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Abstract: Driver drowsiness is one of the leading causes of traffic accidents. This paper proposes a
new method for classifying driver drowsiness using deep convolution neural networks trained by
wavelet scalogram images of electrocardiogram (ECG) signals. Three different classes were defined
for drowsiness based on video observation of driving tests performed in a simulator for manual and
automated modes. The Bayesian optimization method is employed to optimize the hyperparameters
of the designed neural networks, such as the learning rate and the number of neurons in every layer.
To assess the results of the deep network method, heart rate variability (HRV) data is derived from
the ECG signals, some features are extracted from this data, and finally, random forest and k-nearest
neighbors (KNN) classifiers are used as two traditional methods to classify the drowsiness levels.
Results show that the trained deep network achieves balanced accuracies of about 77% and 79% in the
manual and automated modes, respectively. However, the best obtained balanced accuracies using
traditional methods are about 62% and 64%. We conclude that designed deep networks working
with wavelet scalogram images of ECG signals significantly outperform KNN and random forest
classifiers which are trained on HRV-based features.

Keywords: convolutional neural network; driver drowsiness; ECG signal; heart rate variability;
wavelet scalogram

1. Introduction

Drowsiness is defined as a transitional state fluctuating between alertness and sleep
that increases the reaction time to critical situations and leads to impaired driving [1,2].
According to previous studies, driver drowsiness is one of the leading causes of traffic
accidents. For example, the National Highway Transportation Safety Administration
(NHTSA) reported that drowsy drivers were involved in about 800 fatal crashes in 2017 [3].
Another study announced that about 22–24% of crashes or near-crash risks are contributed
by drowsy drivers [4]. The American Automobile Association (AAA) has also reported
that about 24% of drivers acknowledged feeling extremely sleepy during driving at least
once in the previous month [5].

Moreover, monitoring of driver alertness is an implicit requirement in the forthcoming
SAE level of conditional automated driving (level 3) since handing over vehicle control to
drowsy drivers is unsafe [6,7]. Various driver drowsiness detection systems (DDDS) have
already been proposed in recent studies [8–11]. In our previous work [2], we developed
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a method for drowsiness classification only in manual driving mode and by using only
vehicle-based data. As the drivers insert no input into the vehicle during automated
driving tests, the proposed method in [2] cannot be used in automated driving. Moreover,
vehicle-based data can be significantly affected by road geometry and the driving behavior
of the specific driver. However, the proposed method in this paper uses the ECG data
as inputs to the deep CNNs and can be applied in both manual and automated driving
modes. Moreover, biosignals such as ECG can provide more accuracy to detect the onset of
drowsiness than vehicle-based data [12,13]. This paper offers a new method using deep
neural networks trained by wavelet scalograms of an electrocardiogram (ECG) signal.

1.1. Related Works

ECG signals present the heart’s electrical activity over time that is typically recorded
using attached electrodes to the chest [14]. Figure 1 shows the schematic representation of a
standard ECG signal [15]. Heart rate variability (HRV) information is extracted by detecting
the R-peaks in the ECG signals and evaluating the fluctuations of the time intervals between
adjacent R-peaks [16]. HRV is well-known physiological information that presents the
activity of the autonomic nervous system (ANS) [17], fluctuations markedly over a day,
and the sleep-wake-cycle [18]. Therefore, it is assumed to be indicative not only of the
sleep stages [19] but also of sleepiness as well. HRV has been frequently employed to
design a DDDS. For example, Fujiwara et al. [20] developed a system based on eight
extracted features from HRV data where multivariate statistical process control was used
as an anomaly detection method in HRV data. Results showed that the proposed method
detected 12 out of 13 drowsiness onsets and the false-positive rate of the anomaly detection
system was about 1.7 times per hour. Huang et al. used machine learning with four different
traditional classifiers (support vector machine, K-nearest neighbor, naïve Bayes, and logistic
regression) for binary detection of drowsiness by training on time and frequency domain
features from HRV data [17]. Results showed that the K-nearest neighbor achieved the best
accuracy, which was about 75.5%.

Figure 1. Schematic representation of a standard ECG signal.

To discriminate between the HRV dynamics in two states of fatigue (caused by sleep
deprivation) and drowsiness (caused by monotonous driving), two different monitoring
systems were proposed in [21] based on features from HRV and respiration signals. One of
these systems is a binary classifier (alert/drowsy) for assessing the level of driver vigilance
every minute. Another system detects the level of the driver’s sleep deprivation in the first
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three minutes of driving. That study showed that the balanced accuracy of the drowsiness
detection system which used only HRV-based features is about 65.5%. However, by adding
the features from respiration signals, this system achieved a balanced accuracy of 78.5%, an
improvement of about 13%. The balanced accuracy of the sleep deprivation system was
also about 75%, and it detected 8 out 13 sleep-deprived drivers correctly. Another study
conducted by Buendia et al. [22] investigated the relationship between the drowsiness
levels rated with the Karolinska sleepiness scale (KSS) and heart rate dynamics. Results
showed that the average heart rate decreased with increasing KSS (which means higher
drowsiness levels), whereas heart rate variance increased in drowsy states. Patel et al. [23]
also developed a neural network classifier to detect the early onset of driver drowsiness
by analyzing the power of low- and high-frequency HRV sub-bands. The spectral image,
plotted from the power spectral density of the HRV data, was the input given to the
neural network that yielded an accuracy of 90%. In [24], Li and Chung used a wavelet
transformation to extract features from HRV signals and compared them with fast Fourier
transform (FFT)-based features. Receiver operation curves were used for feature selection
and support vector machines as a classifier. The wavelet method outperformed the system
designed using FFT. Classification results showed that the wavelet-based feature system
achieved an overall accuracy of 95%. Furman et al. [25] reported that HRV activity in
the very-low-frequency range (0.008–0.04 Hz) significantly and consistently decreases
approximately five minutes before extreme signs of drowsiness can be observed.

1.2. Contribution of the Method

Previous studies commonly used hand-crafted techniques or dimensionality reduction
methods to extract features from HRV data for driver drowsiness classification. Most
commonly, heart rate variability data are derived by the detection of R-peaks in the ECG
signal and processing the information of R-peak time points only. However, other segments
of the ECG signals (see Figure 1) might also be associated with different levels of drowsiness.
Furthermore, previous studies widely used traditional machine learning classifiers to
classify driver drowsiness; however, deep neural networks are expected to outperform
them if a large data set is available for training. In this study, we first employed the wavelet
transformation to generate 2D scalogram images of the ECG signal, which capture time–
frequency domain features. These images are inserted as input data to a deep convolutional
neural network. Bayesian optimization is applied to optimize the hyperparameters of this
network. To compare the results of this approach with previous methods, HRV data is
also derived from ECG signals in a common way, and its extracted features are utilized to
classify driver drowsiness using two traditional classifiers: K-nearest neighbors (KNN) and
random forest.

The rest of this paper is structured as follows: Section 2 explains the experimental
setup and the testing procedure that was used to collect the dataset. Section 3 describes
the methodology for the classification of driver drowsiness. Section 4 presents the results
of the proposed method, discusses the results, and compares them with the outcomes of
other algorithms. Finally, Section 5 presents our conclusions and suggests future tasks to
improve the proposed method.

2. Experimental Setup and Testing Procedure

This study utilizes the dataset collected during the WACHSens project, a joint project
of the Human Research Institute Weiz, the Graz University of Technology, apptec Factum
Vienna, and AVL U.K. The tests were performed in the automated driving simulator of
Graz (ADSG) at the Institute of Automotive Engineering, Graz University of Technology.
The driving simulator is presented in Figure 2. The following subsections explain the
structure of the ADSG, simulated driving test procedure, and definition of ground truth for
driver drowsiness.
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Figure 2. Automated driving simulator of Graz (ADSG). To cancel the external noise and adjust the
indoor temperature, ADSG is separated from its surrounding area using an insulating housing cube.

2.1. Driving Simulator

In the ADSG, the visual cues are simulated by eight LCD panels, covering 180 degrees
of view and the rear screen, which the inner mirror observes. The side mirrors are also
implemented in the LCDs covering the side windows. The acoustic cue is simulated by
generating engine and wind noise applied at the car’s sound system. Moreover, four
bass shakers generate the vibration in the car chassis and the driver and passenger seats.
Haptic feedback is provided by the SensodriveTM simulator steering wheel (Weßling, Ger-
many) [26], and an active brake pedal simulator, gas pedal, and gear-shift input are taken
from the vehicle unmodified controls. The vehicle dynamics states are calculated by a
full vehicle software AVL-VSMTM (Graz, Austria) [27], parametrized with a middle-class
passenger car. The vehicle model calculates dynamics states as well as engine speed and
torque for the acoustic simulation. Adaptive cruise control (ACC) and lane-keeping assist
(LKA) systems are also implemented in this simulator for controlling the vehicle’s longitu-
dinal and lateral dynamics during tests on automated driving. The ADSG is surrounded
by a noise- and temperature-insulating cube/box. Different features of this simulator were
studied in our previous works [28,29].

2.2. Participants and Driving Tests Procedure

In this project, different types of physiological data were collected from 92 drivers.
These drivers participated in manual and automated driving tests when they were in two
different vigilance states: fatigued and rested. This procedure results in four different
driving sessions for each participant: fatigued automated driving, fatigued manual driving,
rested automated driving, and rested manual driving. In the rested condition, drivers were
required to have a full night’s sleep before performing the tests. For the fatigued condition,
the drivers could choose one of the two following options: (1) extended wakefulness (being
awake for at least 16 h continuously before starting the tests in the conditions fatigued
automated and fatigued manual) and perform the tests at their usual bedtime, or (2) being
sleep-restricted by sleeping a maximum of four hours in the night before the tests. The age
and gender of participants were balanced across the sample as presented in Table 1. The
Female-60+ group has only 12 participants since we could not hire more still active drivers
from this group in the available time frame.
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Several biosignals, namely, ECG, EEG, EOG, skin conductivity, and oronasal respira-
tion, were collected using a g.NautilusTM device (Schiedlberg, Austria; research version)
with a sampling frequency of 500 Hz. Facial-based data such as eyelid opening, pupil
diameter, and gaze direction were also measured with a sampling frequency of 100 Hz
using a SmartEyeTM (Gothenburg, Sweden) eye-tracker system installed on the car dash-
board. In this study, only ECG signals are employed to classify the driver’s drowsiness.
The study was conducted according to the ethical guidelines of the Declaration of Helsinki
and the General Data Protection Regulation of the European Union. The study protocol
was approved by the Ethics Committee of the Medical University of Graz in vote 30-409 ex
17/18 dated 1 June 2018. Written informed consent was obtained from participants before
the experiments, and they were compensated with EUR 50 after finishing the sessions.
More details of the driving test procedure are described in a previous publication [2].

Table 1. Gender–age groups of the participants in the driving tests. SD: standard deviation.

Gender Age Range Mean of Age SD of Age Number of
Participants

Female 20–40 25.2 5.3 16
Female 40–60 50.4 6.5 16
Female 60+ 65.4 4.3 12
Male 20–40 24.7 3.7 16
Male 40–60 51.9 4.2 16
Male 60+ 69.0 7.3 16

- - 47.0 18.4 Total: 92

2.3. Ground Truth Definition for Driver Drowsiness

To monitor the participants’ driving behavior, four cameras were placed in the ADSG
that recorded different views of the driver and the test track (see Figure 3). Traffic psychol-
ogists thoroughly observed these videos and assigned labels to the driver’s drowsiness
level based on drowsiness signs such as yawning, long blinks, and head nodding. The
driver’s vigilance state is reported in four classes: alert (AL), moderately drowsy (MD),
extremely drowsy (ED), and falling asleep event (SL). These drowsiness levels are collected
with their corresponding SmartEyeTM video frame numbers to synchronize drowsiness
level ratings with the recorded data channels (more details of data synchronization are
explained in Section 3.1). Figure 4 shows an example of the defined ground truth for
driver drowsiness in all four driving tests (all performed by the same driver). As that
Figure shows, micro-sleep events (SL) were also reported by video observers. However, we
merged the SL class with the extremely drowsy (ED) class since the overall number of SL
samples was too small to be considered as a separate class for machine learning training.
This figure also shows that even in the rested condition, some drivers showed signs of
moderately and extremely drowsy states. More details of the ground truth definition for
driver drowsiness using video observations are explained in our previous publication [30].
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Figure 3. Four different views of the driver and the test track. These views were observed thoroughly
by an expert to define a ground truth for driver drowsiness based on drowsiness signs into three
classes (informed consent was obtained from the driver to publish his image in this paper; reprinted
from our previous study [2], license no. 5218171384545).

Figure 4. Reported ground truth for driver drowsiness by ratings of the driving test videos: (a) video
observations in the fatigued automated and fatigued manual tests; and (b) video observations in the
rested automated and rested manual tests. Four different levels for drivers’ vigilance were reported:
alert (AL), moderately drowsy (MD), extremely drowsy (ED), and sleep (SL). In this paper, we merge
the SL level into the ED level.
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3. Methodology

Two different methodologies are employed to classify driver drowsiness using ECG
signals: (1) two traditional classifiers (random forest and KNN) trained by features extracted
from HRV signals, and (2) one deep convolutional neural network (CNN) model trained by
ECG wavelet scalogram images. The Bayesian optimization method is used to optimize
the hyperparameters of the classifiers. Figure 5 shows the flowchart of these methods. The
following subsections describe the structure of these methodologies.

Figure 5. Two different approaches to classify driver drowsiness using ECG signals: wavelet scalo-
grams or derived HRV features. The hyperparameter of KNN, random forest, and CNN model are
optimized using the Bayesian optimization method.

3.1. Data Synchronization

Ground truth is defined based on the video observation and recorded using the
frame number information of SmartEyeTM data collected with a sampling frequency of
100 Hz. Physiological signals were recorded with separate equipment at 500 Hz sampling
frequency, but also fed into the central recording module and stored with the same sampling
frequency of 100 Hz. The lower sample rate is not sufficient for the high-quality processing
of physiological data. Therefore, we need to synchronize video and physiological data
sources with the help of the respiration signal which is available at both sampling rates of
100 Hz and 500 Hz. The normalized cross-correlation between the two respiration signals is
calculated at all possible lags. The delay between these two signals is calculated as the lag
with the largest absolute value of normalized cross-correlation. Figure 6 shows an example
of data synchronization where 500Hz-respiration data is shifted about 21.4 s forward to be
synchronized with the 100Hz-respiration data. The same time shift is also applied to the
ECG signals collected with the sampling frequency of 500 Hz to sync them with the video
observations. In those data, offset correction was sufficient for an accuracy ±1 video frame.
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Figure 6. Data synchronization using respiration signals collected with two different frequencies of
100 Hz and 500 Hz. In this example, the 500 Hz data is shifted about 21.4 s forward to be synced with
the 100 Hz data.

3.2. ECG Preprocessing

Generally, ECG signals are contaminated with different noise sources such as power
line interference (50 Hz) [31] and baseline wander [32]. A second-order infinite impulse
response (IIR) notch filter [33] is utilized here to remove the power line noise from ECG
signals. Furthermore, a high pass filter with a passband frequency of 0.5 Hz is also
employed to remove the low-frequency baseline wander noise. Figure 7 shows one part
of the noisy and denoised ECG signals after removing the baseline wander and power
line noise.

Figure 7. Noisy and denoised ECG signals after removing baseline wander and power line noise.

3.3. Driver Drowsiness Classification Using Scalograms of ECG Signals

This section describes the proposed method for driver drowsiness classification using
deep neural networks trained by wavelet scalogram images of the ECG signals.

3.3.1. Wavelet Scalogram

Wavelet analysis calculates the correlation (similarity) between an input signal and a
given wavelet function ψ(t). Unlike Fourier transform, wavelet analysis provides a multi-
resolution time–frequency output under the assumption that low frequencies maintain the
same characteristics for the whole duration in the input signal. In contrast, high frequencies
are assumed to appear at different time points as short events.
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Therefore, the wavelet function is scaled and translated by two parameters s ∈ R+

and u ∈ R to generate a wavelet filter bank, ψu,s as presented by Equation (1) [34].

ψu,s =
1√

s
ψ

(
t − u

s

)
(1)

By using this transformed wavelet, continuous wavelet transform (CWT) of the input
signal x(t) at the time u and scale s can be calculated as:

XWT(u, s) =
∫ ∞

− ∞
x(t)ψ∗u,s(t)dt (2)

where ψ∗(t) is the complex conjugate of ψ(t) and XWT(u, s) provides the frequency contents
of x(t) corresponding to the time u and scale s. By using the two parameters of u and s, it is
possible to investigate the input x(t) in two domains of time and frequency simultaneously,
whereby the resolution of time and frequency depends on the scale parameter s. CWT
provides a time–frequency decomposition of x(t) in the time–frequency plane. This method
can be more beneficial than other methods such as short-time Fourier transform (STFT)
when investigating the non-stationary signals since it provides a higher time resolution in
the higher frequencies by reducing frequency resolution, and a higher frequency resolution
in lower frequencies by reducing time resolution. In contrast, the time and frequency
resolutions are constant in STFT. The scalogram if x(t) in any positive scale is calculated as
the norm of XWT(u, s):

S(u, s) = ||XWT , (u, s) || =
(∫ ∞

−∞
|XWT(u, s)|2 du

) 1
2

(3)

This equation calculates the energy of XWT at a scale s. Therefore, we can find the
significant scales (which correspond to frequencies) in the signal using the scalogram.

The wavelet scalogram is used to transform the time series ECG signal to the time–
frequency domain. Here, the Morse wavelet [35] is employed to calculate the wavelet
transformation of the ECG signals. A sliding window with a length of 10 s and an overlap
of 5 s between two consecutive windows was employed, and the scalogram image of every
window of the data is calculated. The resulting number of data windows in each level of
driver drowsiness are provided in Table 2 for manual driving, and in Table 3 for automated
driving. As these tables show, the generated data sets are imbalanced in both manual and
automated modes. This fact must be taken into account in the structure of the deep and
traditional classifiers. Moreover, the percentages of MD and ED classes are higher in the
automated driving tests than in the manual tests. Thus, the drivers were generally drowsier
in automated.

Figure 8 shows sample images of ECG signals and their corresponding scalogram
images for all three drowsiness levels in a rested automated test. The generated images are
resized to 224 × 224 pixels. To reduce the computational complexity of the training process
of the deep network, the RGB scalogram images are also transformed to grayscale images
as presented in Figure 9. These grayscaled images are used as input data to train the deep
convolutional neural network.

Table 2. The number of data samples in each drowsiness class after applying time windows to
generate the scalograms in the manual driving tests.

Class Number of Samples Percentage

AL 23,722 67.38%
MD 9371 26.62%
ED 2111 6.00%

Sum 35,204 100%
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Table 3. The number of data samples in each drowsiness class after applying time windows to
generate the scalograms in the automated driving tests.

Class Number of Samples Percentage

AL 19,508 56.33%
MD 10,699 30.89%
ED 4427 12.78%

Sum 34,634 100%

Figure 8. Cont.
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Figure 8. Examples of ECG signals segments and their corresponding scalograms for the AL (a),
MD (b), and ED (c) classes.

Figure 9. Sample of a grayscale resized image (224 × 224 pixels) of the ECG scalogram image.

3.3.2. Architecture of Deep CNN and Optimization of its Hyperparameters

Convolution neural networks (CNN) have been widely used to learn features from
input images in different applications [36–39]. These networks help to capture the spatial
dependencies in different parts of an input image by applying a convolution operation
of some specific filters to input images [40]. This study used scalogram images of ECG
signals to train a deep CNN and classify the driver drowsiness. As scalograms are time–
frequency representations of an underlying time signal, temporal information is coded in
the spatial features of the image. The input images are first normalized to have zero mean
and unit variance. Then, the whole data set is split randomly into the train (80% of the
input data), validation (10% of the input data), and test (10% of the input data) subsets in a
way that the percentages of the drowsiness classes are approximately the same as presented
in Tables 2 and 3 in each of the subsets.

The utilized deep CNN is composed of five convolutional blocks and one fully con-
nected block in its hidden layer. Convolution and fully connected blocks are presented
in Figure 10, where Conv, BN, ReLU, Max Pool, and FC are convolution layers, batch
normalization layer, the ReLU activation function (max(x, 0)), and a fully connected layer,
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respectively. The hidden layer is followed by the output layer that is constructed using an
FC layer, a soft-max layer, and a weighted classification layer (weight). The number of neu-
rons in the fully connected layer of the output layer is equal to the number of classes (here,
three). The weight layer is used to mitigate the data imbalance issue. This layer contains
one element per drowsiness class where every element is calculated using Equation (4):

Wi =
Nc

Ci ∑Nc
i = 1

1
Ci

(4)

where Nc is the number of classes (here, three), Ci is the number of data samples that belong
to the i-th class, and finally, Wi is the weight of i-th class. By applying Equation (4) to the
data samples that belong to the drowsiness classes in the manual and automated modes
(presented in Tables 2 and 3), the corresponding weights for every class are computed.
Table 4 provides these weights. As this table shows, the class weights of the ED class are
highest in both manual and automated mode tests. By using these weights, misclassification
errors of the MD and ED classes get more weight in comparison to the AL class. Therefore,
if the network classifies an MD or ED sample into the AL class wrongly, it results in a large
misclassification error that has a significant influence on the optimization process and thus
will reduce the frequency of this kind of classification error.

Figure 10. Convolutional (a) and fully connected (b) blocks are used to construct the deep CNN.

Table 4. Class weights of the different drowsiness classes used in the deep CNNs to alleviate the
imbalanced data set issue.

Class Manual Automated

AL 0.203 0.415
MD 0.514 0.757
ED 2.283 1.828

Figure 11 presents the architecture of the deep CNN, where five convolution blocks
are followed by one fully connected block. Moreover, one dropout layer is also added after
convolution blocks to reduce the possibility of overfitting or getting stuck in local minima
during the training process. The dropout layer temporarily eliminates some neurons with
a predefined probability, along with all of their input and output connections [41].

Deep neural networks have several hyperparameters such as the learning rate, the
regularization parameter, and the number of neurons of filters that can influence network
performance. Finding a proper combination of these hyperparameters so that they provide
the optimal performance of the deep network is a primary active task in the research
field of deep learning [42,43]. In this study, the Bayesian optimization method [44,45] is
applied to optimize the hyperparameters of the deep CNN. This method has the capabil-
ity of reasoning about the iterations’ performance before they are performed. Therefore,
fewer iterations are needed to find the optimal hyperparameter combination than with
other hyperparameter optimization methods [45]. Moreover, this method yields a better
generalization on the tests data set [46]. Here, four different hyperparameters were consid-
ered to be optimized using the Bayesian optimization method, including learning rate, L2
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regularization, dropout probability, the number of filters in convolution layers (Conv1 to
Conv5 in Figure 11), and neurons in the fully connected layer in the hidden layers (FC1 in
Figure 11). Here, it is assumed that the number of filters in Conv1 to Conv5 and the number
of neurons in FC1 are equal, so only one hyperparameter is defined to find their optimal
values. Table 5 presents the specified search space for each of these hyperparameters.

Figure 11. The architecture of the deep CNN used to classify driver drowsiness using ECG scalo-
gram images.

Table 5. Used hyperparameters of the deep CNN to be optimized using a Bayesian optimizer.

Index Hyperparameter Search Space

H1 Learning rate
[
5× 10−5–0.001

]
H2 Dropout probability [0.2–0.4]
H3 L2 regularization

[
10−8–0.01

]
H4

Number of filters in convolution layers (Conv1 to
Conv5) and neurons in fully connected layer (FC1) [30–60]

An adaptive moment estimation (ADAM) optimizer is employed to train the parame-
ters of the designed deep CNNs (weights and biases). The maximum number of epochs
is empirically chosen to be 15. A schedule for learning rate is utilized that multiplies the
initial learning rate by 0.1 after 12 epochs to alleviate overfitting in the latter training epochs.
The size of the mini-batch is defined to be constant and equals 16. The training process was
conducted on a system with CPU and GPU types of Intel CoreTM;i7-782HQ and NVIDIATM

Quadro M2200, respectively.

3.4. Driver Drowsiness Classification Using Heart Rate Variability Data

This section describes the proposed method for driver drowsiness classification using
feature extraction from HRV data.

3.4.1. Derivation of Heart Rate Variability Data from ECG Signals

The heart rate variability signal is derived from preprocessed ECG signals by applying
an R-peak detection algorithm to detect heart rate. In this study, we used the automatic
multiscale-based peak detection (AMPD) method [47] as an ECG R-peak detector, then
RR Intervals (RRIs) that are defined as the time intervals between every two consecutive
R-peaks are calculated. Figure 12 shows the detected R-peaks in a part of the ECG signal.
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Figure 12. Detected R-peaks in the denoised ECG signal using the AMPD method.

3.4.2. Feature Extraction from HRV Data

Literature has proposed some features to be extracted from RR intervals for driver
drowsiness detection [18], which conform to measures that are well established in clinical
contexts [48]. Other HRV features are based on a visualization technique called the Poincaré
plot. In this subsection, firstly, this plot is introduced, then those and other commonly
extracted features from RR intervals are explained.

Poincaré plot: This plot is a type of recurrence plot to investigate the similarity in time
series that can be used to analyze the nonlinear properties of HRV data [49]. Consider
X = [RRt, RRt + 1, . . . , RRN] as a RR interval time series. The Poincaré plot first plots
(RRt, RRt + 1), then plots (RRt + 1, RRt + 2), then plots (RRt + 2, RRt + 3) and so on. This
plot provides information about the short-term and long-term dynamics of the RR interval.
An ellipse is fitted to the plotted data points and the minor and major semi-axes of the
ellipse are associated with short-term and long-term HRV, respectively. Figure 13 shows the
Poincaré plot for RR intervals collected in a rested automated driving test. The least-square
method was employed to fit an ellipse on given RR intervals [50] and geometrical properties
of this ellipse are extracted as features to describe the HRV dynamics.

Figure 13. Poincaré plot and fitted ellipse for RR intervals during a rested automated driving test.
Minor and major semi-axes of the fitted ellipse, SD1, SD2, and their ratio, are calculated as features to
capture the dynamics of HRV data.



Energies 2022, 15, 480 15 of 25

Three features are extracted from this plot:

1. SD1: SD1 is the standard deviation of the Poincaré plot perpendicular to the line of
identity and the semi-minor axis (half of the shortest diameter) of the fitted ellipse,
see Figure 13 (green vector). SD1 is an estimation of short-term HRV that describes
parasympathetic activity since it represents the deviation of heart rate from the line-
of-identity (constant heart rate).

2. SD2: SD2 is the standard deviation of the Poincaré plot along the line of identity and
the semi-major axis (half of the largest diameter) of the fitted ellipse, see Figure 13
(red vector). SD2 is an estimation of long-term HRV that describes sympathetic and
mixed activity since SD2 is along the line of identity.

3. SD1/SD2: SD1/SD2 is the ratio of SD1 to SD2 that describes the ratio of short-term
to long-term HRV and the relationship between parasympathetic and sympathetic
activity.

Other features that have been proposed by previous studies [18,51,52] are also ex-
tracted from RR intervals. These features are:

1. MeanRR: This feature presents the mean values of the time intervals between every
two consecutive R-peaks. The MeanRR is calculated by Equation (5):

MeanRR =
1

NR − 1

NR − 1

∑
i = 1

RRi + 1 (5)

where NR is the number of heartbeats in the sliding windows and RRi + 1 is equal to
the time interval between Ri and Ri + 1.

2. SDRR: This feature represents the standard deviation of RR intervals, calculated by
Equation (6).

SDRR =

√√√√ 1
NR − 1

NR−1

∑
i=1

(RRi + 1 − MeanRR)2 (6)

3. RMSSD: This feature calculates the root mean square of consecutive RR intervals’
differences, calculated by Equation (7). It reflects parasympathetic activity.

RMSSD =

√√√√ 1
NR − 1

NR−1

∑
i = 1

(RRi + 1 − RRi)
2 (7)

4. pRR50: This feature measures the ratio of the number of R-peaks that differ more
than 50 ms from their next R-peak to the total number of RR intervals in every sliding
window. Equation (8) calculates the pRR50.

pRR50 =
RR50count

NR
(8)

5. VLF: This feature presents the power in the very-low-frequency ranges of 0.003–0.04 Hz
of the RR interval time series. To calculate this feature and the LF and HF, the PSD of
the RR intervals is computed using the Lomb–Scargle periodogram method [53,54] in
every sliding window.

6. LF: This feature presents the power in the low-frequency ranges of 0.04–0.15 Hz of the
RR interval time series.

7. HF: This feature presents the power in the high-frequency ranges of 0.15–0.40 Hz of
the RR interval time series and reflects parasympathetic activity.

8. LF/HF: This feature is the ratio of LF divided by HF and is also indicative of the
sympathetic–parasympathetic balance.

Overall, eleven features are extracted from HRV data and are used to classify the
driver’s drowsiness. A window length of ten seconds, which was used in the ECG scalo-
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gram approach above, is considered extremely short for evaluation of HRV as it conforms
nearly exclusively to the fast fluctuations of heart rate according to parasympathetic activ-
ity [55]. For exploratory purposes, we also applied longer sliding windows in comparison
to the deep learning model. Two additional sliding windows are employed: (1) 60 s with
30 s overlap, and (2) 40 s with 20 s overlap. These longer windows help to provide a better
estimation of mid-range dynamics of HRV data for classifiers than we can expect from
short windows that are used in the deep learning method. The results of these sliding
methods are compared together in Section 4.1.

The following subsection explains the two classifiers (KNN and random forest) used
for drowsiness classification.

3.4.3. Classify Driver Drowsiness Using Traditional Classifiers

The KNN and random forest are employed to classify the driver drowsiness using
extracted features from HRV data. Each one of these classifiers has two different hyper-
parameters. The KNN hyperparameters are the number of neighbors for every sample
(numNei) and the function used to measure the distance between samples (distance) [56].
The random forest hyperparameters are also the minimum of leaf size (minLS) and number
of predictors to sample at each node (numPTS) [57]. These hyperparameters are also opti-
mized using the Bayesian optimization method to find the optimal set. Moreover, the issue
of the imbalanced data set is removed by using the uniform prior probability of every class
for the KNN [58] and random under-sampling boosting (RUSBoost) [59] for the random
forest classifier.

4. Results and Discussion

To evaluate the generated classifiers, confusion matrices were calculated for the test
dataset. These matrices provide four different values that are computed for every drowsi-
ness level:

1. True-negative (TN): The number of samples that do not belong to a specific class (for
example, AL) and are also classified in any of the two other classes (MD or ED) by the
classifier.

2. True-positive (TP): The number of samples that belong to a specific class (for example,
AL) and are correctly classified in that class.

3. False-negative (FN): The number of samples that belong to a specific class (for example,
AL) but are wrongly classified in any of the two other classes (MD or ED).

4. False-positive (FP): The number of samples that do not belong to the specific class (for
example, AL) and are wrongly classified in that class.

These four values are used to calculate five different metrics for every level of driver
drowsiness:

1. Specificity (true negative rate): The specificity is TN divided by the sum of TN and FP.
It can be interpreted as the probability of a sample not being classified in a class if it
does not belong there

2. Sensitivity (true positive rate): The sensitivity is TP divided by the sum of TP and FN.
3. Precision (positive predictive value): The precision is TP divided by the sum of TP

and FP.
4. F1-score: The F1-score is the harmonic mean of precision and sensitivity.
5. Balanced accuracy: The balanced accuracy is equal to the average of the accuracies of

the three classes. The accuracy of every class is also equal to the ratio of TP of every
class to the number of samples that belong to the corresponding class based on the
actual labels.

The following subsections present the results of the two proposed methods for driver
drowsiness classification.



Energies 2022, 15, 480 17 of 25

4.1. Results of Driver Drowsiness Classification Using Heart Rate Variability Data

To evaluate the performance of the KNN and random forest classifiers, confusion
matrices of these classifiers trained by HRV-based features with three different sliding
windows of 10 s, 40 s, and 60 s are provided in Figures 14–16, respectively. In these
Figures, the diagonal elements (in gray) provide the number of the sliding windows that
are correctly classified in different classes of drowsiness, according to the ground truth
classification from the video observations. Accordingly, the percentage numbers written
in these elements show correct classification accuracy for every specific drowsiness level.
Non-diagonal cells also present the number of samples that are misclassified. As these
figures present, the classification accuracy of the MD class is lower than two other classes in
the manual mode. Furthermore, random forest performs better than KNN for drowsiness
classification in manual and automated modes regardless of the used sliding window.
Balanced accuracies for every classifier in every driving mode are provided in Table 6.
These accuracies are calculated as the average TP accuracies in confusion matrices that
are shown in grey elements in Figure 16c,d. Therefore, the best balanced accuracy that is
achieved using traditional methods in manual mode is the average of 64.7%, 56.2%, and
56.4%. The best balanced accuracy in the automated mode that is achieved by the same
methods is also the average of 63.4%, 63.5%, and 66.6%. According to this table, the best
balanced accuracies in the automated and manual modes are respectively 63.8% and 62.1%,
which are obtained using the random forest classifier and the sliding window of 60 s with
30 s overlap.

Figure 14. Confusion matrices of KNN classifier in the manual tests (a), KNN classifier in automated
tests (b), random forest in the manual tests (c), and random forest in the automated tests (d) for
driver drowsiness classification. The length of the sliding window for feature extraction is 10 s with a
5 s overlap. AL: alert, MD: moderately drowsy, and ED: extremely drowsy.
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Figure 15. Confusion matrices of KNN classifier in the manual tests (a), KNN classifier in automated
tests (b), random forest in the manual tests (c), and random forest in the automated tests (d) for
driver drowsiness classification. The length of the sliding window for feature extraction is 40 s with a
20 s overlap. AL: alert, MD: moderately drowsy, and ED: extremely drowsy.

Figure 16. Confusion matrices of KNN classifier in the manual tests (a), KNN classifier in automated
tests (b), random forest in the manual tests (c), and random forest in the automated tests (d) for
driver drowsiness classification. The length of the sliding window for feature extraction is 60 s with a
30 s overlap. AL: alert, MD: moderately drowsy, and ED: extremely drowsy.
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Table 6. Balanced accuracies of the KNN and random forest classifiers in the manual and automated
driving modes with two different sliding windows. B.Acc.: balanced accuracy, 10/5: sliding window
with the length of 10 s and 5 s overlap, 40/20: sliding window with the length of 40 s and 20 s overlap,
and 60/30: sliding window with the length of 60 s and 30 s overlap.

Classifier Driving Mode Sliding Window B.Acc. %

KNN Automated 10/5 50.5%
KNN Automated 40/20 53.5%
KNN Automated 60/30 52.5%

Random Forest Automated 10/5 53.9%
Random Forest Automated 40/20 58.7%
Random Forest Automated 60/30 63.8%

KNN Manual 10/5 53.7%
KNN Manual 40/20 48.9%
KNN Manual 60/30 52.1%

Random Forest Manual 10/5 55.1%
Random Forest Manual 40/20 57.3%
Random Forest Manual 60/30 62.1%

For the sake of brevity, classification metrics including specificity, sensitivity, precision,
and F1-score are shown only for the best classifier (random forest trained by HRV-based
features with a 60 s sliding window) in the manual and automated modes. Table 7 presents
these metrics. As this table shows, the precision value for the ED class is low. This has
occurred because the number of TP is low for this class. According to this table, the AL class
has the maximum F1-score in both manual and automated modes. Therefore, the accuracy
of the random forest for the AL class is higher than two other classes, and accordingly, the
false alarm of this is reduced using this classifier.

Table 7. Classification metrics for the random forest classifier trained by HRV-based features in the
manual and automated driving modes. Spe.: specificity; Sen.: sensitivity; Pre.: precision; and F1S:
F1-score.

Mode Class Spe. Sen. Pre. F1S.

Manual AL 0.76 0.95 0.86 0.90
Manual MD 0.78 0.56 0.46 0.51
Manual ED 0.85 0.56 0.18 0.27

Automated AL 0.81 0.63 0.81 0.71
Automated MD 0.77 0.63 0.56 0.59
Automated ED 0.86 0.67 0.40 0.50

4.2. Results of Driver Drowsiness Classification Using Scalogram of ECG Signals

As presented in Section 3.3.2, four different hyperparameters of deep CNN are consid-
ered to be optimized using the Bayesian optimizer. Table 8 shows the optimized hyperpa-
rameters of deep CNNs in the manual and automated driving modes. As this Table shows,
the number of filters in the convolution layers and neurons in the fully connected layer
(presented by the hyperparameter H4) is higher in the automated driving mode. Therefore,
the computational cost is higher in the automated tests to classify driver drowsiness using
the proposed deep CNNs. The L2 regularization value (presented by the hyperparameter
H3) is much higher in manual tests than in automated tests. Thus, deep CNN needs larger
parameters to classify the driver drowsiness in the manual tests. The dropout probability
(presented by the hyperparameter H2) of the trained deep CNN for the ECG signals in the
automated tests is higher than the designed deep CNN for the manual tests. The number of
neurons is also higher for the deep CNN trained by the ECG signals for automated driving.
Therefore, its network is wider than another one. Consequently, the dropout probability
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of the network trained by the ECG signals of the automated tests should also be higher to
turn off more neurons and avoid overfitting.

Table 8. Optimized values of hyperparameters in different driving modes and by inputting ECG
scalogram to the deep CNNs. Hyperparameters H1 to H4 are defined in Table 4.

Driving Mode H1 H2 H3 H4

Manual 0.0001 0.202 0.0015 42
Automated 0.0002 0.321 2.74 × 10−8 60

In comparison with other widely used deep CNNs that are implemented in embed-
ded systems for real-time face recognition or object detection, our developed deep CNNs
have much fewer parameters. Table 9 compares the number of parameters of four differ-
ent frequently used deep networks in real-time applications (AlexNet [60], VGG16 [61],
ResNet18 [62], and GoogLeNet [63]) with our developed networks.

Table 9. Comparison of the approximate number (app. no.) of parameters in the developed deep
CNN with other deep networks that were implemented in real-time applications in previous works.
ECG-automated and ECG-manual in this table are deep networks and driving tests in automated and
manual modes are used to train them, respectively.

Deep Network App. No. Parameters (Million)

ECG-automated 2.2
ECG-manual 0.6

AlexNet 62
VGG16 138

ResNet18 11
GoogLeNet 6.5

Confusion matrices of the trained deep CNNs using ECG signals of the manual and
automated tests are provided in Figure 17 to evaluate their classification performance. As
this Figure shows, the MD class and AL class have the lowest and highest classification
accuracy in both manual and automated driving modes, respectively. Therefore, reducing
the number of classes from three to two can increase classification accuracy. However, it will
not be possible to capture the transition between the AL to ED states in the case of binary
classification. The balanced accuracy of the deep CNNs in both manual and automated
modes is also provided in Table 10. These accuracies are calculated as the average TP
accuracies in confusion matrices that are shown in grey elements in Figure 17a,b. Therefore,
the balanced accuracy in manual mode is the average of 81.2%, 78.6%, and 79.1%. The
balanced accuracy in the automated mode is also the average of 82.2%, 73.8%, and 82.0%.
According to Table 10, the balanced accuracy of the deep CNN in the manual and automated
driving modes are respectively about 77% and 79%. By comparing Table 10 with Table 6,
deep CNNs significantly outperform the random forest and KNN methods in both manual
and automated modes. Therefore, the input ECG scalograms are more informative than
HRV-based features regarding driver drowsiness levels.

Classification metrics of the deep CNNs in the manual and automated modes are
provided in Table 11. Comparing Table 11 with Table 7 shows that the F1-scores of all
classes in both driving modes except the AL class in manual mode are improved by using
the deep CNN method. According to this table, the precision value for the ED class is also
lower than other classes since the numbers of the data samples of this class are much lower
than the MD and AL classes.
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Figure 17. Confusion matrices of deep CNN for driver drowsiness classification in the manual (a)
and automated (b) driving tests.

Table 10. Balanced accuracy of the deep CNN in the manual and automated driving modes. B.Acc.:
balanced accuracy.

Classifier Driving Mode B.Acc. %

Deep CNN Manual 76.63
Deep CNN Automated 79.33

Table 11. Classification metrics for the deep CNN trained by ECG scalogram images in the manual
and automated driving tests. Spe.: specificity; Sen.: sensitivity; Pre.: precision; and F1S: F1-score.

Mode Class Spe. Sen. Pre. F1S.

Manual AL 0.90 0.81 0.94 0.87
Manual MD 0.83 0.78 0.62 0.69
Manual ED 0.95 0.79 0.53 0.63

Automated AL 0.90 0.82 0.91 0.86
Automated MD 0.85 0.74 0.69 0.71
Automated ED 0.93 0.82 0.64 0.72

5. Conclusions

Two different methodologies were proposed in this paper to classify driver drowsiness
using ECG signals. In the first methodology, R-peaks are firstly detected from ECG signals
to obtain the HRV data. Then, eleven features are extracted from HRV data, and finally,
random forest and KNN are used to classify drowsiness into three classes: alert, moderately
drowsy, and extremely drowsy. In another method, a deep CNN was used to classify the
drowsiness to the same classes when wavelet scalogram images of the ECG signals were
inputs to this network. Results showed that the classification with deep CNN on ECG
scalograms was more accurate than the random forest and KNN classifiers on HRV in both
manual and automated driving modes. It is noteworthy that the length of ECG signals for
the scalograms was only 10 s. For direct comparison, we also calculated HRV features on
10 s windows, though we are aware that this time frame captures fast, mostly respiratory,
fluctuation only. Time frames from at least 1–2 min or even longer are necessary for a
good agreement to usual short-term HRV measures [55,64]. We also computed longer time
frames of 40 s and 60 s to verify the hypothesis that these longer windows capture more
relevant information. Indeed, the classification accuracy of both KNN and RF classifiers
increases with the duration of the time window used for HRV calculation.

In contrast, the deep CNN on ECG scalograms performs better already based on 10 s
windows only. We conclude that the time–frequency content of the entire ECG signal
captures information about the autonomous state of an individual beyond the RRI signal,
which is the only information used for classical HRV parameters. Further research is
suggested to understand which feature of an ECG exactly codes relevant information.



Energies 2022, 15, 480 22 of 25

The following tasks are also suggested to improve the designed driver drowsiness
classification system:

1. Applying a quality assessment method to the ECG signals in every sliding window
can help to remove noisy data and increase classification accuracy. Moreover, a quality
index can be derived for each sliding window to specify its influence on the reported
drowsiness level in a predefined time interval (e.g., 1 min).

2. In this study, ECG signals are collected using attached electrodes to the driver’s
chest. Non-invasive sensors such as smart watches can also be used to design a
non-disturbing system for drivers. However, the accuracy of these devices should
be compared with accurate medical sensors, and differences in information gain
according to the different characteristics of an ECG to an optical pulse signal need to
be evaluated.

3. The proposed methods in this study developed generic driver drowsiness classifica-
tion systems that consider no driver-specific differences. Only two hours of data is
available for every driver which might not be sufficient to train a driver-specific deep
network. To build a driver-specific system, transfer learning [65] can be employed.
Using this method, the trained deep CNNs can be fine-tuned for a specific driver
using a shuffled portion of their ECG data as the training set. Then, the fine-tuned
deep CNN can be used to evaluate the drowsiness for the specific driver in the unseen
test set or in real time. This approach can also reduce the amount of data needed from
each driver to build a driver-specific system.

4. In this study, data from signal segments were treated as independent from each other
by random selection and the sequential time information was ignored. Though this
is presumably an advantage for the ability of a practical system to react fast, the
transition from wakefulness to drowsiness might also be considered a continuous
slower process. Therefore, it should be evaluated if outcomes of the deep network
profit from the inclusion of sequential information of training segments.
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