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Abstract: Digital twin (DT) is gaining increasing attention due to its ability to present digital replicas
of existing assets, processes and systems. DT can integrate artificial intelligence, machine learning,
and data analytics to create real-time simulation models. These models learn and update from
multiple data sources to predict their physical counterparts’ current and future conditions. This
has promoted its relevance in various industries, including the construction industry (CI). However,
recognising the existence of a distinct set of factors driving its adoption has not been established.
Therefore, this study aims to identify the drivers and integrate them into a classification framework
to enhance its understanding. Utilising popular databases, including Scopus, Web of Science, and
ScienceDirect, a systematic literature review of 58 relevant DT adoptions in the CI research was
conducted. From the review, the drivers for DT adoption in the CI were identified and classified. The
results show that developed countries such as the UK, US, Australia, and Italy have been the top
countries in advancing DT adoption in the CI, while developing countries have made commendable
contributions. A conceptual framework has been developed to enhance the successful adoption of
DT in the CI based on 50 identified drivers. The major categories of the framework include concept-
oriented drivers, production-driven drivers, operational success drivers, and preservation-driven
drivers. The developed framework serves as a guide to propel DT adoption in the CI. Furthermore,
this study contributes to the body of knowledge about DT adoption drivers, which is essential for DT
promotion in the CI.

Keywords: digital twin; drivers; construction industry; review; technology

1. Introduction

The computerization and digitalization of activities and processes significantly impact
how physical assets are managed [1]. Various technologies, including artificial intelligence
(AI), the internet of things (IoT), building information modelling (BIM), digital twins
(DTs), blockchain, machine learning, data analytics, deep learning, and the like, are being
utilised to enhance productivity across several industries. Several economies are therefore
confident in utilising these technologies to enhance their growth and development. For
instance, in the UK, the National Infrastructure Commission [2] reported that AI could
aid in getting more from infrastructure and add up to 10.3% to the UK economy by
2030. Ding and Drogemuller [3] highlighted that advances in BIM have the potential
of achieving a 98% reduction in the time taken for updating databases relating to the
operation and maintenance phase of a project. Gartner [4] predicted that half of the large
industrial companies would be using DTs by 2021 to achieve a possible 10% improvement
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in these organisations’ effectiveness. This is possible because DTs align better with other
emerging paradigms like cyber-physical systems (CPS) and Industry 4.0. DT helps to
integrate the physical world to the digital world and increases productivity using predictive
analytics [5–7].

The National Aeronautics and Space Administration (NASA) presented the concept
of ‘twins’ by building two space vehicles that were identical in nature to determine the
conditions of the space vehicle while on mission [8]. Boschert and Rosen [8] further
indicated that the vehicle that was on earth was the twin of the vehicle that went on
a mission in space. A widely accepted introduction of DT was in 2003, where Michael
Grieves presented the digital version of a physical product. In 2006, a variant of the
DT known as the “product avatar” was also introduced [9]. DTs have been utilised in
several industries or domains, which include the manufacturing, healthcare, aeronautics
and aviation, energy, education, agriculture, meteorology, and automotive sectors [10].
Although DT adoption in the construction industry has been quite slow [11], most of
its application has been focused on the operation and maintenance phase of projects.
For instance, Lu, Xie, Parlikad and Schooling [12] utilised DT to develop a system that
could detect anomalies in the conditions of an asset during its operation. The diagnosis
of the operational conditions was carried out using the asset’s monitoring dataset. The
study showed that a building asset could be continuously monitored using the developed
system. Kaewunruen and Lian [13] developed the world’s first 6D BIM for managing
the lifecycle of a railway turnout system. They used Revit-2018 software to develop
a 3D model of the railway turnout system. The authors established that 6D is geared
towards assessing the carbon footprint of the system throughout its whole lifecycle. A
conclusion was made that DTs could be used to visualise and prioritise maintenance
decisions. Lin and Cheung [14] developed an advanced monitoring and control system
for an underground parking garage environment using DT. The authors concluded that
the system is visually effective for managing and monitoring environmental conditions. In
Australia, the restoration team of the Sydney Opera House designed a unified central data
repository to enhance operation and maintenance using some DT concepts [15]. In the UK,
the National Infrastructure Commission [2] indicated the need for a national DT to develop
a richer understanding and optimization of infrastructure works. The introduction of DT in
the construction industry has witnessed several ambiguities due to its similarities with BIM.
However, available studies [11,16] have clearly indicated that DT and BIM are different in
terms of their purposes, technologies, and end-users. BIM is a static representation of the
design of the building or structure to be constructed for the purpose of understanding and
communicating the design. In contrast, DT is a real-time representation of the building or
structure that is fully or partially completed and developed for the purpose of representing
the status and character of the building or structure it mirrors. They also mentioned that,
whilst BIM operates on static data, DT utilises real-time or near real-time data. Further,
the facility’s lifecycle stages of their applications are also different. Several technologies,
including BIM, wireless sensor networks (WSNs), data analytics, and Machine Learning
are currently supporting the development of DTs in the construction industry [11,17].

Notwithstanding the efforts and quest for DT in the construction industry, little
attention has been geared towards the driving forces for its adoption. The drivers will serve
as a blueprint for practitioners and stakeholders to better understand DT and its potential
success in the construction industry. Though there have been several reviews [11,18–21]
on the application of DT in the construction industry, they did not pay enough attention
to the drivers for DT adoption. Thus, there is yet to be a study that comprehensively
reviews the literature on the drivers for DT adoption in the construction industry. There
are also disagreements among industry practitioners and researchers on how DT can assist
in designing and constructing buildings as well as civil infrastructure projects [22]. These
hinder the thorough understanding and readiness to embrace DT to address some of the
numerous challenges confronting the construction industry [11]. Therefore, the overarching
aim of this study is to comprehensively review the literature on the drivers for DT adoption
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in the construction industry. The drivers in this study refer to the ‘pull’ as well as ‘push’
factors and the influential factors that will propel the construction industry to adopt DTs.
Further, the drivers also include motivations and potential benefits of DT adoption to the
construction industry. The following objectives have been articulated to assist in arriving at
the aim of the study:

To ascertain the annual publication trends of DT adoption in the construction indus-
try research.

To determine the country/region of authors actively probing into the drivers of DT
adoption and assess the impacts on their construction industry.

To identify, classify, and integrate the drivers into a unified construction project
lifecycle-based typology (classification framework) to enhance understanding of DT adop-
tion in the construction industry.

The significance of this study lies in the fact that it is the first to conduct a comprehen-
sive literature review and bring to light a classified set of drivers for adopting DT in the
construction industry. Further, a novel framework has also been developed as a guide to
enhance the successful adoption of DT in the construction industry. Practically, the findings
will serve as a reference point for enhancing the knowledge of industry practitioners on
the benefits of adopting DT in the construction industry. The remainder of the paper is
structured as follows: Section 2 presents the methodology adopted for this study. The
results and discussion are presented in Section 3. Finally, the paper is concluded in Section 4
with implications for practice, suggestions for further research, and limitations.

2. Research Methodology

This study is grounded on a systematic review of the literature that focuses on the pre-
vious research on the adoption of DT technology in the construction industry. This method
aligns with specific principles, including a review that is carried out systematically or the
delivery of a transparent method, replicability, as well as updatability, and summarisation
and synthesization of the key focus of the study [23]. A similar methodology as utilised by
Opoku, Perera, Osei-Kyei and Rashidi [11] and Chan, Tetteh and Nani [24] was adapted to
evaluate and thoroughly study the literature within the scope under consideration. This
involves an initial search for literature using several databases, filtration of process as well
as analysing the content of the identified literature. Figure 1 depicts the entire research
process utilised in this study. In the first stage, a search for the literature was conducted
using three databases, including Scopus, Web of Science and ScienceDirect. In the second
stage, a detailed visual examination was carried-out to identify and select the most ap-
propriate publications for this research. In the final stage, a systematic content analysis
was conducted to identify the drivers and crystallise them into categories to enhance their
understanding. The subsequent sub-sections comprehensively elaborate on the three stages
utilised in this study.

2.1. Literature Search

The initial search was conducted using the Scopus database. Scopus was used because
it has broader coverage than other databases like Google Scholar, PubMed and Web of
Science [11,25]. It is also an effectual search engine for literature review [26]. In order to get
a substantial number of papers, a comprehensive search was conducted using the keywords
with appropriate Boolean operators: ((“digital twin” OR “virtual counterpart” OR “digital
replica” OR “virtual twin”) AND (“construction” OR “construction industry”)), with no
limitation in terms of the year (search on 7 September 2021). However, “article” or “review”
was selected for the type of document since they provide the most reputable as well as
influential sources of knowledge [27]. Book reviews, letters to the editors, forums, briefing
sheets, discussions/closures, forewords as well as introductions, seminar papers, were all
excluded in this study. The study also restricted the language type to English language
based on the study aim and objectives. At the end of the initial search, 138 publications
were retrieved from this query. An additional search was carried out using Web of Science
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and ScienceDirect to add to the initially searched publications and yielded 145 papers. The
addition of other publications from Web of Science and ScienceDirect was done to ensure
that an acceptable number of research papers on the adoption of DT technology in the
construction industry were captured and used in the study. In addition, it was to ensure
that this study did not leave out any relevant literature. A total of 77 publications from
30 journals and conference proceedings were identified after removing duplicates. The
details of the publications included in the study are depicted in Table 1.
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2.2. Selection of Relevant Papers

The researchers critically and comprehensively examined the 77 papers after stage
1 had been completed. The reason for the examination was to identify those papers that
were relevant to the specific research topic. It was also ensured that only refereed journal
papers were used in the study to enhance the quality of obtained data [28]. Complete text
analysis was carried out if no relevant information was obtained after critically examining
the abstracts and conclusions of the potential publications. The publications that referred
to digital twins without their adoption in construction or the construction industry were
not included in this study. This was done to ensure that only publications that focused on
DT adoption in the construction industry were used in this research. This resulted in the
final identification of 58 relevant publications for detailed analysis. The number of selected
papers, as well as the final relevant publications, are provided in Table 1.
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Table 1. Search results of publications relevant to the study.

N/S Name of Journal
Number of

Selected
Publications

Final Number of
Relevant

Publications
References

1 Applied Sciences
(Switzerland) 7 5

Sepasgozar [29], Porsani, de Lersundi, Gutiérrez and Bandera [30],
Mannino, Dejaco and Re Cecconi [31], Coupry, Noblecourt,

Richard, Baudry and Bigaud [32], Lee and Lee [33]

2 Automation in Construction 14 10

Boje, Guerriero, Kubicki and Rezgui [34], Love and Matthews [35],
Pan and Zhang [36], Lu, Chen, Li and Pitt [37], Lu, Xie, Parlikad

and Schooling [12], Pan and Zhang [38], Lee, Lee, Masoud,
Krishnan and Li [39], Liang, Kamat and Menassa [40], Marocco

and Garofolo [41], Jiang, Ma, Broyd and Chen [42]
3 Buildings 1 1 Sepasgozar [43]
4 Complexity 2 1 Liu, Sun, Yang and Gao [44]
5 Computers and Structures 1 1 Angjeliu, Coronelli and Cardani [45]
6 Computers in Industry 1 1 Greif, Stein and Flath [46]

7 Construction Innovation 2 2 Al-Saeed, Edwards and Scaysbrook [47], Bosch-Sijtsema,
Claeson-Jonsson, Johansson and Roupe [48]

8 Energies 4 4
Agostinelli, Cumo, Guidi and Tomazzoli [49], Bass, New and

Copeland [50], O’grady, Brajkovich, Minunno, Chong and
Morrison [51], Demianenko and De Gaetani [52]

9 Energy and Buildings 1 1 Lydon, Caranovic, Hischier and Schlueter [53]

10
Engineering, Construction

and Architectural
Management

1 1 Sepasgozar, Ghobadi, Shirowzhan, Edwards and Delzendeh [54]

11 Frontiers in Built
Environment 1 1 Kaewunruen and Xu [55]

12 IEEE Access 9 2 Camposano, Smolander and Ruippo [56], Broo and Schooling [57]

13 IEEE Transactions on
Cybernetics 1 1 Chang, Zhang, Fu and Chen [58]

14 IEEE Transactions on
Industrial Informatics 2 1 Turner, Oyekan, Stergioulas and Griffin [59]

15 International Journal of
Construction Management 1 1 Rausch, Lu, Talebi and Haas [60]

16
International Journal of

Safety and Security
Engineering

1 1 Antonino, Nicola, Claudio, Luciano and Fulvio [61]

17
ISPRS Journal of

Photogrammetry and Remote
Sensing

1 1 Xue, Lu, Chen and Webster [62]

18 Journal of Advanced
Transportation 1 1 Meža, Mauko Pranjić, Vezočnik, Osmokrović and Lenart [63]

19 Journal of Airport
Management 1 1 Oliveira [64]

20 Journal of Asian Architecture
and Building Engineering 1 1 Hasan, Lee, Moon, Kwon, Jinwoo and Lee [65]

21 Journal of Building
Engineering 3 3 Opoku, Perera, Osei-Kyei and Rashidi [11], Tran, Nguyen,

Christopher, Bui, Khoshelham and Ngo [66], Ozturk [19]

22 Journal of Cleaner
Production 4 3 Kaewunruen and Lian [13], He, Li, Gan and Ma [67], Züst, Züst,

Züst, West, Stoll and Minonne [68]

23 Journal of Engineering,
Design and Technology 1 1 Babalola, Musa, Akinlolu and Haupt [69]

24 Journal of Information
Technology in Construction 3 3 Deng, Menassa and Kamat [20], Alshammari, Beach and Rezgui

[21], Akanmu, Anumba and Ogunseiju [70]

25 Journal of Management in
Engineering 3 2 Lu, Parlikad, Woodall, Don Ranasinghe, Xie, Liang, Konstantinou,

Heaton and Schooling [71], Lin and Cheung [14]

26 Journal of Testing and
Evaluation 1 1 Steyn and Broekman [72]

27 Sensors 1 1 Liu, Meng, Xing and Jiang [73]

28 Smart and Sustainable Built
Environment 1 1 Ogunseiju, Olayiwola, Akanmu and Nnaji [74]

20 Structure and Infrastructure
Engineering 2 2 Shim, Dang, Lon and Jeon [75], Omer, Margetts, Hadi Mosleh,

Hewitt and Parwaiz [76]

30 Sustainability (Switzerland) 5 3 Kaewunruen, Peng and Phil-Ebosie [77,78], Kaewunruen,
Sresakoolchai, Ma and Phil-Ebosie [79]

Total 77 58
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2.3. Identification of DT Adoption in the Construction Industry Drivers

The drivers were identified from the 58 publications used in the study. Whilst some
publications stated some of the drivers in tables and charts, other papers required detailed
content analysis to discover the drivers. A four-step approach utilised by Zhang, Oo and
Lim [80] in conducting content analysis was adopted for the study. Content analysis is
a systematic and structured method to put together several textual contents into fewer
content categories based on explicit coding rules [81]. This method is helpful in analysing
the drivers for DT adoption in the construction industry. Though no methodical rules
exist for analysing data in content analysis, the data’s preparation, organisation, and
reporting are three essential processes in content analysis [82]. Zhang, Oo and Lim [80] used
the four steps: de-contextualisation, re-contextualisation; categorisation and compilation;
and consistency assessment. De-contextualisation involves the selection of the unit of
analysis and deducing meaning from the data. In this case, themes rather than words and
sentences are used as the unit of analysis. Codes are used to represent themes that capture
already defined criteria. We established an initial standardised code as the procedure to
de-contextualise the text. The codebook included identifying the publication year, authors,
title of publication, journal or conference proceeding in which the paper was published and
the country in which the research was carried-out. Further, the researchers also identified
the driving forces for DT adoption in the construction industry as well as the major findings
and contributions that were clearly stated in the publication.

Re-contextualisation relates to openly coding through the condensation of the impli-
cations of the themes’ unit of analysis. The coding is based on the homogeneity between
the major themes. For example, statements that relate to the concept of the digital twin
are coded as concept-oriented drivers. The next step is to categorise and compile the
sub-themes. This involves the abstracting and naming of the themes according to content-
characteristic words. In this stage, similar or dissimilar sub-themes are put together to form
broader sub-themes. Finally, the assessment of consistency stage involves the comparison of
different judgements to ensure trustworthiness in the process. This eliminates the subjective
judgements and possibilities of differences in judgements among various authors.

3. Results and Discussion
3.1. Annual Publication Trends on Drivers for DT Adoption in the Construction Industry

This section discusses the research findings, together with the descriptive analysis
and categories of the identified drivers using content analysis. Figure 2 shows the annual
publication on the driving forces for digital twin adoption in the construction industry,
with an increasing growth since 2018. The first relevant paper was published in 2018 (see
Figure 2). It is understandable since the DT concept in technologically advanced industries
such as manufacturing was at its infancy and other areas like the construction industry
were now contextualising the concept [83]. Since then, relevant annual publications have
increased from one in 2018 to six in 2019.

Furthermore, there was a progressive increase in the number of relevant papers
published annually, resulting in 13 published in 2020 despite the COVID-19 pandemic.
Similarly, 37 relevant papers were published in 2021 (i.e., peak year) (see Figure 2). The
growing interest in the adoption of DT in the construction industry is evident in this review,
where one paper on its driving forces has already seen its publication in 2023. Further, the
exponential increase in the number of relevant publications showed that researchers and
practitioners had recognised the prowess of digital twins in solving some of the numerous
challenges confronting the construction industry, especially in operation and maintenance
phase of a project [11].
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3.2. Geographical Considerations of DT Adoption in the Construction Industry

The study identified the countries or regions actively involved in the adoption of DT in
the construction industry related studies and presented them in Table 2. The 58 publications
covered nineteen countries or regions, which included both developed and developing
countries. The majority of the publications focused on the United Kingdom (UK), United
States (US), Australia, and Italy, with nine, seven, six, and six publications. Thirteen
publications focused on multi-country analysis (for instance, Australia and UK, China
and Singapore, Canada and UK, UK and Pakistan). Therefore, it can be deduced from
the results that most developed countries, such as the UK, US, Australia, and Italy, have
the highest number of researchers contributing to the probing of the driving forces for the
adoption of DT in the construction industry. In the same vein, developing countries like
Brazil, China, and South Africa have contributed to the DT adoption in the construction
industry drivers research with at least one publication. The construction industries of these
developed countries are benefitting significantly from the adoption of DT. For instance,
the UK, through the Centre for Digital Built Britain (CDBB), is running the National
Digital Twin Programme (NDTp) to access high-quality and secure data to improve how
infrastructure is built, managed, operated and decommissioned [84]. Further, in Australia,
the restoration team of the Sydney Opera House designed a unified central data repository
to enhance operation and maintenance using some DT concepts [15]. This evidence proves
the potential of DT adoption in the construction industry.

3.3. Drivers of DT Adoption in the Construction Industry

After completing the four-step approach, a total of 50 drivers were identified and
presented in Table 3. Table 3 also presents the number of studies that relates to each of the
identified sub-themes. In this study, all the identified drivers for digital twin adoption in
the construction industry are presented in detail. It is worthy to note that the identified
drivers are mostly the expectations of researchers in their studies and that few are based on
practical evidence.
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Table 2. Distribution of selected papers by country or region.

No. Country or Region Number of Selected Papers

1 Multi-country* 13
2 United Kingdom 9
3 United States 7
4 Australia 6
5 Italy 6
6 Singapore 2
7 South Korea 2
8 Switzerland 2
9 Brazil 1
10 China 1
11 Finland 1
12 France 1
13 Germany 1
14 Hong Kong 1
15 Spain 1
16 Sweden 1
17 South Africa 1
18 Taiwan 1
19 Turkey 1
20 Total 58

Note: Multi-country* = more than one country of focus.

Table 3. Drivers for DT adoption in construction industry identified in the literature.

Code Drivers for DT Adoption in CI References Sum

dr1 Real-time data visualisation [11,19,30,33,34,42,47–50,52,53,61,64,72,77–79] 18
dr2 Optimised construction process [11,32,35,40,51,53,66,71,72] 10
dr3 Enhanced environmental monitoring [11,14,20,29,34,43,50,54] 8
dr4 Safety risk management [13,44,65,70,73,76,79] 7
dr5 Enhanced energy management [11,19,20,30,49,50,52] 7
dr6 Continuous monitoring of assets [11,21,34,45,63,70] 6
dr7 Reduce overall design process [11,52,53,67,68] 5
dr8 Enhanced decision-making [11,46,52,70,71] 5
dr9 Reduced construction cost [11,33,47,53,65] 5
dr10 Enhanced predictive maintenance [11,19,21,35,49] 5
dr11 Sustainability in project design [11,45,50,52,57] 5
dr12 Encourage digital transformation [34,48,64,78] 4
dr13 Improved design information delivery [11,50,69,78] 4
dr14 Real-world asset management [31,41,56,77] 4
dr15 Improved materials selection [11,47,68] 3
dr16 Improved project’s operation efficiency [11,49,61] 3
dr17 Enhance logistics monitoring and simulations [33,34,46] 3
dr18 Automation and real-time control [34,47,61] 3
dr19 Enabled smart services [34,57,62] 3
dr20 Better project operational performance [11,19,33] 3
dr21 Ensure effective project planning [11,53] 2
dr22 Understand structural actions [11,45] 2
dr23 Real-time networking of products and systems [11,78] 2
dr24 Conserve heritage assets [11,45] 2
dr25 Provide technical solutions [50,71] 2
dr26 Reduced logistics risk [33,46] 2
dr27 Better project management [36,38] 2
dr28 Effective stakeholder collaboration [11,39] 2
dr29 Finite elemental analysis of existing structures [11,49] 2
dr30 Maintain occupants’ comfort [19,20] 2
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Table 3. Cont.

Code Drivers for DT Adoption in CI References Sum

dr31 Improved product quality [11,49] 2
dr32 Develop self-learning capabilities [19,49] 2
dr33 Preserve cultural heritage [42] 1
dr34 Enhanced building retrofit [42] 1
dr35 Improved renovation works [42] 1
dr36 Deliver new products or services [56] 1
dr37 Creation of asset value [56] 1
dr38 Output controlling of complex systems [58] 1
dr39 Enhanced operational cost [61] 1
dr40 Social support [77] 1
dr41 Improved self-management ergonomic exposure [74] 1
dr42 Enhanced prefabrication of assets [60] 1
dr43 Reduced non-fatal injuries [70] 1
dr44 Secure systems [21] 1
dr45 Feedback to improve personal satisfaction [21] 1
dr46 Effective stakeholder management [11] 1
dr47 Improved management activities [11] 1
dr48 Proactive and accurate status information [11] 1
dr49 Improved climate conditions [19] 1
dr50 Capacity of improving building data [19] 1

3.4. Classification of the DT in Construction Industry Drivers

The lifecycle philosophy of construction projects is critical to the successful adoption
of DT due to the integrated activities on design, construction, operation and maintenance,
and preservation [11]. The construction project lifecycle phases as described by Guo,
Li and Skitmore [85] is adopted for this study. In this study, the planning and design
phases are referred to as design; construction and commissioning phases are referred to as
construction; utilization and maintenance phases are referred to as facilities management;
finally, decommissioning phase is referred to as restoration and refurbishment.

The study consolidated either similar or dissimilar variables into broader higher-order
categories. The purpose of the consolidation was to enhance the understanding, clarity
and simplicity of the identified drivers. The study adopted the classification technique
utilised by Ghobadi [86] and Chan, Tetteh and Nani [24]. This technique defines the
categories based on four robust codified logic. For instance, Ghobadi [86] adopted this
approach to develop a framework for classifying the driving forces for knowledge sharing
in software teams using the change perspective of organisations. Chan, Tetteh and Nani [24]
also utilised the same approach to develop a conceptual framework to guide, determine
and assess the success of international construction joint ventures. The codified logic
involves, firstly, identifying the interrelationships between the identified factors. Secondly,
comparing the results to ensure consistency within the categorisation of the factors. Thirdly,
establishing a relationship between classifications of previous studies and the current
results and, lastly, finalising the categorisation of the factors using focus group discussions.
This study resorted to four academics who have extensive knowledge on the adoption of
DTs in the construction industry to finalise the categorisation of the driving forces. The
classification process resulted in the 50 drivers being classified into four major categories.
These categories include concept-oriented drivers, production-driven factors, operational
success, and preservation-driven drivers (see Table 4). Furthermore, these categories have
also been ranked to establish the most frequent usage of DT in the construction industry.
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Table 4. Typology of Drivers for DT adoption in CI ranking.

No. Categories Drivers Code Frequency Mean Rank

1.0 Concept-oriented drivers COD 4.00 1st
1.1 Real-time data visualisation cod1 18 -
1.2 Reduce overall design process cod2 5 -
1.3 Enhanced decision-making cod3 5 -
1.4 Sustainability in project design cod4 5 -
1.5 Encourage digital transformation cod5 4 -
1.6 Improved design information delivery cod6 4 -
1.7 Improved materials selection cod7 3 -
1.8 Enabled smart services cod8 3 -
1.9 Ensure effective project planning cod9 2 -

1.10 Provide technical solutions cod10 2 -
1.11 Finite elemental analysis of existing structures cod11 2 -
1.12 Creation of asset value cod12 1 -
1.13 Social support cod13 1 -
1.14 Capacity of improving building data cod14 1 -
2.0 Operational success drivers OSD 3.13 2nd
2.1 Enhanced environmental monitoring osd1 8 -
2.2 Enhanced energy management osd2 7 -
2.3 Continuous monitoring of assets osd3 6 -
2.4 Enhanced predictive maintenance osd4 5 -
2.5 Real-world asset management osd5 4 -
2.6 Improved project’s operation efficiency osd6 3 -
2.7 Automation and real-time control osd7 3 -
2.8 Better project operational performance osd8 3 -
2.9 Real-time networking of products and systems osd9 2 -

2.10 Maintain occupants’ comfort osd10 2 -
2.11 Develop self-learning capabilities osd11 2 -
2.12 Enhanced operational cost osd12 1 -
2.13 Improved self-management ergonomic exposure osd13 1 -
2.14 Secure systems osd14 1 -
2.15 Feedback to improve personal satisfaction osd15 1 -
2.16 Improved climate conditions osd16 1 -
3.0 Production-driven drivers PDD 2.73 3rd
3.1 Optimise construction process pdd1 10 -
3.2 Safety risk management pdd2 7 -
3.3 Reduced construction cost pdd3 5 -
3.4 Enhance logistics monitoring and simulations pdd4 3 -
3.5 Understand structural actions pdd5 2 -
3.6 Reduced logistics risk pdd6 2 -
3.7 Improved product quality pdd7 2 -
3.8 Effective stakeholder collaboration pdd8 2 -
3.9 Deliver new products or services pdd9 1 -

3.10 Better project management pdd10 2 -
3.11 Output controlling of complex systems pdd11 1 -
3.12 Enhanced prefabrication of assets pdd12 1 -
3.13 Reduced non-fatal injuries pdd13 1 -
3.14 Improved management activities pdd14 1 -
3.15 Effective stakeholder management pdd15 1 -
4.0 Preservation-driven drivers PRD 1.20 4th
4.1 Conserve heritage assets prd1 2 -
4.2 Proactive and accurate status information prd2 1 -
4.3 Preserve cultural heritage Prd3 1 -
4.4 Enhanced building retrofit Prd4 1 -
4.5 Improved renovation works Prd5 1 -

Table 4 shows the identified four main categories and their associated driving forces for
DT adoption in the construction industry. For instance, conserve heritage assets, proactive
and accurate status information, preserve cultural heritage, enhanced building retrofit,
and improved renovation work form the preservation-driven drivers for adopting DT in
the construction industry. The conceptual framework for DT adoption in the construction
industry drivers’ classification is presented in Figure 3. In addition to Table 4, the mean
scores for each of the categories are graphically presented in Figure 4.
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3.4.1. Concept-Oriented Drivers

The concept-oriented drivers are drivers that form the baseline for DT adoption in
the construction industry. These drivers are generally realised at the concept or design
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and engineering stage of the project. They set the pace for adopting DT in the construc-
tion industry. Within this construct, 14 drivers were identified to include real-time data
visualisation, reduce overall design process, enhanced decision-making, sustainability in
project design, encourage digital transformation, improved design information delivery,
improved materials selection, enabled smart services, ensure effective project planning,
provide technical solutions, finite elemental analysis of existing structures, creation of asset
value, social support, and capacity of improving building data. This is the initial decision-
making stage; the decision on whether to adopt DT is very critical [87]. The behaviour
rule of the physical entity is reflected in a DT and would be kept updated throughout the
lifecycle of the construction project. The concept-oriented drivers are therefore essential
in ensuring that the most critical decisions are made regarding the project. Designers are,
therefore, provided with efficient information during the design of the project. Hence,
a complete digital project footprint will be available to designers to aid them in making
informed decisions once they have a DT [88].

According to the individual citations’ frequencies documented in this review, the top
four variables with high scores identified include real-time data visualisation, reduced
overall design process, enhanced decision-making, and sustainability in project design. This
category was ranked first out of four with a 4.00, as calculated by the mean of the citation
frequencies of the factors underlying the category. It is worth noting that most of the factors
underlying this category form more than 50% of the papers that were reviewed in this
study. For example, 18 out of 58 different publications identified real-time data visualisation,
constituting more than 30% of the total number of articles reviewed. Several studies have
presented some justifications to support this driving force [34,42,61,77]. The need to possess
the ability to visualise project data in real-time has pushed for the adoption of DT in the
construction industry. Although available technologies like building information modeling
(BIM) existed, accessibility to real-time data was impossible, since BIM deals with static
data [11,16]. Agostinelli, Cumo, Guidi and Tomazzoli [49] found out that DT presents
buildings with the capability to enrich their knowledge and data available, receive sensor
signals for continuous monitoring and utilise artificial intelligence (AI) techniques to
develop self-learning and predictivity capabilities. The authors highlighted that real-time
data visualisation through DT improves energy management systems in both small and
large-scale (apartments to district) projects. Similarly, urban-scale energy modelling for
optimization is possible through DT [50]. The real-time visualised data in the DT can
inform decisions regarding energy distributions, demand, cost savings and emissions
from buildings.

Regarding the design process for a building project, DT can aid in reducing the overall
design process. This is possible since at the designing of a project, DT can inform the
designers’ decision as to which hereditary components, as well as information, can be
used from a previous project or rejected during the redesign and re-engineering of the
project. Lydon, Caranovic, Hischier and Schlueter [53] stated that DT could reduce the
high planning resources needed to implement the elements of multifunctional buildings.
The authors further mentioned that the application of DT could resolve issues related
to building systems performance during the design and support the various methods
employed in digital fabrication during the construction of the project. DT plays a significant
role in minimising the duration of the overall design process. For instance, Opoku, Perera,
Osei-Kyei and Rashidi [11] mentioned that DT ensures an iterative optimisation of the
information and product physical models and, therefore, reduces the overall design process.
This can help in reducing the possibilities of incurring additional costs during rework.

Furthermore, decision-making can be enhanced once a what-if analysis is conducted
using the DT of the building [52]. Further, the project’s sustainability is enhanced through
the adoption of DT in the design of the project. DT presents the opportunity to secure
the sustainability of the building project. Several purpose-driven factors and considera-
tions relating to sustainable decision-making in establishing the need, planning, designing,
construction, operation, as well as maintenance, are possible through DT adoption in the
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construction industry [57]. This can enhance the overall sustainability of the construc-
tion project.

3.4.2. Production-Driven Drivers

The production-driven drivers focus on bringing the construction project into being.
This is the stage where the industry receives its finished product. The production-driven
driving forces ensure that the integrity of the project’s structural system is achieved [45].
Considering the definition and theoretical background of the production-driven drivers,
15 drivers were classified under this category to include optimise construction process,
safety risk management, reduced construction cost, enhance logistics monitoring and
simulations, understand structural actions, reduced logistics risk, improved product qual-
ity, effective stakeholder collaboration, deliver new products or services, better project
management, output controlling of complex systems, enhanced prefabrication of assets,
reduced non-fatal injuries, improved management activities, and effective stakeholder
management. The strength of PD drivers lies in its ability to bring into being the building
project [11,53,71,72]. Notwithstanding this assumption, this category was ranked third
considering the frequency of citations with a mean value of 2.73. It is worthy to note
that the underlining factors of the PDD are very significant in the adoption of DT in the
construction industry.

DTs can provide support for various methods of construction related to the digital
fabrication of the building project [53]. Macchi, Roda, Negri and Fumagalli [89] confirmed
that, in the absence of design drawings, DTs are relevant in preparing the as-built drawings;
this can enhance and optimise the whole construction process. Safety risk management is a
key aspect for consideration in the construction industry. Liu, Meng, Xing and Jiang [73]
developed a framework for managing prefabricated building hoisting safety risk using a
DT. The DT presented the opportunity to realise the virtual-real interaction in the entire
hoisting process and the visualisation of the time-varying information. The authors further
indicated that DT could improve safety management as well as construction methods. The
construction logistics can also be monitored and simulated using DTs. Several potential
risks associated with construction logistics can be predicted using DTs to enhance the
coordination effectiveness of the supply chain as well as just-in-time delivery of construction
modules [33]. This can, therefore, reduce the overall cost associated with the construction
process for the building project. Opoku, Perera, Osei-Kyei and Rashidi [11] indicated
that, although the adoption of DT is dependent on the level of knowledge regarding its
development, there could be a significant reduction in the overall cost resulting from the
application of DT. In the modern construction industry, stakeholders expect buildings to be
structurally safe whilst achieving value for money; this is possible through the adoption of
DTs. Therefore, DT adoption in the construction industry is an outmost priority. According
to Madni, Madni and Lucero [90], the adoption of DTs in the construction of projects
presents a significant return on investments throughout the projects’ lifecycle.

3.4.3. Operational Success Drivers

The operational success drivers establish the relationship between the construction
project and its users. This is the point where the project’s reliability, as well as its conve-
nience, are of utmost importance to its users. Several stakeholders operate the construction
project and, therefore, prevent the data integration between different stakeholders and
the project. The adoption of DT at a project’s operation and maintenance stage is usually
centred on facilities and maintenance management [11,16,22]. The flow of information
among the different stakeholders could also be improved through the application of DT.
The operational success drivers category is the second highest ranked category, with a mean
value of 3.13, and is explained by sixteen different drivers. The OSD category includes
enhanced environmental monitoring, enhanced energy management, continuous monitor-
ing of assets, enhanced predictive maintenance, real-world asset management, improved
projects’ operation efficiency, automation and real-time control, better project operational
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performance, real-time networking of products and systems, maintain occupants’ comfort,
develop self-learning capabilities, enhanced operational cost, improved self-management
ergonomic exposure, secure systems, feedback to improve personal satisfaction, and im-
proved climate conditions. It is worth to noting that this category has been identified as
one of the most significant determinants for adopting DTs in the construction industry, as
reported by Opoku, Perera, Osei-Kyei and Rashidi [11]. The critical variables under this
category are enhanced environmental monitoring, enhanced energy management, contin-
uous monitoring of assets, and enhanced predictive maintenance [19,30,34,43]. Ensuring
building occupants comfort has become an area of great concern in recent times. Facilities
managers are, therefore, confronted with the challenge of making critical decisions regard-
ing the operation and maintenance of the building to ensure occupants’ comfort. Khajavi,
Motlagh, Jaribion, Werner and Holmström [16] concluded that the DT improves the build-
ings’ operational efficiency based on collected real-time data, enhancing well-informed
decision-making.

With the adoption of DTs in the construction industry, various environmental parame-
ters, including ambient and room temperatures, relative humidity, lux and decibel levels
within buildings, can be monitored to improve the environmental conditions. Lin and
Cheung [14] developed an advanced monitoring and control system for an underground
parking garage environment using DT. The authors concluded that the system is visually
effective for managing and monitoring environmental conditions. Many studies have
affirmed that the predominant factor for DT adoption in the construction industry is to
continuously monitor construction assets [11,21,34,45,63,70]. For instance, Meža, Mauko
Pranjić, Vezočnik, Osmokrović and Lenart [63] developed a fully functioning DT of a
road constructed using secondary raw materials. As a result, the road could be continu-
ously monitored, and the authors established the prowess of DT in addressing challenges
in infrastructure projects. DT also enables intelligent optimisation and automation of
energy management systems in buildings. For example, Agostinelli, Cumo, Guidi and
Tomazzoli [49] developed a DT-based real-time methodology for monitoring the energy
performance of buildings. The authors established that the methodology could reduce
the gap between the buildings’ simulated and actual energy performance. In terms of
predictive maintenance of buildings, DT presents an excellent and enhanced opportunity.
D’Addona, Ullah and Matarazzo [91] indicated that DT provides the platform to identify
and evaluate anticipatory measures relating to the predictive maintenance of assets. Further,
DT enhances predictive maintenance and ensures well-informed decisions regarding the
facility [11,16].

3.4.4. Preservation-Driven Drivers

Different from the regular use of DT in the construction industry, the preservation-
driven drivers focus on preserving or conserving the construction asset for future use. Per
the definition of the PR drivers and its theoretical background, five out of the fifty drivers
were classified under this category, which include conserve heritage assets, proactive and
accurate status information, preserve cultural heritage, enhanced building retrofit, and
improved renovation works. As Opoku et al. (2021) indicated, researchers have geared little
attention towards the demolition and recovery phase of projects regarding the adoption
of DT in the construction industry. However, an important area of DT application is that
of the preservation of heritage assets, which may possibly be demolished later. The PRD
construct is the least ranked among the four categories based the frequency of citations,
with a mean value of 1.20.

Notwithstanding, the drivers underlying this category are important for the sustain-
ability together with the continuous evolution of the construction industry [45,92]. In
the construction industry, heritage buildings are very significant assets that aid in creat-
ing sustainable communities. Furthermore, these assets present additional value to the
regeneration of construction projects. Comparatively, heritage buildings present better
environmental and economic advantages in terms of reuse than a new build. This is because
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these buildings provide additional character to the city districts. Further, the culture of the
locality is preserved through the reuse of heritage assets; this can be harnessed through
the adoption of DT. According to Göçer, Hua and Göçer [93], DT can present a pre-retrofit
model of an existing asset that collect and integrate various data regarding assets; this
can provide an enhanced understanding of the requirements of the asset to be renovated.
In addition, building retrofit decision-making is improved since the labour-intensive and
time-consuming activities are catered for using DTs [94]. This explains the relevance of DT
for the preservation and conservation of existing buildings.

4. Conclusions

This study identified the main driving forces for DT adoption in the construction in-
dustry by systematically reviewing 58 journal and conference publications. The descriptive
analysis indicates a growing interest in DT adoption in the construction industry among
researchers with studies from both developed as well as developing countries. The findings
indicate that majority of the developed countries, which includes the UK, US, Australia
and Italy, have the highest number of researchers contributing to the probing of the driving
forces for the adoption of DT in the construction industry. In the same vein, developing
countries like Brazil, China, and South Africa have also contributed to the DT adoption in
the construction industry. The comprehensive content analysis resulted in the identification
of 50 drivers for the adoption of DT in the construction industry. The 50 driving forces
were extracted, classified and integrated in a framework. The classification framework
includes four key categories, specifically: concept-oriented drivers, operational success
drivers, production-driven drivers, and preservation-driven drivers. A detailed analysis of
these categories of drivers have been conducted and presented in this study.

4.1. Practical Implications and Future Research Recommendations

The developed conceptual framework provides an industry-specific lens for identify-
ing the driving forces for DT adoption in the construction industry. This can aid industry
practitioners and other stakeholders interested in adopting DTs in tackling most of the
numerous challenges confronting the construction industry. As highlighted in most studies
regarding the slow advancement of innovation in the construction industry, especially
with its adoption of digital technologies [11,95]. This can help enlighten the understanding
of DT applications in the construction industry, as well as the promotion of its adoption.
This study can also facilitate the continued inquiry into the cutting-edge abilities of DT
in tackling most of the challenges in the construction industry. For instance, the results
suggest that fertile grounds for conducting empirical investigations into how the industry
can benefit from DT adoption and devise strategies that could enhance the purposes of
applying DTs in the construction industry. This would enhance decision-making regarding
DT adoption in the industry. This study recommends further research using the case studies
approach since most of the driving forces identified are based on the opinions of the re-
searchers whose works have been utilised in the study. This study also suggests that future
empirical investigations could explore the inter-relationships among the driving forces and
propose strategies for improving the adoption of DTs in the construction industry.

4.2. Limitations of the Research

Despite the contributions of this research, the researchers acknowledge the fact that
only Scopus, Web of Science, as well as ScienceDirect databases, were utilised in this study.
This could have resulted in overlooking relevant publications regarding the driving forces
for DT adoption in the construction industry. Based on this, the findings of the research
might not entirely reflect the completely available literature on the drivers for DT adoption
in the construction industry. Furthermore, although the most significant publications were
carefully selected, the literature search may not have included all keywords. Finally, the
researchers also admit the likely limitation regarding the sampling approach used in this
study. Hence, the results are subject to the sampling approach employed.
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Notwithstanding those mentioned above, there is enough justification, since it is
practically impossible to consider all publications related to the drivers of DT adoption
in the construction industry in a single review study. It must be noted that the identified
driving forces have not been tested empirically and would therefore require future research
to undertake detailed surveys empirically from different geographical perspectives to
ascertain the most significant driving forces that need vital considerations. Nevertheless,
the study is ground-breaking, as it is the first to bring to light a classified set of drivers for
adopting DT in the construction industry.
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