, SURF) (RF,400/796) 90.1 0.84 0.05 95.4 0.93 0.05

(SF, HOG, SURF, Haar) (RF,600/1820) 90.5 0.85 0.34 96.7 0.94 0.32

(SF, HOG, SURF, Haar) (RF,400/1820) 90.5 0.85 0.09 96.6 0.94 0.08

(SF, HOG, SURF, Haar) (RF,200/1820) 88.1 0.80 0.06 94.2 0.91 0.05

(SF, HOG, SURF, Haar) (RF,400/1820) 91.9 0.87 CV 96.4 0.94 CV
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proposed approach allows a good classification of poses

even when varying samples.

To visualize which descriptors are more pertinent, we

present in Table 4 the total number of each descriptor

features (TN), the number of selected features from each

descriptor (SN), the rate of the features extracted from

each descriptor (FiD), and the participation rate of each

descriptor in the fusion (DiF). If we analyze the column

(FiD), we can observe that the SF and HOG are the most

pertinent descriptors since more than 50 % of their fea-

tures are selected while less than 10 % of Haar and SURF

features are selected. Moreover, the analysis of the column

(DiF) shows that the SF features are the most present ones

in the final descriptor with more than 65 % of features.

4.1.4 Comparisonwith existing approaches

The major part of approaches using the Pointing’04

database for evaluation uses its standard representation

of poses which corresponds to 9 angles for pitch and 13

angles for yaw. To provide a fair comparison, we increase

the number of classes considered by our system in order

to respect the standard representation. Therefore, in this

experiment, the pitch-SVM and yaw-SVM must classify 9

and 13 head angles, respectively. Moreover, we present the

results in terms of angular mean absolute errors (MAE)

between the estimated and ground-truth angles for botch

pitch and yaw, since all considered approaches for com-

parison use them. In Table 5, we present the result of our

approach compared to the best approaches in literature

and also to the most referenced ones (see Table 1). In [26],

Gourier et al. measure the human performance for esti-

mating head poses on the Pointing’04 database and find

that the angular MAE correspond to 11◦ for pitch and

11.9◦ for yaw. FromTable 5, we can conclude that our head

pose estimator is more precise than the human perfor-

mance. As can be seen, it provides the best results among

all studied approaches.

In the next experiment, we can show the result obtained

when using our head pose estimation technique on real

video sequence representing driver with various head

poses.

Table 4 Number and percentage of selected features from the

fused descriptor

3 classes for pitch-SVM 3 classes for yaw-SVM

Descriptor TN SN FiD DiF SN FiD DiF

SF 450 263 58 % 66 % 275 61 % 69 %

HOG 90 62 68 % 16 % 70 78 % 18 %

SURF 256 0 0 % 0 % 11 4 % 2 %

Haar 1024 75 7 % 18 % 44 4 % 11 %

TN the total number of descriptor features, SN the number of selected descriptor

features after fusion, FiD the rate of SN in the descriptor, DiF the rate of SN in the

fusion

Table 5 Comparison with existing techniques in terms of

angular MAE using Pointing’04 database with 9 poses for pitch

and 13 poses for yaw

Approach Year Pitch Yaw

Our approach 2015 4.6◦ 6.1◦

HOG + structural SVM [27] 2014 5.25◦ 5.91◦

Dense SIFT + RP [24] 2012 5.84◦ 6.05◦

Kernel PLS regression [31] 2012 6.61◦ 6.56◦

Gabor + covariance + learning [28] 2014 7.14◦ 6.24◦

Multi-scale SF + SVM [23] 2013 8◦ 6.9◦

SF + LPF [21] 2012 8◦ 9.37◦

Geometric approach (golden ratio) [18] 2013 13.6◦ 9.6◦

Cropped head + SVM + SVR [32] 2008 7.69◦ 9.23◦

Human performance [26] 2007 11◦ 11.9◦

Associative memory [26] 2007 15.9◦ 10.3◦

LDA + linear learning [35] 2007 30.7◦ 19.1◦

Italic values in Table 5: Best angular MAE

4.2 Experiment on driver video sequence

We have acquired a video sequence, as shown in Fig. 4,

with a cheap visible spectrum phone camera representing

a driver in various head poses and composed from 2636

video frames. Each frame has a resolution of 1280 × 720

pixels.

Fig. 4 Driver acquisition system with cheap phone camera
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Fig. 5 Examples of driver video frames. a Frontal position (pitch and yaw). b Left profile (yaw). c Right profile (yaw). d Up position (pitch); e Down

position (pitch)

Since we deal with estimating driver head pose, we have

annotated our sequence using three classes for pitch and

three classes for yaw. Figure 5 represents an example of

frames corresponding to each class according to the pitch

and yaw angles. The result obtained when applying our

head pose estimator on driver video sequence using the

best parameters determined in Section 4.1 is given by the

second row in Table 6. The first result in this table reports

the same experiment applied on Pointing’04 database,

previously presented in line 5, Table 3.

Even if our sequence is acquired in real conditions, the

results obtained in this experiment are better than the

one obtained on Pointing’04 database. This fact might be

explained by the inherent problem of annotation caused

by the important number of poses in the Pointing’04

database while in our sequence, we annotate 3 poses for

each angle.

5 Conclusions
In this paper, we have proposed a head pose estimation

approach using a single camera in order to identify driver

inattention. Our approach is based on a robust fusion

of multiple significant descriptors (SF, HOG, Haar, and

SURF) in order to construct an efficient feature vector

representing head pose variations. Then, two SVMs are

Table 6 Results of our head pose estimation on the driver video

sequence using 3 classes for pitch and yaw

3 classes for pitch-SVM 3 classes for yaw-SVM

Database Accuracy Kappa Time Accuracy Kappa Time

Pointing’04 90.5 0.85 0.09 96.6 0.94 0.08

Our Sequence 97.5 0.96 0.03 98.2 0.98 0.02

learned to classify the feature vectors according to pitch

and yaw angles. Our head pose estimator is not restricted

tomonitoring driver inattention level and can also be used

by diverse applications requiring knowledge of human

activity such as human-machine interfaces and game

industry. Before applying our estimator, it is important to

identify the number of poses that must be estimated for

each angle depending on the application requirements. In

our paper, we use three classes for both pitch and yaw

angles since we deal with the problem of estimating driver

head pose to determine its inattention level. Since no pub-

lic database is available for estimating driver head pose, we

perform several experiments on the public database Point-

ing’04 to validate our approach and compare it with the

recent and the most cited state-of-the-art techniques. We

have also acquired a video sequence using a cheap visible

spectrum camera representing a driver in various atten-

tion levels and we find that our head pose estimator can

achieve an accuracy of 97.5 % for pitch and 98.2 % for yaw.

As future work, we can improve our global system for

monitoring driver vigilance level by adding a gaze esti-

mation approach in order to determine driver focus of

attention. Since we use a visible spectrum camera, the

acquisition can be perturbed at night and the usage of IR

light could be considered to resolve this problem.
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