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Abstract

Simultaneous interrogation of tumor genomes and transcriptomes is underway in unprecedented global efforts.

Yet, despite the essential need to separate driver mutations modulating gene expression networks from

transcriptionally inert passenger mutations, robust computational methods to ascertain the impact of individual

mutations on transcriptional networks are underdeveloped. We introduce a novel computational framework,

DriverNet, to identify likely driver mutations by virtue of their effect on mRNA expression networks. Application to

four cancer datasets reveals the prevalence of rare candidate driver mutations associated with disrupted

transcriptional networks and a simultaneous modulation of oncogenic and metabolic networks, induced by copy

number co-modification of adjacent oncogenic and metabolic drivers. DriverNet is available on Bioconductor or at

http://compbio.bccrc.ca/software/drivernet/.
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Background
Cancer genome sequencing experiments are designed to

enumerate all somatic mutations within a cancer. Some of

these mutations will serve as actionable genomic aberra-

tions upon which to develop and apply targeted therapies

(for example, mutations in PIK3CA, BRAF, and KRAS)

and ultimately enabling rational frameworks for improved

clinical management and patient care based on precise

genomic patterns of somatic alteration. To this end, next

generation sequencing (NGS) technology has shifted the

rate-limiting step from identifying all cancer mutations in

a sequenced genome to identifying the relatively few func-

tional mutations that drive the phenotype of malignant

cells. Therein lies a major challenge in the cancer geno-

mics field: distinguishing pathogenic, driver mutations

from the so-called passenger mutations that accrue sto-

chastically, but do not confer selective advantages.

In order to discover novel driver mutations, several

large-scale sequencing initiatives such as The Cancer Gen-

ome Atlas project (TCGA, for example, [1]) are generating

simultaneous whole genome and transcriptome interroga-

tions for hundreds of cases of the same tumor type. This

opens the possibility of ascribing the impact of individual

somatic mutations on gene expression networks. Initial

observations in high-throughput datasets, coupled with

innumerable functional studies suggest that driver muta-

tions are expected to alter gene expression of their cognate

proteins, their interacting partners, or genes that share the

same biochemical pathway. This will lead to a correlated

pattern of gene expression in a network of genes asso-

ciated with a driver mutation, which differs from benign

passenger mutations with little to no phenotype. More-

over, somatic aberrations in genes may alter more than

one transcriptional network, thus enabling the enumera-

tion of a group of pathways driven by a single genomic

event. The importance of placing mutations in the context

of their gene expression has been illuminated recently by

Prahallad and colleagues [2], who established the thera-

peutic effect of PLX4032 against the BRAF V600E onco-

protein, which is mechanistically linked to the activation
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of EGFR. Thus, differential expression of EGFR in different

cell types (colon cancers versus melanomas) has a dra-

matic impact on drug efficacy. Consequently, knowing

active pathways coupled with mutational profiles will be

critical for implementation of therapeutic decisions

informed by the presence of mutations in a cancer.

Current approaches for driver analysis typically rely on

the frequency of aberration of a given gene or locus in a

population of tumors as a function of the background

mutation rate (for example, [3-5]). Recent whole gen-

ome interrogations, however, have revealed the vast

majority of mutated genes exhibit low population fre-

quencies [6-10]. While most of these events can be

explained by stochastically acquired mutations due to

increased proliferation or acquisition of mutagenic pro-

cesses, with no oncogenic properties, many others are in

fact well-known pathogenic mutations with, in some

cases, actionable clinical utility. For example, sequencing

of complete exomes of 316 ovarian cancers [7] and 65

triple negative breast cancers [11] revealed rare but

functionally important and actionable mutations (for

example, in ERBB2 and BRAF) in a small percentage of

cases that were not identified by frequency and back-

ground mutation rate analyses. Thus, frequency analysis

will fail to recognize infrequent, but nonetheless impor-

tant driver mutations.

We suggest that integrative analysis of genomic aberra-

tions and transcriptional profiles in cancer will reveal

somatic mutations that drive biological processes, regard-

less of the population frequency. Furthermore, we propose

that biological networks can be leveraged to relate muta-

tions to their consequent effect on transcription and gene

expression. Figure 1A shows an example of high-level

amplification of EGFR in a glioblastoma multiforme

(GBM) tumor, accompanied by the coincident outlying

expression of genes that are connected to EGFR through

known biological pathways. We note that BRAF in this

case, although not amplified itself, exhibits elevated

expression compared to the population distribution. Other

genes known to interact with EGFR exhibit similar

extreme changes in expression levels in this example, such

that PI3K signaling and MAPK signaling could be affected

by this single genomic event. Figure 1B shows fitted Gaus-

sian expression distributions of three genes that interact

with EGFR: FGF11, PIK3R1, and PRKACB, and shows that

some cases with outlying expression have coincident

EGFR amplifications. Our assumption is that amplification

of EGFR in these cases has driven expression of the exam-

ple genes to the tails of their respective distributions.

Thus, extreme changes in expression levels of genes

related to genomic aberrations are observable in orthogon-

ally measured high-throughput transcriptome assays. As

such, simultaneous analysis of genome and transcriptome

measurements should amplify important signals in the

data. Motivated by this idea, we hypothesize that driver

aberrations will measurably disrupt transcriptional profiles

regardless of their frequency in the population.

Algorithmic frameworks to exploit the relationship

between genomic events and consequent changes in gene

expression to nominate putative driver genes are underde-

veloped. We therefore propose an integrated genome/

transcriptome analysis framework, called DriverNet, to

contextualize genomic aberrations (for example, mutations

and copy number alterations) by their effect on transcrip-

tional networks and identify candidate genomic aberra-

tions suitable for functional experimental follow-up. Our

approach allows individual mutations to be related to

coincident changes in gene expression and assigns statisti-

cal significance to candidate predictions, thus quantita-

tively and rationally prioritizing candidate genes. We note

that our intent differs from complementary approaches

such as the one described by Vaske et al. [12], which aims

at nominating driver pathways rather than driver genes in

cancer, and from those that leverage genome data without

considering expression [4,13]. Both Masica and Karchin

[14] and Ciriello et al. [15] integrate genome and tran-

scriptome relationships in their framework; however, they

differ from our approach, since Masica and Karchin [14]

do not utilize known biological pathway information and

Ciriello et al. [15] only consider mRNA expression asso-

ciated with copy number aberrations and not with muta-

tions. Other methods focusing on copy number and

expression associations do not consider mutations, nor do

they employ the use of previously annotated pathways

[16,17].

To study the properties and advantages of our approach,

we analyzed four large-scale genome-transcriptome inter-

rogations of tumor populations (Table 1) in human glio-

mas, triple negative breast cancers, a population of nearly

1,000 breast tumors (all subtypes) and high-grade serous

ovarian cancers. We present results from three experi-

ments: i) ascertainment of sensitivity and specificity in the

context of several cancer datasets; ii) enumeration of well-

known, but infrequent, drivers modulating transcriptional

networks, and iii) identification of complex driver events

that implicate compound metabolic and oncogenic path-

way modulation from single genomic events.

Results
Overview of DriverNet approach

We developed a novel, integrated algorithmic approach

(DriverNet) to analyze population-based genomic and

transcriptomic interrogations of tumor (sub)types for iden-

tification of pathogenic driver mutations. Our approach

relates genomic aberrations to disrupted transcriptional

patterns, informed by known associations or interactions

between genes. The full details of the algorithm are

described in the Online Methods, but will be summarized
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Figure 1 A schematic showing how DriverNet works. (a) An example of a Cytoscape visualization of a glioblastoma patient with a high-level

amplification of epidermal growth factor receptor (EGFR) (shown in green) and coincident outlying expression of genes connected to EGFR in the

Reactome influence graph (shown in yellow). Examples of the overrepresented pathways (by Reactome FI plug-in for Cytoscape, FDR < 0.001) from

the list of genes showing outlying expression associated with the EGFR amplification are depicted at the bottom. The box plot shows the population-

level expression distribution of BRAF, an interacting protein with EGFR, and where the specific case with EGFR amplification sits on that distribution

(red ‘x’). We note that in this case, BRAF itself is not mutated or amplified. (b) Fitted Gaussian expression distributions of three genes that interact with

EGFR: FGF11, PIK3R1, and PRKACB, with each point indicating the probability density function for individual cases. For each gene, blue dots indicate

cases with mutations in the gene itself and red arrows indicate cases with outlying expression with coincident EGFR amplifications. (c) Schematic

representation of the DriverNet approach. Given the genomic aberration states for different patients and genes, gene expression data, and the

influence graph, which captures biological pathway information, the bipartite graph shown on the right is constructed. Green nodes on the left

partition of the bipartite graph correspond to aberrated genes and nodes on the right represent the outlying expression status for each patient where

red indicates outlying patient-gene events from the gene expression matrix. The genes with the highest number of outlying expression events (for

example, g2) are nominated as putative drivers.
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here in brief. Shown schematically in Figure 1C, DriverNet

formulates associations between mutations and expression

levels using a bipartite graph where nodes are: i) the set of

genes representing the mutation status (the left partition

of the graph) and ii) the set of genes representing outlying

expression status in each of the patients (the right partition

of the graph). For each patient, an edge between the nodes

on the left and right partitions of the graph is drawn if the

following three conditions are all satisfied: i) gene gi is

mutated in patient p of the population (green nodes on

the left partition of the graph); ii) gene gj shows outlying

expression in patient p (red nodes on the right partition of

the graph); and iii) gi and gj are known to interact accord-

ing to pathway or gene set databases (an ‘influence graph’

after [18]). Our method then uses a greedy optimization

approach to explain as many nodes on the right partition

of the bipartite graph as possible using the fewest number

of nodes on the left partition of the graph such that the

genes explaining the highest number of outlying expres-

sion events (for example, g2 in Figure 1C) are nominated

as putative driver genes. Finally, we apply statistical signifi-

cance tests to these candidates based on null distributions

informed by stochastic resampling.

Datasets

For our analysis, we used four publicly available datasets

that contain genome and transcriptome data of several

tumor types (Table 1). Detailed descriptions of the analysis

of the datasets and pre-processing workflows can be found

in Additional file 1. The GBM dataset represents copy

number, mutations and expression data for 120 glioblas-

toma multiforme patients [6] taken from the TCGA portal

[19]. Note that the cases which had both mutation and

copy number data were included in this dataset. The

METABRIC dataset [20] represents copy number altera-

tions and accompanying gene expression data for 997

breast cancer patients. TN represents the validated muta-

tions, copy number, and expression data for 66 triple

negative breast cancer patients [11]. The TCGA HGS

dataset contains mutations, copy number, and expression

data for 304 high-grade serous ovarian cancer patients [7]

that were taken from the TCGA portal. Like the GBM

dataset, we only included the cases which had both

mutation and copy number data. The data analysis work-

flow is shown schematically in Additional file 2. The

GBM2, TN2, and HGS2 datasets represent mutations only

and gene expression data for 140, 66, and 307 glioblas-

toma, triple negative, and high-grade serous ovarian can-

cer patients, respectively.

Performance benchmarking analysis establishes DriverNet

as a sensitive and specific algorithm

In practice, quantitative measurements with standard sen-

sitivity/specificity benchmarking techniques are impracti-

cal in the absence of ground truth. However, due to the

availability of well-studied cancer gene databases, includ-

ing the cancer gene census (CGC) [21] and the catalogue

of somatic mutations in cancer datasets (COSMIC) [22],

we set out to approximate performance metrics and com-

pare DriverNet with the following two competing meth-

ods: i) a method described by Masica and Karchin [14],

which uses correlation-based statistics followed by a Fisher

exact test to associate mutations with gene expression pat-

terns (referred to as ‘Fisher’, see Additional file 1), ii) a

method described in Youn and Simon [5], which identifies

driver genes based on the background mutation rate, func-

tional impact on proteins, and redundancy in genetic code

(referred to as ‘Frequency’). In adherence to both

approaches mentioned above, we removed copy number

data from the analysis and restricted the comparisons to

mutation data only (GBM2, TN2, and HGS2, Table 1),

resulting in the exclusion of the METABRIC dataset as it

contained copy number aberration data only. We used

two systematic benchmarking measures as follows:

i) examining the proportion of predictions found in the

Cancer Gene Census (CGC) database [21]; ii) examining

the prevalence of somatic mutations of candidate genes in

accordance with the COSMIC database, assuming genes

with higher mutation prevalence in the corresponding

patient population of interest in COSMIC (glioblastoma,

breast and ovarian cancer) are more likely to be driver

genes. Theoretically, this measure should favor the Fre-

quency approach.

To systematically evaluate specificity, we compared the

proportion of predictions that were present in CGC as a

function of decreasing sensitivity thresholds (Figure 2A,

Table 1 Description of datasets

Dataset Tumor type Number of cases Genomic aberrations Outliers Reference

GBM glioblastoma 120 3,198 26,956 [6]

GBM2 glioblastoma 140 573 35,618

METABRIC breast 997 18,331 214,530 [19]

TN triple negative breast 66 4,824 15,929 [11]

TN2 triple negative breast 66 1,019 15,929

HGS serous ovarian 304 8,229 91,697 [7]

HGS2 serous ovarian 307 4,919 92,491
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B, C) for all three methods. We also looked at the cumula-

tive distribution of mutation prevalence in the COSMIC

database for all three datasets (Figure 2D, E, F). Through-

out the range of the top predictions output by DriverNet,

the concordance with CGC was always higher than for

Fisher and Frequency in the GBM2 and TN2 datasets. For

HGS2, DriverNet and the Frequency approach outper-

formed the Fisher method. The cumulative prevalence in

the COSMIC dataset was higher for DriverNet compared

to the other two approaches throughout the range of the

top predictions, with Frequency second best. Thus, far

fewer predictions are required by DriverNet to capture the

majority of drivers in the dataset, indicating higher relative

specificity.

For GBM2 (mutations only), the Frequency method

identified eight genes: EGFR, IDH1, NF1, PIK3R1, PTEN,

RB1, TP53, and FKBP9 as significantly altered with seven

of these found in CGC (Additional file 3). In total, Driver-

Net identified 34 genes (p < 0.05) including seven of the

genes nominated by the Frequency-based approach (Addi-

tional file 4). Several genes found in CGC (PIK3C2G,

MDM2, BCR, ERBB2, DDIT3, FGFR1, BRCA2, MET, and

PDGFRA) were also among the top 34 genes nominated

by DriverNet. We detected MET as the 29th ranked gene

(p = 0.002, mutated in three cases), which was reported in

[1], suggesting that it has been overlooked by the Fre-

quency method, which ranked this gene as the 93rd.

For TN2 (mutation only, no copy number), the Fre-

quency method identified five genes: PIK3CA, RB1, TP53,

PTEN, and MYO3A as significantly altered genes by muta-

tion, of which four were found in CGC (Additional file 5).

In total, DriverNet identified 59 genes with p < 0.05, four

of which were nominated by the Frequency-based

approach (Additional file 6). A DriverNet prediction not

identified by the Frequency approach included JAK1 (p =

0, ranked 13th, mutated in one case), which plays a key

role in prolactin signaling, which is implicated in breast

cancer [23,24].

For HGS2 (mutation only, no copy number), the Fre-

quency method identified CSMD3, BRCA1, BRCA2, and

TP53 as significantly altered genes, three of which were

found in CGC (Additional file 7). DriverNet identified
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Figure 2 DriverNet performance benchmarking with the GBM2, HGS2, and HGS2 datasets. (A-C) Concordance with Cancer Gene Census

for DriverNet, Frequency-based, and Fisher-based approaches as a function of the top N ranked genes (out of 200) for the GBM2, TN2, and

HGS2 datasets, respectively. (D-F) Concordance with the COSMIC database (cumulative distribution of mutation prevalence in the COSMIC

database) for DriverNet, Frequency-based, and Fisher-based approaches as a function of the top N ranked genes (out of 200) for the GBM2, TN2,

and HGS2 datasets, respectively. Note that for the GBM2 dataset, DriverNet nominates 113 genes as candidate drivers, therefore, the

concordance of DriverNet genes with the Cancer Gene Census is plotted for the 113 candidates.
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BRCA1, BRCA2, and TP53 in addition to CGC genes,

KRAS, PTEN, KIT, NRAS, RPN1, RB1, PIK3CA, CLTCL1,

ATIC, CREBBP, MET, PPP2R1A, CLTC, CTNNB1, BRAF,

and TSHR (Additional file 8). BRAF, PIK3CA, KRAS, and

NRAS are known oncogenic drivers and emphasize the

power of integration of expression data to nominate

important but infrequently mutated genes. In addition,

the known tumor suppressor gene, PTEN, was among

the top genes in DriverNet (rank 11th) but was over-

looked by the Frequency method, which ranked this gene

as 525th.

Infrequent mutations modulating transcriptional networks

feature prominently in population level datasets

We then sought to ascertain the prevalence of rare dri-

vers in all four datasets overlooked by Frequency-based

approach to driver prediction. We identified ‘infrequent’

significant drivers (p < 0.05) where the gene of interest

was abrogated by mutation or copy number alteration

(CNA) in < 2% of cases. Due to unknown ground truth

with respect to actual drivers, we restrict presentation to

those genes also found in the CGC. This resulted in 22

genes in METABRIC, 13 genes in HGS, 1 gene in TN,

and 2 genes in GBM (Table 2). The infrequent drivers in

METABRIC were PTEN, RB1, MDM2, MYC, CDKN2A,

CLTC, CREBBP, GNAS, EGFR, CCNE1, EP300, CBL,

PIK3R1, JAK2, TP53, NUP98, PIK3CA, IDH2, KRAS, and

TRA@. Both PIK3CA (two cases with high-level amplifi-

cations) and PIK3R1 (two cases with homozygous dele-

tions) were altered in 0.19% of cases, and yet showed

evidence of driving expression levels of the connected

genes to the tails of the expression distribution. Interest-

ingly, we identified seven cases (0.67%) with homozygous

deletions in TP53 (locus 17p13.1) coincident with outly-

ing expression in MAPK and Wnt signaling pathways

(Additional files 9 and 10). Loss of function of TP53

is typically associated with mutation; however, these

results suggest that in rare cases, homozygous deletions

may be the mechanism by which TP53 is lost in breast

cancer.

In HGS, we found 13 genes that were infrequent drivers

also found in CGC (AKT2, KIT, NRAS, RPN, PIK3CA,

CREBBP, PPP2R1A, ATIC, CLTCL1, MET, MAP2K4,

ETV1, and EP300) (Table 2). Intriguingly, KIT (1.97% of

cases) and NRAS (0.66% of cases) were detected as drivers

(p = 2E-4 and 9E-4, respectively; Additional files 11 and

12) where KIT is mutated in melanomas, gastrointestinal

stromal tumors, adult acute myeloid leukemia patients,

and many other tumor types at high frequency and is the

target of the kinase inhibitor Imatinib. The mutations in

NRAS (typically associated with melanomas, multiple mye-

lomas, acute myelogenous leukemia, and thyroid cancer)

were, in both cases, the Q61R hotspot mutation in the

Ras domain. Both the KIT and NRAS mutations were

overlooked as driver mutations by the Frequency-based

approach (Additional file 7). This illustrates the increased

sensitivity of DriverNet in identifying infrequent drivers in

the population. Interestingly, mutations typically asso-

ciated with lower grade (Type I) ovarian cancers such as

PIK3CA (0.66% cases mutated) and CTNNB1 (0.6% cases

mutated) were also nominated as drivers despite having

extremely low frequency. The two PIK3CA mutations

were both in well-known, activating hotspots, E545K and

H1047R. We suggest that these (four separate) cases

might actually be histologically misdiagnosed ovarian can-

cers. These cases represent an important anecdote as

many tumor populations contain rare mutations that cre-

ate aberrant expression profiles. Type I ovarian cancers

exhibit considerably different expression profiles com-

pared to Type II high-grade serous cancers [25]. If indeed

these cases are non-serous it would be unsurprising, given

the DriverNet formulation of integration of genomic and

transcriptomic profiles, that these rare mutations would

cover many outlier events. In addition, we note that the

previously mentioned MAP2K4 as an infrequent driver

with a mutation in one case and homozygous deletions in

two cases, and the presence of ETV1, typically known for

gene fusions, are listed amongst the infrequent drivers in

the HGS ovarian data. Finally, we cross-referenced the list

of genes p < 0.05 with Cheung et al. [26] (a list of genes

with genetic vulnerabilities in cancer cell lines) and noted

that ALG8 and CCNE1 overlapped.

In the TN and GBM datasets, results were sparser. In

the TN dataset, only one gene was an infrequent driver

that was also in CGC: JAK1 with a mutation occurring in

a single case (Table 2). JAK1 associated outliers were

enriched for EGFR1 signaling (Additional files 13 and 14),

suggesting that the mutation has downstream effects on

an important oncogenic signaling network. In the GBM

dataset, two genes, namely KRAS and AKT1, were infre-

quent drivers and were also found in CGC. KRAS asso-

ciated outliers were enriched for MAPK and PDGFR

signaling and AKT1 outliers were enriched for FoxO

family signaling (Additional files 15 and 16). AKT activa-

tion is associated with many malignancies, where AKT

acts, in part, by inhibiting FoxO tumor suppressors [27].

Collectively, investigations of rare drivers in METABRIC,

HGS, TN, and GBM point out bona fide, but rare driver

mutations, which would likely be omitted by methods

examining genomic aberrations by selection or frequency

analysis. These results indicate that rare driver mutations

modulating expression networks comprise a meaningful

component of the landscape of transcriptional variation

attributed to the somatic genome, and thus should not be

overlooked in the comprehensive enumeration of driver

mutations in population-level studies.
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Genomic copy number changes harboring known

oncogenes simultaneously modulate metabolic pathways

We next examined patterns of modulated expression asso-

ciated with drivers occurring within the same high-level

amplification or homozygous deletion. Surprisingly, we

noted four examples in the METABRIC and GBM data-

sets whereby genes proximal to known drivers and within

the same genomic copy number change exhibited evidence

for altering the expression of metabolic pathways exclusive

of known oncogenic or tumor suppressor pathway modu-

lation (Figure 3). PNMT encodes the phenylethanolamine

N-methyltransferase enzyme and resides approximately

20 Kb centromeric to ERBB2 with one intervening gene.

ERBB2, amplified in approximately 15-20% of breast can-

cers, is a well-known, targetable membrane-bound

growth-factor receptor that is effectively inhibited by tras-

tuzumab in clinical practice. The proximity of PNMT to

ERBB2 results in co-amplification of both genes in nearly

all cases (82/83 cases with high-level amplification of

ERBB2 (Additional file 10)). PNMT was the top ranked

driver in our analysis (ERBB2 was rank 3). When we

examined the outlier genes associated with ERBB2 and

PNMT, ERBB2-associated outlier genes were, as expected,

enriched for Erbb signaling and EGF signaling pathways.

Table 2 The predicted rare drivers

Dataset Gene Gband SNV/Indel HLAMP HOMD Corrected P value Percent altered

METABRIC PTEN 10q23.31 0 0 16 0 1.54

METABRIC RB1 13q14.2 0 0 16 0 1.54

METABRIC MDM2 12q15 0 11 0 0 1.06

METABRIC MYC 8q24.21 0 10 0 0 0.96

METABRIC CDKN2A 9p21.3 0 0 16 0 1.54

METABRIC CLTC 17q23.1 0 16 0 0 1.54

METABRIC CREBBP 16p13.3 0 1 2 0 0.29

METABRIC GNAS 20q13.32 0 7 0 0 0.67

METABRIC EGFR 7p11.2 0 3 1 0 0.39

METABRIC CDH1 16q22.1 0 0 16 0 1.54

METABRIC CCNE1 19q12 0 6 1 0 0.67

METABRIC EP300 22q13.2 0 0 4 0 0.39

METABRIC CBL 11q23.3 0 0 13 0 1.25

METABRIC PIK3R1 5q13.1 0 0 2 1.00E-04 0.19

METABRIC JAK2 9p24.1 0 0 7 1.00E-04 0.67

METABRIC TP53 17p13.1 0 0 7 2.00E-04 0.67

METABRIC NUP98 11p15.4 0 0 8 0.0011 0.77

METABRIC ATM 11q22.3 0 0 15 0.0149 1.45

METABRIC PIK3CA 3q26.32 0 2 0 0.017 0.19

METABRIC IDH2 15q26.1 0 4 1 0.017 0.48

METABRIC KRAS 12p12.1 0 3 1 0.0348 0.39

METABRIC TRA@ 14q11.2 0 1 5 0.0388 0.58

TN JAK1 1p31.3 1 0 0 0.0026 1.5

HGS AKT2 19q13.2 0 3 1 0 1.32

HGS KIT 4q12 5 0 1 2.00E-04 1.97

HGS NRAS 1p13.2 2 0 0 9.00E-04 0.66

HGS RPN1 3q21.3 2 0 0 0.0019 0.66

HGS PIK3CA 3q26.32 2 0 0 0.0029 0.66

HGS CREBBP 16p13.3 5 0 1 0.0031 1.97

HGS PPP2R1A 19q13.33 3 0 1 0.0046 1.32

HGS ATIC 2q35 2 0 1 0.005 0.99

HGS CLTCL1 22q11.21 4 0 1 0.0068 1.64

HGS MET 7q31.2 4 0 0 0.0132 1.32

HGS MAP2K4 17p12 1 0 2 0.044 0.99

HGS ETV1 7p21.2 1 1 1 0.0468 0.99

HGS EP300 22q13.2 1 0 3 0.0492 1.32

GBM KRAS 12p12.1 1 0 1 1.41 1.67

GBM AKT1 14q32.33 0 1 0 1.64 0.83
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PNMT-associated outliers were enriched for non-onco-

genic macromolecule biosynthesis pathways including

metabolic pathways and tyrosine metabolism (Figure 3A).

The co-occurring modulation of oncogenic and metabolic

pathways was also found in other high-level amplifications

in METABRIC including the 11q14 amplification of PAK1

and NDUFC2 (Additional file 10). PAK1 (27 cases with

high-level amplifications) shows evidence of driving EGFR

signaling (Figure 3B) and importantly segregates with a

poor outcome ER positive subtype as reported in [20].

NDUFC2 (30 cases with high-level amplifications), down-

stream of PAK1 by approximately 660 Kb, encodes an

NADH dehydrogenase enzyme. Outliers associated with

NDUFC2 were associated with metabolic pathways and an

oxidative phosphorylation pathway: a metabolic pathway

that uses energy released by the oxidation of nutrients to

produce adenosine triphosphate (Figure 3B).

A similar pattern of simultaneous modulation of meta-

bolic pathways by the copy number changes harboring

known oncogenes was observed in GBM data. The cyclin-

dependent kinase CDKN2A and the methylthioadenosine

phosphorylase MTAP are separated by approximately 100

Kb and are adjacent genes. MTAP (DriverNet rank 3) and

known tumor-suppressor CDKN2A (DriverNet rank 4) are

known to be co-deleted and they were observed as such in

our analysis. We observed 53 cases with homozygous dele-

tions in CDK2NA with accompanying co-deletion of

MTAP in all cases (Additional file 16). In two additional

cases with CDKN2A point mutations, MTAP was not

found to be mutated or deleted. The enriched pathways of

the CDK2NA-associated outliers included cell cycle, p53

signaling, and the FOXM1 transcription factor network

amongst others. The only significant enriched pathway of

MTAP-deletion associated outliers was the metabolic

pathway (Figure 3C).

We examined PNMT-, NDUFC2-, and MTAP-associated

outlying genes that were part of metabolic pathways and

also ERBB2-, PAK1-, and CDKN2A-associated outlying

genes that were related to the oncogenic/tumor suppressor

pathways. Outlying genes related to metabolic pathways

and oncogenic/tumor suppressor pathways were distribu-

ted across disparate loci in the genome eliminating co-

amplification as the cause for the observed signals (Addi-

tional file 17).

The results of metabolic genes being co-aberrated with

oncogenic and tumor suppressor genes suggest strongly

that at least a portion of metabolic pathway disruption in

cancer can be mechanistically attributed to somatic aberra-

tions in the genome. Moreover, our results indicate the

intriguing possibility that genomic aberrations harboring

known oncogenic/tumor suppressor drivers are being

selected for due to oncogenic pathway modulation coupled

with non-overlapping metabolic pathway modulation.

Discussion
A major challenge in large-scale interrogation of genomic

and transcriptomic profiles of tumor types is to contex-

tualize genomic aberrations within their gene expression
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Figure 3 Simultaneous modulation of metabolic pathways in copy number alterations harboring known oncogenes. EnrichmentMap

[32] diagrams depicting Reactome pathways enriched in the set of outliers associated with pairs of genes that are co-amplified or co-deleted. In

each pair, one gene is a known tumor suppressor or oncogene while the other is a metabolism gene. Pathways are shown as connected nodes

in a graph where the size of the node indicates the number of genes in the pathway. Edges between nodes indicate genes common to both

pathways where the thickness of the edge represents the degree of overlap. In general, little overlap was observed between metabolic drivers

and oncogenic/tumor-suppressor drivers. (A) PNMT and ERBB2 co-amplified genes at the chr17q12 locus in breast cancer. (B) PAK1 and NDUFC2

co-amplified genes at the 11q14 locus in breast cancer. (C) CDKN2A and MTAP co-deleted genes at chr9p21.3 in GBM.
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profiles. Assessing the impact of a somatic mutation on

the expression networks of a tumor provides strong evi-

dence for its status as a driver. We presented a novel

algorithm called DriverNet for integrative analysis of

genomic and transcriptomic data derived from popula-

tion-level studies of tumors. DriverNet associates the pre-

sence of a mutated gene with its impact on the gene

expression levels of its known interacting partners. We

showed in several cancer datasets that this approach is

both sensitive and specific with respect to known driver

genes and is suitable for application in population-level

datasets for numerous tumor types that will rapidly

emerge in the coming years.

Investigation of infrequent drivers revealed a surpris-

ing number of rare mutations in known cancer genes

typically associated with other cancers. Although infre-

quent, they nonetheless modulate the expression profiles

and their identification is critical to understanding the

pathogenesis of the cancers that harbor them. We sug-

gest that examination of genomic patterns in the popu-

lation without the integration of the transcriptome

would likely result in overlooking these important, but

rare drivers. The structure of the bipartite graph induces

an interplay between the influence graph, the frequency

of mutations, and the frequency of aberrant expression.

A natural question that arises is the role of both fre-

quency of mutation and node degree in the ranking of

the output. Additional files 18 and 19 show that while

rank is correlated with both frequency and node degree,

the relationship is not monotonic and therefore the

structure of the graph does not deterministically order

the output. This suggests instead that simultaneous

observations in the genome and the transcriptome in

many cases override the structure induced by the influ-

ence graph and mutation frequency and can therefore

penetrate the seemingly deterministic structure induced

by the initial bipartite graph.

Finally, we describe a set of aberrations whereby prox-

imal drivers appear to simultaneously modulate onco-

genic and metabolic pathways. This was observed in

both breast cancer and GBM datasets and leaves open

the possibility that selection of well-known drivers such

as ERBB2 and EGFR may be synergistically acting on

altered metabolic processes abrogated by co-altered,

nearby metabolism genes. In light of recent renewed

interest in studying altered metabolism in cancer [28]

owing to IDH1/2 somatic mutations in AML and GBM,

the compound effects of single genomic events on meta-

bolic and oncogenic pathways, suggest that disruption of

metabolic pathways by somatic mutations may be more

widespread than previously thought and provides an

impetus for novel therapies that might restore normal

metabolic function in a cancer-cell specific manner.

Limitations

The DriverNet algorithm has some limitations. As outly-

ing expression is computed in a deterministic manner,

we may not be capturing less extreme but nonetheless

important changes in expression that are modulated by

a genomic event. Furthermore, DriverNet does not

gracefully handle the directionality of the expression

change. A probabilistic model would account for the

subtler changes in expression handling; however, the

combinatorial complexity of inference required in a fully

probabilistic framework remains a daunting and unre-

solved challenge because of the number of parameters

to estimate. Thus, this remains an open problem. In

addition, DriverNet relies on the genomic aberrations

including mutations and extreme copy number altera-

tion events that are supplied to the algorithm. The

threshold to determine what constitutes a significant

copy number alteration lies within third-party copy

number analysis algorithms and can affect DriverNet

results. Performance benchmarking suggest that, in

most cases, DriverNet performs better when only

extreme copy number alterations, that is, high-level

amplifications and homozygous deletions, were included

in the analysis (Additional file 20). Reducing the thresh-

olds to detect more copy number alterations (such as

chromosome-arm level events) results in too large a

space of altered genes in a given dataset (Additional files

21, 22, 23, 24).

The DriverNet framework relies on a predetermined

influence graph that is undoubtedly sparse and incom-

plete. This is underscored by the omission in the

METABRIC dataset of ZNF703, which resides in the

amplification of the 8p12 locus that includes FGFR1.

We have recently described ZNF703 as a driver [29] in

luminal B cancers; however, DriverNet was not posi-

tioned to identify it due to its absence in the Reactome

database. There are undoubtedly other false negative

predictions due to poor characterization and lack of

protein-protein interaction data; however, as interaction

databases increase in density and volume of interactions,

the DriverNet framework will be well placed to leverage

such improvements. Nevertheless, our goal is not to dis-

cover new protein interactions in this work, but rather

to describe the association of mutations and expression

in the context of well-understood knowledge bases.

Finally, we note that this framework is suitable for data-

sets with many patients sequenced. Ultimately, we wish

to extend the framework for application to individual

patients to determine the effectiveness of identification

of actionable driver mutations for clinical use. This will

require the accumulation of large gene expression repo-

sitories for tumor types that can be used to contextua-

lize a patient’s expression and mutational profiles.
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Conclusions
We have presented a comprehensive analysis from four

independent datasets of how transcriptional networks are

affected by genomic aberrations in cancer and demonstrate

how integrative analysis can be used effectively to identify

novel driver genes in population-level studies of tumor

genomes and transcriptomes. Our results demonstrate the

power of integrative analysis across multiple tumor types

in recently generated population-scale datasets in revealing

infrequent, but functionally important, mutations and

novel patterns of pathway disruption in cancer. We expect

DriverNet to generalize well to planned future studies,

including application to patient-specific mutational and

expression profiles for genome/transcriptome-informed

personalized cancer care.

Methods
In this section we present the essential details of the

DriverNet algorithm. Additional details of data analysis,

data preprocessing, and the Fisher method are presented

in Additional file 1.

Details of DriverNet algorithm

Consider two gene-patient matrices. The first matrix M(i, j)

represents a binary matrix where M(i, j) = 1 indicates gene

i is mutated in patient j and M(i, j) = 0 indicates the

absence of a mutation. Mutations can take the form of

somatic point mutations, indels, copy number changes, or

possibly epigenomic events. Matrix G(i, j) captures the

real-valued gene expression measure of gene i in patient j

and can be derived from gene expression arrays or RNA-

Seq. Optionally, G(i, j) can be transformed into a matrix

G’(i, j) indicating whether gene i in patient j is an outlier

from the population-level distribution for that gene. Given

these matrices, we can formulate the problem of finding

driver mutations with a bipartite graph, (Figure 1C),

where nodes on the left represent genomic aberration sta-

tus from M (green nodes show the genes that have a muta-

tion in at least one patient) and nodes on the right are

patient-gene events from G or G’ (for every patient, outliers

are shown as red nodes). Edges are drawn between nodes

in different partitions of the graph under the following con-

ditions: for each patient pk draw an edge between nodes gi
in the left partition and gj for patient pk in the right parti-

tion, if gi is mutated, gj exhibits outlying expression, and gi
and gj interact according to known gene networks (for

example, Reactome FI [30]), termed the influence graph

after [18].

The aim of the inference algorithm is to identify genes

in the left partition that are connected to the most nodes

in the right partition (for example, g2 as shown in Figure

1C), thereby identifying mutated genes with the largest

extent of transcriptional disruption, and simultaneously

implicating a network of connected genes in the influ-

ence graph with outlying expression that associate with

the mutation. The genes are ranked according to their

node coverage in the bipartite graph, . If we denote the

set of all the mutated genes by U, we postulate that the

top n driver geneset Dn ⊆ U is the set of n genes that

cover the maximum number of nodes on the right parti-

tion of the bipartite graph. It should be noted that: i) due

to different factors, all the outlying expression events

may not be explained by the given mutations; and ii) the

algorithm formulation makes the strong assumption that

drivers will modulate the expression of many genes,

which will primarily apply for genes that alter large, well-

defined transcriptional networks. Finally, we observe that

solving this problem is closely related to the minimum

set cover problem, which is NP-hard.

A greedy approximation algorithm to solve the

optimization problem

Given a set of elements (called the universe) and some

sets whose union comprises the universe, the set cover

problem is to identify the smallest number of sets whose

union still contains all elements in the universe. The ana-

logy of the minimum set cover problem to our driver

mutation framework is as follows: i) elements of the uni-

verse are the patient-gene (outlying expression) events,

and ii) each mutation corresponds to a set that consists

of those patient-gene events connected to this mutation

in the bipartite graph. The greedy algorithm for our pro-

blem is similar to that for the set cover problem: at each

stage, choose a mutated gene that contains the largest

number of uncovered outlying expression events (see

Algorithm 1). The stopping condition is when all the

connected outlying expression events are covered. In

other words, the algorithm looks for the minimum cover-

ing for all of the elements in the universe. It can be

shown that the greedy algorithm achieves an approxima-

tion ratio of H(s), where s is the size of the largest set and

H(n) =
∑n

k=1 1/k is the nth harmonic number.

Significance tests

The statistical significance of the driver genes are assessed

using a randomization framework. The original datasets

are permuted N = 500 times, and the algorithm is run on

the N randomly generated datasets and results on real

data are assessed to see if they are significantly different

from the results on randomized datasets. This is an indir-

ect way of perturbing the bipartite graph corresponding to

the original problem. To generate the random datasets, we

permute both the patient-mutation, M , and patient-out-

lier, G’, matrices according to the following procedure:

i) construct a J × K zero matrix where J represents the

number of patients and K represents the total number of
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Ensmbl 54 protein-coding genes, ii) put 1 in Ntotal ran-

domly selected cells, where Ntotal represents either the

total number of mutations or the total number of outlying

genes depending on which matrix is permuted, iii) remove

the columns where their elements are 0. Using the same

influence graph, the algorithm is run on the N = 500 per-

muted patient-mutation, M1... MN, and patient-outlier,

G1’... GN’, matrices.

Suppose D is the result of the driver mutation discovery

algorithm. D contains a ranked list of driver genes with

their corresponding node coverage in the bipartite graph,

. The statistical significance of a gene g ÎD with a corre-

sponding node coverage, COVg, is the fraction of times

that we observe driver genes with the node coverage of

more than COVg in the N = 500 random runs of the algo-

rithm:

pvalue(g) =

N∑

i=1

Si∑

j=1

δ[COVgij > COVg]

N∑

i=1

Si

where Si is the number of drivers identified in the ith

run of the algorithm. We then use the Benjamini-Hoch-

berg approach for correcting the P values for multiple

tests.

Building the influence graph

The influence graph captures the knowledge about the

influence of mutation in a gene on the change of expres-

sion of another gene. Various sources of information such

as the protein-protein interaction (PPI) networks or net-

works based on copy number and/or expression data can

be used to build the influence graph. In this paper, we uti-

lize the protein functional interaction network derived in

[30] to build the influence graph. This network extends

the protein functional interaction network in curated path-

ways with non-curated sources of information, including

protein-protein interactions, gene co-expression, protein

domain interaction, gene ontology (GO) annotations, and

text-mined protein interactions, which cover close to 50%

of the human proteome.

Implementation

The DriverNet algorithm is implemented in a publicly

available R package [31]. The memory complexity of the

greedy algorithm is O(M N + M R + R2), where M is the

number of patients, N is the number of mutated genes,

and R is the number of genes with gene expression values

and also in the influence graph. The algorithm needs

memory to hold the patient-mutation matrix, the patient-

outlier matrix, and the influence graph. Note that all the

three matrices are sparse binary matrices, thus the mem-

ory usage can be decreased by using sparse representation

of the matrices. If we rank all the mutated genes, the time

complexity is O(δ × N (N + 1)/2), where δ is the time used

to compute the explained outliers by a gene, which is

bounded by its node degree of the influence graph. In

practice, the algorithm is fast when the memory usage

is low. For example, for the GBM dataset, it takes about

1 minute to run on a dual-core desktop Mac computer

without computing the empirical P values.

Additional material

Additional file 1: Supplementary text.

Additional file 2: Data analysis workflow.

Additional file 3: Ranked list of candidate driver genes using the

Youn-Simon approach for the GBM2 dataset. rank: rank of the gene,

hgnc_symbol: gene symbol, p.value: P value, p.adjust: adjusted P value

using the Benjamini-Hochberg approach.

Additional file 4: Ranked list of candidate driver genes for the

GBM2 dataset. rank: rank of the gene according to DriverNet, gene:

Algorithm 1 Greedy driver gene selection algorithm

Require: be the bipartite graph, where denotes the set of nodes corresponding to mutated genes, denotes the set of nodes
corresponding to the patient-specific outlying expression events, and denotes the set of edges between and

1: //the set of selected driver genes

2: //the number of all the connected outlying expression events

3: z ¬ 0 //the number of covered outlying expression events so far

4: while z < Z do

5: //pick mutated gene with the highest degree; in case of a tie, randomly pick one of the genes

6: //update the number of covered outlying events

7: //add g to the driver set

8:

9: for g’ Î S do

10: //remove the node g’ and its connected edges from

11: end for

12: end while

13:
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gene symbol, gband: gene chromosome location and gene band, SNV.

Indel: number of cases with SNV or indel in that specific gene, HLAMP:

number of cases with copy number high-level amplifications, AMP:

number of cases with copy number amplifications, HOMD: number of

cases with copy number homozygous deletions, HETD: number of cases

with copy number hemizygous deletions, covered events: the number of

events (edges) connected to the gene on the left of the bipartite graph,

node degree: the number of genes connected to the gene of interest in

the influence graph, p.value: P value corrected for the multiple test using

the Benjamini-Hochberg approach, CGC.status: Cancer Gene Census

(CGC) membership status (1 = found in CGC, 0 = not in CGC),

percentage.event: percentage of cases with genomic aberrations in the

gene of interest, p.way: top pathways associated with outlying genes

(posterior probability > 0.8); numbers in parentheses show the posterior

probability.

Additional file 5: Ranked list of candidate driver genes using the

Youn-Simon approach for the TN2 dataset. rank: rank of the gene,

hgnc_symbol: gene symbol, p.value: P value, p.adjust.BH: adjusted P value

using the Benjamini- Hochberg approach.

Additional file 6: Ranked list of candidate driver genes for the TN2

dataset. rank: rank of the gene according to DriverNet, gene: gene

symbol, gband: gene chromosome location and gene band, SNV.Indel:

number of cases with SNV or indel in that specific gene, HLAMP: number

of cases with copy number high-level amplifications, AMP: number of

cases with copy number amplifications, HOMD: number of cases with

copy number homozygous deletions, HETD: number of cases with copy

number hemizygous deletions, covered events: the number of events

(edges) connected to the gene on the left of the bipartite graph, node

degree: the number of genes connected to the gene of interest in the

influence graph, p.value: P value corrected for the multiple test using the

Benjamini-Hochberg approach, CGC.status: Cancer Gene Census (CGC)

membership status (1 = found in CGC, 0 = not in CGC), percentage.

event: percentage of cases with genomic aberrations in the gene of

interest, p.way: top pathways associated with outlying genes (posterior

probability > 0.8); numbers in parentheses show the posterior probability.

Additional file 7: Ranked list of candidate driver genes using the

Youn-Simon approach for the HGS2 dataset. rank: rank of the gene,

hgnc_symbol: gene symbol, p.value: P value, p.adjust: adjusted P value

using the Benjamini-Hochberg approach.

Additional file 8: Ranked list of candidate driver genes for the

HGS2 dataset. rank: rank of the gene according to DriverNet, gene:

gene symbol, gband: gene chromosome location and gene band, SNV.

Indel: number of cases with SNV or indel in that specific gene, HLAMP:

number of cases with copy number high-level amplifications, AMP:

number of cases with copy number amplifications, HOMD: number of

cases with copy number homozygous deletions, HETD: number of cases

with copy number hemizygous deletions, covered events: the number of

events (edges) connected to the gene on the left of the bipartite graph,

node degree: the number of genes connected to the gene of interest in

the influence graph, p.value: P value corrected for the multiple test using

the Benjamini-Hochberg approach, CGC.status: Cancer Gene Census

(CGC) membership status (1 = found in CGC, 0 = not in CGC),

percentage.event: percentage of cases with genomic aberrations in the

gene of interest, p.way: top pathways associated with outlying genes

(posterior probability > 0.8); numbers in parentheses show the posterior

probability.

Additional file 9: Ranked list of candidate driver genes for the

METABRIC dataset. rank: rank of the gene according to DriverNet, gene:

gene symbol, gband: gene chromosome location and gene band, SNV.

Indel: number of cases with SNV or indel in that specific gene, HLAMP:

number of cases with copy number high-level amplifications, AMP:

number of cases with copy number amplifications, HOMD: number of

cases with copy number homozygous deletions, HETD: number of cases

with copy number hemizygous deletions, covered events: the number of

events (edges) connected to the gene on the left of the bipartite graph,

node degree: the number of genes connected to the gene of interest in

the influence graph, p.value: P value corrected for the multiple test using

the Benjamini-Hochberg approach, CGC.status: Cancer Gene Census

(CGC) membership status (1 = found in CGC, 0 = not in CGC),

percentage.event: percentage of cases with genomic aberrations in the

gene of interest, p.way: top pathways associated with outlying genes

(posterior probability > 0.8); numbers in parentheses show the posterior

probability.

Additional file 10: Figure showing the SNVs/indels, homozygous

deletion (HOMD), and high-level amplification (HLAMP) status

across the patients for the top 190 candidate driver genes (ranked

from top to bottom) for the METABRIC dataset. Genes with P values

≤ 0.05 are shown. Red blocks show HLAMPs and blue show HOMDs for

each case.

Additional file 11: Ranked list of candidate driver genes for the

HGS dataset. rank: rank of the gene according to DriverNet, gene: gene

symbol, gband: gene chromosome location and gene band, SNV.Indel:

number of cases with SNV or indel in that specific gene, HLAMP: number

of cases with copy number high-level amplifications, AMP: number of

cases with copy number amplifications, HOMD: number of cases with

copy number homozygous deletions, HETD: number of cases with copy

number hemizygous deletions, covered events: the number of events

(edges) connected to the gene on the left of the bipartite graph, node

degree: the number of genes connected to the gene of interest in the

influence graph, p.value: P value corrected for the multiple test using the

Benjamini-Hochberg approach, CGC.status: Cancer Gene Census (CGC)

membership status (1 = found in CGC, 0 = not in CGC), percentage.

event: percentage of cases with genomic aberrations in the gene of

interest, p.way: top pathways associated with outlying genes (posterior

probability > 0.8); numbers in parentheses show the posterior probability.

Additional file 12: Figure showing the SNVs/indels, homozygous

deletion (HOMD), and high-level amplification (HLAMP) status

across the patients for the top 144 candidate driver genes (ranked

from top to bottom) for the HGS dataset. Genes with P values ≤ 0.05

are shown. Green blocks show SNVs or indels, red blocks show HLAMPs,

and blue show HOMDs for each case.

Additional file 13: Ranked list of candidate driver genes for the TN

dataset. rank: rank of the gene according to DriverNet, gene: gene

symbol, gband: gene chromosome location and gene band, SNV.Indel:

number of cases with SNV or indel in that specific gene, HLAMP: number

of cases with copy number high-level amplifications, AMP: number of

cases with copy number amplifications, HOMD: number of cases with

copy number homozygous deletions, HETD: number of cases with copy

number hemizygous deletions, covered events: the number of events

(edges) connected to the gene on the left of the bipartite graph, node

degree: the number of genes connected to the gene of interest in the

influence graph, p.value: P value corrected for the multiple test using the

Benjamini-Hochberg approach, CGC.status: Cancer Gene Census (CGC)

membership status (1 = found in CGC, 0 = not in CGC), percentage.

event: percentage of cases with genomic aberrations in the gene of

interest, p.way: top pathways associated with outlying genes (posterior

probability > 0.8); numbers in parentheses show the posterior probability.

Additional file 14: Figure showing the SNVs/indels, homozygous

deletion (HOMD), and high-level amplification (HLAMP) status

across the patients for the top 50 candidate driver genes (ranked

from top to bottom) for the TN dataset. Genes with P values ≤ 0.05

are shown. Green blocks show SNVs or indels, red blocks show HLAMPs,

and blue show HOMDs for each case.

Additional file 15: Ranked list of candidate driver genes for the

GBM dataset. rank: rank of the gene according to DriverNet, gene: gene

symbol, gband: gene chromosome location and gene band, SNV.Indel:

number of cases with SNV or indel in that specific gene, HLAMP: number

of cases with copy number high-level amplifications, AMP: number of

cases with copy number amplifications, HOMD: number of cases with

copy number homozygous deletions, HETD: number of cases with copy

number hemizygous deletions, covered events: the number of events

(edges) connected to the gene on the left of the bipartite graph, node

degree: the number of genes connected to the gene of interest in the

influence graph, p.value: P value corrected for the multiple test using the

Benjamini-Hochberg approach, CGC.status: Cancer Gene Census (CGC)

membership status (1 = found in CGC, 0 = not in CGC), percentage.

event: percentage of cases with genomic aberrations in the gene of
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interest, p.way: top pathways associated with outlying genes (posterior

probability > 0.8); numbers in parentheses show the posterior probability.

Additional file 16: Figure showing the SNVs/indels, homozygous

deletion (HOMD), and high-level amplification (HLAMP) status

across the patients for the top 49 candidate driver genes (ranked

from top to bottom) for the GBM dataset. Genes with P values ≤0.05

are shown. Green blocks show SNVs or indels, red blocks show HLAMPs,

and blue show HOMDs for each case.

Additional file 17: Circos plots showing outlying genes related to

metabolic pathways for PNMT (A), NDUFC2 (B), and MTAP (C) and

outlying genes related to oncogenic/tumor suppressor pathways

for ERBB2 (D), PAK1 (E), and CDKN2A (F) genes.

Additional file 18: Frequency of aberrations versus the rank of

significant genes (p ≤ 0.05) for the GBM (A), HGS (B), TN (C), and

METABRIC (D) datasets.

Additional file 19: Node degree in the influence graph versus the

rank of significant genes (p ≤ 0.05) for the GBM (A), HGS (B), TN (C),

and METABRIC (D) datasets.

Additional file 20: DriverNet performance benchmarking on GBM,

TN, HGS, and METABRIC datasets when copy number amplifications

(AMP) and hemizygous deletions (HETDs) were included in addition

to the high-level amplifications (HLAMP) and homozygous

deletions (HOMDs). (A-D) Concordance with Cancer Gene Census for

DriverNet, Frequency-based, and Fisher-based approaches as a function

of the top N ranked genes (out of 200) for the GBM, TN, HGS, and

METABRIC datasets, respectively. (E-H) Concordance with COSMIC

database (cumulative distribution of mutation prevalence in the COSMIC

database) for DriverNet, Frequency-based, and Fisher-based approaches

as a function of the top N ranked genes (out of 200) for the GBM, TN,

HGS, and METABRIC datasets, respectively.

Additional file 21: Ranked list of candidate driver genes for the

METABRIC dataset when copy number amplifications and

hemizygous deletions were included in addition to the mutations,

high-level amplifications, and homozygous deletions. rank: rank of

the gene according to DriverNet, gene: gene symbol, gband: gene

chromosome location and gene band, SNV.Indel: number of cases with

SNV or indel in that specific gene, HLAMP: number of cases with copy

number high-level amplifications, AMP: number of cases with copy

number amplifications, HOMD: number of cases with copy number

homozygous deletions, HETD: number of cases with copy number

hemizygous deletions, covered events: the number of events (edges)

connected to the gene on the left of the bipartite graph, node degree:

the number of genes connected to the gene of interest in the influence

graph, p.value: P value corrected for the multiple test using the

Benjamini-Hochberg approach, CGC.status: Cancer Gene Census (CGC)

membership status (1 = found in CGC, 0 = not in CGC), percentage.

event: percentage of cases with genomic aberrations in the gene of

interest, p.way: top pathways associated with outlying genes (posterior

probability > 0.8); numbers in parentheses show the posterior probability.

Additional file 22: Ranked list of candidate driver genes for the

HGS dataset when copy number amplifications and hemizygous

deletions were included in addition to the mutations, high-level

amplifications, and homozygous deletions. rank: rank of the gene

according to DriverNet, gene: gene symbol, gband: gene chromosome

location and gene band, SNV.Indel: number of cases with SNV or indel in

that specific gene, HLAMP: number of cases with copy number high-

level amplifications, AMP: number of cases with copy number

amplifications, HOMD: number of cases with copy number homozygous

deletions, HETD: number of cases with copy number hemizygous

deletions, covered events: the number of events (edges) connected to

the gene on the left of the bipartite graph, node degree: the number of

genes connected to the gene of interest in the influence graph, p.value:

P value corrected for the multiple test using the Benjamini-Hochberg

approach, CGC.status: Cancer Gene Census (CGC) membership status (1 =

found in CGC, 0 = not in CGC), percentage.event: percentage of cases

with genomic aberrations in the gene of interest, p.way: top pathways

associated with outlying genes (posterior probability > 0.8); numbers in

parentheses show the posterior probability.

Additional file 23: Ranked list of candidate driver genes for the TN

dataset when copy number amplifications and hemizygous

deletions were included in addition to the mutations, high-level

amplifications, and homozygous deletions. rank: rank of the gene

according to DriverNet, gene: gene symbol, gband: gene chromosome

location and gene band, SNV.Indel: number of cases with SNV or indel in

that specific gene, HLAMP: number of cases with copy number high-

level amplifications, AMP: number of cases with copy number

amplifications, HOMD: number of cases with copy number homozygous

deletions, HETD: number of cases with copy number hemizygous

deletions, covered events: the number of events (edges) connected to

the gene on the left of the bipartite graph, node degree: the number of

genes connected to the gene of interest in the influence graph, p.value:

P value corrected for the multiple test using the Benjamini-Hochberg

approach, CGC.status: Cancer Gene Census (CGC) membership status (1 =

found in CGC, 0 = not in CGC), percentage.event: percentage of cases

with genomic aberrations in the gene of interest, p.way: top pathways

associated with outlying genes (posterior probability > 0.8); numbers in

parentheses show the posterior probability.

Additional file 24: Ranked list of candidate driver genes for the

GBM dataset when copy number amplifications and hemizygous

deletions were included in addition to the mutations, high-level

amplifications, and homozygous deletions. rank: rank of the gene

according to DriverNet, gene: gene symbol, gband: gene chromosome

location and gene band, SNV.Indel: number of cases with SNV or indel in

that specific gene, HLAMP: number of cases with copy number high-

level amplifications, AMP: number of cases with copy number

amplifications, HOMD: number of cases with copy number homozygous

deletions, HETD: number of cases with copy number hemizygous

deletions, covered events: the number of events (edges) connected to

the gene on the left of the bipartite graph, node degree: the number of

genes connected to the gene of interest in the influence graph, p.value:

P value corrected for the multiple test using the Benjamini-Hochberg

approach, CGC.status: Cancer Gene Census (CGC) membership status (1 =

found in CGC, 0 = not in CGC), percentage.event: percentage of cases

with genomic aberrations in the gene of interest, p.way: top pathways

associated with outlying genes (posterior probability > 0.8); numbers in

parentheses show the posterior probability.
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