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Intermittent Water Supply (IWS) is prevalent in most developing countries. Specifically,

in India, IWS is existent throughout the country. Many studies focus on documenting

the effects of IWS, and rarely the drivers of the IWS regime are studied. In this study, a

systematic literature review was conducted on IWS studies around the globe. The various

causes for IWS were documented. Then, by studying India’s typical water supply system

(WSS) configuration, the vicious cycle of IWS in India is discussed. Further, the drivers of

IWS were identified and elaborated with the causing mechanisms. This knowledge will

help devise strategies and solutions for improving the IWS in India and other developing

countries with similar socio-economic conditions.

Keywords: continuous water supply, India, intermittent water supply, vicious cycle, water supply system design,

water supply system operation

INTRODUCTION

Piped water supply is the safest way to provide potable water to consumers in adequate quantity
and recommended quality. The planning, design, construction, operation, and maintenance of
a Water Supply System (WSS) requires comprehensive efforts from multiple stakeholders. Due
to reliable design and operation in developed countries as per the standards, Continuous Water
Supply (CWS) prevails. However, the situation is diametrically opposite in developing countries.
Although designs of WSSs are as per stipulated standards and manuals, the operation of theWSS is
not as expected in design (Abu-Madi and Trifunovic, 2013). Especially in the South Asian countries,
100% Intermittent Water Supply (IWS) exists (Charalambous and Laspidou, 2017). Typically, in
India, the design is based on the CWS guidelines, and the system operates as the IWS. A piped
water supply distributing water to consumers for less than 24 h a day is termed as IWS (Mokssit
et al., 2018).

In India, all the WSSs are operated as an IWS, with supply duration varying from 1 to 6
h/day (Ahluwalia et al., 2011). The IWS results in inequitable supply, increased Non-Revenue
Water (NRW), and deteriorated water quality. Most of the WSS in India fail to comply with
the service level benchmark (Table 1). The standard is based on Central Public Health and
Environmental Engineering Organization (CPHEEO) norms, an advisory board to the Ministry
of Urban Development, Government of India.

Many past studies (Klingel, 2012; Galaitsi et al., 2016; Kumpel and Nelson, 2016; Mokssit
et al., 2018; Simukonda et al., 2018) have focused on the causes and the consequences of
IWS worldwide. Table 2 illustrates the past review studies on IWS, which depicts the studies’
objective and significant findings. Additionally, few studies (Andey and Kelkar, 2009; Kumpel
and Nelson, 2013) reported the comparison of CWS and IWS with the study area as India.
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TABLE 1 | Service level benchmarks for water supply in India (MoUD, 2012).

Sr. No. Indicator Unit Benchmark Average

1 Coverage

of

connections

% 100 50.2

2 Per Capita

Supply

lpcd 135 69.2

3 Metering of

connections

% 100 13.3

4 Non-

Revenue

water

% 20 32.9

5 Continuity

of supply

Hours 24 3.1

6 Quality and

Treatment

% 100 81.7

Another set of studies (Elala et al., 2011; Mellor et al., 2016)
reported the IWSs impact on water quality in India. Apart
from reporting the causes and consequences of the IWS,
studies reported the methodology for the direct transition
of IWS to the CWS (Jayaramu et al., 2015; Hastak et al.,
2017; Burt et al., 2018). However, these studies were based
on the pilot scale level, and achieving CWS throughout
the WSS is a distant dream in developing countries
(Mokssit et al., 2018; Kalbar and Gokhale, 2019).

Limited literature is available on the improvement of existing
IWS. To solve the IWS issues, understanding the root cause
of the intermittency is of prime importance. The causes and
consequences of IWS enlisted in the past literature are primarily
generic. A detailed understanding of the interaction between
various drivers responsible for IWS is necessary to propose
interventions for improving existing IWS. To the best of our
knowledge, a comprehensive description of various drivers
responsible for IWS in India is missing in the literature. The
present study captures the different design, operation, economic,
and institutional arrangement issues of WSS responsible for IWS
in India. Based on the field condition and operational hydraulics,
various drivers of IWS are discussed. It is hoped this study will
bring more clarity toward understanding the drivers responsible
for IWS in India.

The paper includes five sections. After this introduction, the
second section is about the review methodology adopted in the
study. The third section is focused on the analysis of various
studies on IWS. The drivers for IWS in India are discussed in
section four. Finally, the conclusion of the study is reported in
section Vicious cycle of WSS failure in India.

REVIEW METHODOLOGY

In this study, only peer-reviewed journal articles were selected
as the novelty of work is given priority in the peer-reviewed
journal articles (Owens et al., 2020). The journal articles were
retrieved from the Scopus database. The search string used was
“Intermittent Water Supply,” and the search was conducted for

“Article title, abstract, and keywords.” A total of 1080 articles
were reported from 1873 to 2020, and all the articles were
screened in detail. The first screening level was based on reading
the title, abstract, keywords, and excluding the duplication,
which resulted in 201 publications. A detailed reading of the
title, abstract, introduction, and conclusion was done in the
second level of screening, and 91 articles were selected for the
detailed review.

The articles were classified based on three criteria: design and
analysis, operation, and Economic aspects (revenue). The main
aim of these studies was used as criteria while classifying the
articles. It was observed that studies reported before 2002 (and
in the years 2004 and 2005) were not entirely focusing on IWS,
hence excluded from the review process. As shown in Figure 1, a
substantial amount of work is done on the IWS operation aspect.
As expected, a significant number of studies have considered
WSS in developing countries, especially India. Additionally,
based on knowledge gained through numerous field visits to
WSSs across India, the existing layout, design and operational
practices are discussed, followed by the drivers for IWS
in India.

STUDIES ON IWS

The past studies (91 screened articles) on IWS are discussed
based on three criteria Design and Analysis, Operation, and
Revenue. The bibliographic information of the articles included
in the survey is provided in the Supplementary Information
(Supplementary Table SI-1). The category wise summary of each
study is compiled in Supplementary Tables SI-2.1–2.3 of the
Supplementary Information.

Design and Analysis of IWS
Design and analysis are an essential part of WSS irrespective
of the supply regime. Out of 91 articles screened, only three
studies focused on a new set of design guidelines for IWS
(Table 3). However, the guidelines are not available in the public
domain. From the analysis point of view, most of the studies
(almost 50%) focused on simulating the process of partial pipe
filling in IWS. Although Pressure Driven Analysis (PDA) was
used to simulate the pipeline’s partial flow condition, Demand
Driven Analysis (DDA) is a standard practice to simulate the
WDN with IWS. Simulating partial flow conditions is one of
the steps for identifying the problematic areas in the network.
Once the problems are identified, the next step is to improve the
existing network.

The studies (Table 3) on rehabilitation of existing networks
with IWS were based on the theoretical model. Validation of the
proposed theoretical models using variousWDN ismissing. Also,
the proposed models failed to capture the actual ground reality
of the IWS. Instead of studies focusing on simulating the actual
ground reality of IWS, studies on direct conversion of IWS to
CWS were encountered. While modeling IWS, emphasis should
be given to analyzing household storage’s impact on the overall
network performance. Overall, a holistic design and analysis
approach covering all the elements of the actual operation
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TABLE 2 | Review studies on IWS.

Author Objective Findings

Klingel (2012) To enlist the technical causes and impacts of IWS • Deficiency in the system concept, system knowledge, system

planning, and infrastructure management are the leading

causes of IWS.

• Infrastructure deterioration, loss of water, inequitable supply,

and reduced water quality are some of the impacts of IWS.

• Need for a detailed study on each aspect of IWS.

Galaitsi et al. (2016) To study the complex interrelation between the

causes and impacts of IWS

• Lack of consistency in the definition of IWS. The authors

proposed three types of intermittency, predictable irregular, and

unreliable intermittency.

• Predicting the type of intermittency is essential for appropriate

interventions.

Kumpel and Nelson (2016) To examine the IWS status in the world, nature of

IWS, and its effect on water quality.

• Intrusions, backflow, biofilms, loose deposits, and microbial

growth are themain reasons for the degradation of water quality

in IWS.

• Improvement in water quality monitoring in IWS is required.

• Need for descriptive research to understand the IWS practices

and methods responsible for water quality deterioration.

Mokssit et al. (2018) To propose a methodology for assessing service

quality of WSS with IWS regime

• The interrelation between causes and problems of IWS gives

rise to a vicious cycle.

• Based on availability, quantity, quality, accessibility, and

affordability of water, the service quality of WSS with IWS

regime can be determined.

Simukonda et al. (2018) To review key water supply intermittency casual

factors, problems, and options for improvement

• IWS tree comprising the root cause and problems due to IWS.

• Appropriate design and operation interventions can improve

IWS, instead of impractical direct conversion of IWS to CWS.

Bautista-de los Santos et al. (2019) To review the impact of IWS on the drinking water

microbiome

• A combination of lab studies and field studies is necessary to

understand IWS impact on water quality.

Al-Washali et al. (2020) To review different assessment methods of water loss

component for IWS

• The accuracy and uncertainty of methods is directly

proportional to each other for calculating the water loss.

of WSS in developing countries is required to minimize the
system’s failure.

Operation of IWS
The operation of aWSS based on IWS results in various problems
like increased Non-Revenue Water (NRW), inequitable supply,
deterioration of water quality, etc. In relation to this, a significant
amount of studies (Table 4) are reported to either quantify
the problems or ways to improve the efficiency of IWS. The
studies conducted regarding the operational aspect of the IWS
focused on enlisting impacts of IWS, reducing the leakages,
reasons for deterioration of water quality, improving the supply
equity, and converting to the CWS. Among the impacts of
IWS, leakage is the most widely studied area. The different
components vulnerable to the leakage in the WSS and various
leakage quantification techniques suitable for IWS are reported
in the literature (Supplementary Table SI-2.2). However, the
proposed methodologies are labor-intensive, costly, and tested
on a pilot scale, resulting in replicability issues. Hence, the exact
quantification of water loss in IWS remains a tedious task.

From the water quality aspect in IWS, most of the studies
reported the household storage tank is the main component
responsible for the deterioration of water quality. Limited
studies (Supplementary Table SI-2.2) highlighted the pathway
for improving the water quality in IWS.

Besides the leakage and water quality, inequitable water supply
is a significant drawback in IWS. However, studies on replicable
methodology to achieve equity in IWS are scarce (SI-2.2). The
limited literature (Table 4) onmethods to achieve equitable water
supply in the IWS suggests a lack of willingness to improve the
IWS’s performance.

The focus is on direct conversion of IWS to CWS (Klingel
and Nestmann, 2014; Jayaramu et al., 2015; Hastak et al., 2017).
However, the studies focus on a city or town pilot area for
conversion to CWS. The scaling up of direct conversion to
the CWS throughout the city is difficult without completely
understanding the ground reality and gradually improving the
existing system (Kalbar andGokhale, 2019).Moreover, the lack of
consistency in defining benchmarking parameters and reliability
in the data collection framework makes it challenging to utilize
the benchmarking data to directly implement the interventions
(Rawas et al., 2020).

Revenue in IWS
Like all other infrastructure projects, revenue generation in
WSS is the driving force for successful operation of a scheme.
However, the failure ofWSS with IWS leads to a lack of consumer
satisfaction, which minimizes willingness to pay and ultimately
reduces revenue generation.

Due to the reduction in efficiency of WSS with IWS, the
consumers water demand is not fulfilled. Hence, consumers
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FIGURE 1 | Screened articles on Intermittent Water Supply from 2002 to 2020.

spend on household storage, pumps, underground tanks to
store water in IWS. The additional expenditure on the solution
mentioned above is termed as coping cost to consumers
(McIntosh, 2003). In relation to coping costs, most of the studies
(Supplementary Table SI-2.3) classified the various expenditure
consumer have to incur on various components to satisfy the
demand in IWS.Moreover, factors responsible for the willingness
to pay from the consumer end were discussed in the literature.
From service providers point of view, exact quantification
of water consumption is vital to generate appropriate water
bills. In IWS, accurate determination of water consumption is
difficult to achieve (Jayaramu et al., 2016; Kumpel et al., 2017).
A methodology to accurately quantify the household’s actual
consumption with IWS was proposed by Guragai et al. (2018)
using data loggers in Kathmandu, Nepal. However, the scaling
up of the proposed methodology is difficult, as a considerable
investment is required to install and maintain the data loggers
at a larger scale.

IWS IN INDIA

This section describes the configuration, design norms, and the
actual operation of WSSs in India. The actual ground reality will
help understand prevailing IWS both in urban and rural settings
in India.

Configuration of WSSs in India
A typical layout of WSS with a surface water source in India
is illustrated in Figure 2A. Raw water from the source is

transported to the Water Treatment Plant (WTP) through
gravity or using pumps based on the terrain. The pipe carrying
the water from the source to WTP is typically called the
Rising(pumped)/Gravity main. The treated water from WTP is
then stored in a Master Balancing Reservoir (MBR). From the
MBR, water is transported to different Elevated Storage Reservoir
(ESR) through a pipe network known as a transmission network.
Ideally, MBR is situated at a high altitude such that water is
distributed to all the ESRs under gravity. Preferably, the ESR
is supposed to be at the center of the serving area. Water
from ESR to the consumer is delivered through a network of
pipelines termed distribution network. ESR is provided with a
separate inlet and outlet pipe. Different valves are provided at
appropriate locations to maintain the efficiency of the system.
The configuration is such that water is transported in a single
direction from source to consumer.

The difference between the WSS in developed countries and
India was studied based on technical norms for water supply
laid by the America Water Works Association (AWWA). As
per AWWA manual M31 (AWWA American Water Works
Association, 2008), the most efficient WSS configuration is one
with a floating Service Reservoir (SR) situated at the end of
the consumer center (Figure 2B). In other words, the consumer
center should be between the pump station and SR. Water from
the pumping station is pumped to both the consumer center
and the SR. Unlike the ESRs in India, SR has only a single pipe
to fill and withdraw water. At the time of emergency like fire
demand, water is provided to the consumer center from both
pump station and SR.Whereas, at the time of the off-peak period,
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TABLE 3 | Studies contributing to design and analysis aspect of IWS.

References Location Issue of IWS addressed

Vairavamoorthy

and Elango (2002)

N/A Design

Vairavamoorthy

et al. (2007a,b)

India Design

Fontanazza et al.

(2007), De Marchis

et al. (2010),

Campisano et al.

(2018)

Italy Analysis—Partial pipe filling process

Nyende-Byakika

et al. (2012)

N/A Analysis—Partial pipe filling process

Nyende-Byakika

et al. (2013)

Uganda Analysis—Partial pipe filling process

Lieb et al. (2016) N/A Analysis—Partial pipe filling process

Mohan and

Abhijith (2020)

India Analysis—Partial pipe filling process

Manohar and

Mohan Kumar

(2014), Mohapatra

et al. (2014),

Neelakantan et al.

(2014)

India Analysis- Rehabilitation of existing WSS

with IWS and conversion to CWS

Haddad et al.

(2016)

Iran Analysis- Rehabilitation of existing WSS

with IWS and conversion to CWS

El Achi and Rouse

(2020)

Jordan Analysis- Rehabilitation of existing WSS

with IWS and conversion to CWS

water is pumped in SR and stored. Thus, the SR is floating on the
network, with the flexibility to store and deliver water based on
the consumer center’s demand. As shown in Figure 2B, the WSS
configuration is one of the primary reasons for its high reliability
in developed countries. In addition to the layout, the design
norms are an essential factor responsible for WSS’s performance.
The subsequent section will highlight the design norms of WSS
in India and developed countries.

WSS Design Norms in India
In India, the WSSs are designed as per the CPHEEO norms.
The guidelines include the per capita demand, minimum residual
pressure, minimum pipe diameter, the design period of various
components, peak factor, and demand pattern. Table 5 enlists
the different norms as per CPHEEO and AWWA Manual M31.
Even though both the standards are based on CWS, there is
a gap between standards laid by two agencies. Apart from the
minimum residual criteria and per capita norm, the significant
difference is in fire flow demand. In the USA, the pipe diameter
is designed based on the maximum day demand and fire
flow demand (Walski, 2014). The pipe diameter should satisfy
the combined demand with the minimum residual pressure
shown in Table 5. Whereas in India, additional fire demand
is considered for calculating the storage capacity of ESR. Fire
demand is not included in the design of the distribution network.
Moreover, Smith and Liu (2020) enlisted the minimum pressure
standards around the world. The dissimilarity in the design

TABLE 4 | Studies contributing to operation aspect of IWS.

References Location Issue of IWS addressed

Andey and Kelkar (2007,

2009), Kumar et al. (2018)

India Impacts on WSS and consumers

Christodoulou and

Agathokleous (2012),

Agathokleous and

Christodoulou (2016),

Agathokleous et al. (2017)

Cyprus Impacts on WSS and consumers

Abu-Madi and Trifunovic

(2013)

Jordan Impacts on WSS and consumers

Fontanazza et al. (2013) Italy Impacts on WSS and consumers

Fan et al. (2014) China Impacts on WSS and consumers

Al-Ghamdi and Gutub

(2002), Al-Ghamdi (2011),

Haider et al. (2019)

Saudi Arabia Quantification of leakages

Criminisi et al. (2009), De

Marchis et al. (2013)

Italy Quantification of leakages

Tamari and Ploquet (2012) Mexico Quantification of leakages

Zyoud et al. (2016), Zyoud

and Fuchs-Hanusch (2019)

Palestine Quantification of leakages

Mastaller and Klingel

(2017), Taylor et al. (2019)

India Quantification of leakages

Al-Washali et al. (2020),

Aboelnga et al. (2018)

Jordan Quantification of leakages

Al-Washali et al. (2019) Yemen Quantification of leakages

Coelho et al. (2003) Jordan,

Lebanon,

Palestine,

United Kingdom,

and Portugal

Water quality

Tokajian and Hashwa

(2003), Ayoub and Malaeb

(2006)

Lebanon Water quality

Elala et al. (2011), Kumpel

and Nelson (2013), Kumpel

and Nelson (2014),

Ercumen et al. (2015),

Khadse et al. (2016), Taylor

et al. (2018)

India Water quality

Haddad et al. (2014) NA Water quality

Hernandez-Lopez et al.

(2016)

N/A Water quality

Bivins et al. (2017) N/A Water quality

Erickson et al. (2017) Panama Water quality

Alazzeh et al. (2019) Palestine Water quality

Rubino et al. (2019) Mexico Water quality

Li et al. (2020) China Water quality

Sakomoto et al. (2020) Uganda Water quality

Rosenberg et al. (2008) Jordan Inequitable water supply

Ameyaw et al. (2013) N/A Inequitable water supply

Freni et al. (2014) Italy Inequitable water supply

Gottipati and Nanduri

(2014)

N/A Inequitable water supply

Solgi et al. (2015) Iran Inequitable water supply

Ilaya-Ayza et al. (2017) Bolivia Inequitable water supply

Strijdom et al. (2017) South Africa Inequitable water supply

(Continued)
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TABLE 4 | Continued

References Location Issue of IWS addressed

Klingel and Nestmann

(2014)

Algeria Conversion to CWS

Jayaramu et al. (2015),

Hastak et al. (2017)

India Conversion to CWS

Ilaya-Ayza et al. (2016,

2018)

Bolivia Conversion to CWS

David et al. (2020) Mexico Conversion to CWS

Cronk and Bartram (2018) Honduras,

Nicaragua,

and Panama

Database management

Kaminsky and Kumpel

(2018)

N/A Database management

Rawas et al. (2020) Peru Database management

norms between developed and developing nations makes the
WSS in the developed countries less vulnerable to failure than the
developing countries.

Apart from the design parameters mentioned in Table 5,
the transmission network between MBR and ESR is designed
for a 1.2 to 1.5 peak factor in India. On the distribution side,
the consumer demand pattern is considered a diurnal pattern,
peaking in the morning and evening. Population forecast is done
for the design period of 30 years (CPHEEO, 1999). The various
methods mentioned in the CPHEEO manual are used to arrive
at the forecasted population, and per capita demand (Table 5) is
multiplied to meet the future demands. MBR and ESR’s capacity
is finalized based on the mass curve method, based on the supply
and demand pattern throughout the day. Furthermore, Demand
Driven Approach (DDA) is used to design transmission and
distribution networks.

The WSS design norms in India cover all the fundamental
aspects. A Detailed Project Report (DPR) is formed based on the
design norms and submitted to concerned authorities for design
approval. TheWSS construction is carried out based on the DPR,
followed by its commissioning and operation. The following
section will highlight the actual operation of WSS in India.

Actual Operation of WSS in India
The operation of WSS in India is intermittent, both in
transmission and distribution networks. The operation is
different from the design guidelines used. In the following
subsection, the operation of the transmission and distribution
network is discussed separately.

Operation of the Transmission System
The transmission network is designed based on CWS, assuming
that all the downstream ESRs will be filled simultaneously.
Conversely, the ESRs are filled in a staggered manner with the
help of control valves (ON/OFF valves). A peak factor between
1.2 and 1.5 is used to design the transmission network CPHEEO,
1999. However, the transmission network’s staggering operation
increases the peak factor, deterioration of the pipeline, increasing
the water loss.

The design life of a transmission network is 30 years CPHEEO,
1999. Accordingly, the demand is calculated, and pipe diameter
is determined and commissioned at the site. The buffer capacity
available at the initial phase of the design period is utilized
to expand the network unscientifically. Such a scenario results
in over withdrawal in the transmission network to fulfill the
increased demand. The uncontrolled withdrawal causes partially
filling of the ESRs especially, at the tail end ESRs.

Furthermore, to counter the ground undulations, Break
Pressure Tanks (BPT) are used at a higher elevation to reduce
the energy consumption by converting the pumped flow into
gravity flow. However, due to the inappropriate location of BPT,
the actual required discharge through the pipe is not achieved,
aggravating the issue of partial filling of ESRs. Finally, illegal
tapings on the main transmission line are commonly found in
India. The unauthorized connections reduce the system pressure,
which already fails to deliver the desired flow.

Operation of the Distribution System
In India, a large-scale centralized approach is used to design
WSS (Figure 2A). Large ESRs with a capacity between 5–10ML
and 10–25ML (Kalbar and Gokhale, 2019) are designed and
constructed to cater to fluctuations between demand and supply.
As the operation is based on IWS, the large storage tanks develop
a perception of the operators that an infinite volume of water
is available, which results in the expansion of the distribution
network beyond the hydraulic capacity (influence) of the tank.
Furthermore, due to land constraints in urban areas, ESRs are
generally located far away from the serving area, resulting in an
inefficient distribution network. The consumers at the end of
network are deprived of water, and the consumers near the tank
receive ample water.

The general practice for the operation ofWDN is to divide the
service area with the help of control valves. The supply time is
bifurcated with the use of control valves. The division is based on
operator experience, and the aim is to supply water to consumers
irrespective of the residual pressure, resulting in inequitable
distribution. Sometimes, the WDN from different storage tanks
is interconnected, and it becomes difficult to demarcate the exact
location of the pipelines. In other words, the concept of isolated
District Metered Area (DMA) is failed at the ground level.

Moreover, as discussed in the previous section, the
distribution network is designed based on the peak factor
as per the diurnal demand pattern. As water is supplied to a
particular area with the help of a valve for a limited time, the
peak factor exerted is higher than the one considered in the
design. For example, if the water is supplied to an area for 2 h a
day, the actual peak factor exerted in the respective pipe network
will be 12. The high peak factor results in the deterioration of
pipes and increased NRW.

VICIOUS CYCLE OF WSS FAILURE IN
INDIA

In the previous section, the actual design and operation of
WSS in India were discussed. Further, it is necessary to
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FIGURE 2 | (A) Typical layout of WSS with a surface water source in India, (B) Recommended WSS layout by AWWA manual M31.

understand the relationship between the various aspects of
WSS in India causing the existence of current IWS. As
shown in Figure 3, a vicious cycle is formed between the
operation and maintenance, infrastructure condition, service
delivery, consumer satisfaction, and revenue aspect of a WSS.
Lack of proper operation and maintenance deteriorates the
infrastructure condition, which reduces the service quality
in terms of quantity and quality. The decreased service
quality negatively impacts consumer satisfaction; reduced
consumer satisfaction results drop in revenue generation.
In turn, the depleted revenues affect the operation and
maintenance of the WSS, which again initiates the vicious cycle
of failure.

Various factors are responsible for the formation of the vicious
cycle (Figure 3). The operation and maintenance of a WSS is
dependent on the aspects like asset management, DMA, network
expansion, and so on. Failure of one of the factors results in the
WSS’s degraded operation and forms the vicious cycle. Similarly,
the infrastructure condition is governed by the planning, design,

TABLE 5 | Design norms for WSS in India and the USA.

Sr.no. Parameter CPHEEO manual AWWA manual

1. Minimum residual

pressure (m)

7 14

2. Maximum residual

pressure (m)

17 69

3. Minimum diameter

(mm)

150/100 150/100

4. Peak factor 3 2.5

5. Minimum fire flow

(lps)

Neglected 15

6. Per capita demand

(lpcd)

135,70,40 560

and analysis practices along with the operation and maintenance
of the scheme. The infrastructure condition and reliability
decide the service quality of WSS and ultimately dictates
consumer satisfaction.
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FIGURE 3 | Vicious cycle of WSS failure in India.

Additionally, the coping costs govern consumer satisfaction.
The revenue generation aspect relies on the tariff policy, which is
influenced by social and political willingness. Furthermore, illegal
connections, physical losses, and consumer satisfaction impact
the revenue generation of a WSS. Finally, the shared point of all
the factors is the institutional capacity of the water supply sector
in India. The institutional capacity affects significant aspects

like planning, design, analysis, operation, and tariff policy of a
WSS. The vicious cycle (Figure 3) can be converted to a virtuous

cycle if all the factors are maintained as per standards. However,

understanding the different drivers of the formation of a vicious
cycle is vital. The following section will discuss the drivers
responsible for the failure of WSS in India.

DRIVERS FOR VICIOUS CYCLE OF WSS
FAILURE IN INDIA

As discussed in section IWS in India, there is a gap betweenWSS’s
design and actual operation in India. The design is based on
CWS, whereas the operation on IWS. The difference in the design
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and operation results in the failure of WSS in India. Section
Vicious cycle of WSS failure in India illustrated the vicious cycle
ofWSS failure in India. In this section, the drivers responsible for
forming a vicious cycle are discussed based on the field conditions
and operational hydraulics.

Design and Analysis
In India, a highly centralized approach is adopted for planning
a WSS (section Configuration of WSSs in India). The concept
of the ideal location of ESR (center of the serving area)
fails at the ground level due to land constraint, resulting
in hydraulic failure of the WDN. Additionally, population
forecast by standard methods fails to capture the uncertainties,
leads to the faulty demand forecast. The design norms of
WSS in India are discussed in section WSS design norms
in India. The gap between the design and actual operation
of WSS makes the design standard unrealistic. For example,
there might be a difference between the required diameter at
the tail end of the network based on intermittent operation
and the minimum pipe diameter criteria as per the standards
(Table 5).

Furthermore, as discussed in sections WSS design norms
in India and Actual operation of WSS in India, WSS’s design
is based on the peak factor as per CWS. In contrast, the
actual peak exerted on the network is higher due to the
intermittent operation. Moreover, the per capita demand norm
does not account for the changed lifestyle, especially in rural
areas. The penetration of new technologies and instruments in
rural areas has changed the lifestyle, increasing the per capita
water demand.

The next step after the design of WSS is the analysis of the
designed network. DDA is predominantly used to simulate the
network. In DDA, demand at nodes is assumed to be completely
satisfied irrespective of the node’s residual pressure (Berardia
et al., 2014). However, due to IWS in India, wide variation in the
residual pressure is observed, and accordingly, the disparity in the
nodal outflow is recorded. To simulate the variation in nodal flow
regarding residual pressure, Pressure Driven Analysis (PDA) is
preferred and used in recent times (Sayyed et al., 2015; Mahmoud
et al., 2017). Even though PDA gives satisfactory results in terms
of variation in nodal outflow with respect to residual pressure,
it is not easy to estimate the actual withdrawal from the node.
The service connection pipe in the Indian WSS is a crucial
component to calculate the actual withdrawal from the system.
Also, household storage is a significant component of IWS. The
analysis methods adopted for WSSs in India ignore the impact of
household storage and the service connection pipe. The exclusion
of these two vital components fails to capture the ground reality.
Hence, it is not easy to simulate the actual scenario of WSSs
in India.

The factors mentioned above related to planning, design,
and analysis directly impact the infrastructure condition
(Figure 3). Additionally, the operation and maintenance affect
the infrastructure condition; the subsequent section will discuss
the drivers for unsuccessful operation and maintenance of WSS
in India.

Operation and Maintenance
In India, the intermittent operation of WSS has become standard
practice. As discussed in section Operation of the distribution
system, the concept of DMA is failed at the actual operation of
a scheme. The maintenance activity of the pipelines becomes
challenging with the lack of DMA in the network (Diao et al.,
2013). In addition to the maintenance activities, conducting a
water audit to quantify the actual water loss becomes tedious.
As discussed in section Operation of the distribution system,
the transmission network’s partial flow condition results in
incomplete filling of the ESRs. In India, the ESR is bypassed at
many places, and the transmission network is directly connected
to the distribution network.

Additionally, the refilling of pipelines requires a large volume
of water in every cycle of supply time. Water loss in the network
is intensified due to the filling and refilling of the pipelines.
The Hydraulic Grade Line (HGL) at the storage tanks is one
of the governing factors for calculating the residual pressure
at nodes. At the design phase, the starting HGL at the storage
tank is assumed to be above the Low Supply Level (LSL). In the
actual operation, after sometime, the outlet of the storage tank
is partially filled due to uncontrolled withdrawal from the tanks.
Hence, the HGL sets below the LSL of the tank. The difference
between the actual and design HGL value negatively impacts the
performance of the distribution network.

For effective operation and maintenance of infrastructure,
the fundamental prerequisite is maintaining the infrastructure
database. The date of the laying of the pipeline is of vital
importance in WSS. In urban areas of India, most of the
functional pipelines are very old. In a deteriorated condition,
the lack of a proper database regarding the pipe age and
rehabilitation activity exacerbates the deterioration of the
network. The application of Geographical Information System
(GIS) in the database management of WSS is yet to be realized by
most of the authorities. The operation practice like short duration
supply, lack of DMA, unplanned expansion, uncontrolled
withdrawal, and lack of asset management deteriorate WSS’s
infrastructure condition in India.

Consumer Satisfaction
Consumer satisfaction depends upon the service quality of the
WSS. The service quality is decided based on the infrastructure
condition and reliability of the WSS. As discussed in the
previous sections, the shortcomings in the planning, design,
analysis, and operation ofWSS in India decline the infrastructure
condition. Even after overcoming the issues mentioned above,
the improvement in service quality is not assured. The
reliability of the WSS is another aspect that governs the
service quality. Interrupted electricity supply, uneven population
growth, seasonal variation, drought conditions, and unexpected
surge in water demand (e.g., large social gatherings) hampers the
reliability of the WSS.

In India’s rural areas, pumps used in lifting the water from
the source often fail within the design period due to interrupted
electricity supply. The pump failure disrupts the operation
of the scheme, aggravating existing problems of operation
and maintenance. Additionally, haphazard growth, especially in
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urban areas, increases the load on essential utilities like water
supply. However, the WSS is not designed to cater to such an
increase in demand. Lack of sustainable raw water source to
fulfill the increased demand is another vital issue related to
WSS’s reliability.

As a result of IWS, consumers have to invest in household
storage tanks to fulfill the water demand until the next
supply cycle. Consumers adopt an underground storage tank,
overhead storage tank, large vessels, etc., as per the financial
capabilities (Cook et al., 2016). In addition to the storage
facility, consumers spend on the pumps to fetch water from
the system due to inadequate residual pressures. In India, to
counter the health issues caused by IWS, it has become common
to install a household water filtration unit (Ercumen et al.,
2015). Consumers with unfulfilled water demand like rural
areas or slum populations in the urban area adopt alternate
sources like groundwater, tanker feed water, bottled water,
community water filters and fulfill their water demand. Different
alternatives adopted by consumers to accomplish the water
demand are known as coping strategies. The investment made
by the consumers on different coping strategies is termed coping
cost. In addition to the payment of water bills, consumers
spend a substantial amount of their earnings on different coping
strategies (Yepes et al., 2001; Cook et al., 2016; Gurung et al.,
2017). Apart from the coping costs, consumers have to modify
the daily schedule as per the supply hours. In most households,
one of the members has to stay at home to store water in
the respective supply hours, reducing the job prospect for one
household member. Hence, to overcome the ill effects of IWS,
consumers spend extra time and money.

The quantification of service quality can be done by
monitoring the water quantity and quality received by
consumers. In addition to it, the quantification of coping cost
will lead to determining the service quality, in turn, consumer
satisfaction. Consumer satisfaction is directly proportional to the
willingness to pay toward the water bill. Further, studies (Burt
and Ray, 2014) have shown that willingness to pay is more to
reliable water supply than the continuous water supply.

Revenue
Revenue generation plays a vital role in the success of any
infrastructure project. Water is considered the basic need for the
survival of human beings. Hence, people’s general perspective
is that the water tariff should be as minimal as possible, or
water should be provided free of cost (Aggarwal et al., 2013).
However, as a significant investment is required to design,
construct, operate, and maintain a WSS, revenue generation is
of prime importance for the service providers. In India, the
coping costs and the working hours spent on satisfying the
water demand dictate the willingness to pay for water bills in
a household. As discussed in section Consumer satisfaction,
consumer satisfaction is not achieved inmost of theWSS in India,
resulting in reduced willingness to pay.

From the tariff on water supply point of view, the tariff
structure varies among different cities. The tariff policy is
finalized by the state government, making it a politically driven
decision (Aggarwal et al., 2013). In India, the average tariff rate

is below the production cost (McKenzie and Ray, 2009). For
example, the Municipal Council of Greater Mumbai (MCGM)
spends Rs. 20 (0.27 USD1) per thousand liters for treatment
of water, whereas only Rs. 5 (0.06 USD) per thousand liters is
charged to the consumers (Singh, 2021).

Furthermore, some service providers opt for flat rate tariffs
others follow telescopic rates for tariff collection. A flat rate
policy is adopted for unmetered connection, block tariff for
metered connection. The block’s price and bifurcation vary
among the cities; McKenzie and Ray (2009) have enlisted the
various tariff structure in major Indian cities. In a flat rate
policy, the tariff is based on the size of the service connection.
In contrast, the block tariff requires household water meters.
However, mechanical water meters in IWS fail to quantify the
exact water consumption, and after a while, the meters become
defective (Walter et al., 2018). Also, the Electromagnetic and
Ultrasonic water meters require high operation and maintenance
costs (Research Design Standards Organization, 2015; Li and
Chong, 2019). Additionally, the insufficient coverage, unequal
distribution, low pressure in the WDN escalate the illegal
connections, theft of water from the system. Such malpractices
increase the burden of revenue loss on the utilities and the lack of
exact quantification of water consumption.

Finally, automation is considered the most relevant solution
for increasing the efficiency of WSSs. Different automation
techniques like Programmable Logic Control (PLC), Supervisory
Control and Data Acquisition (SCADA), valve actuators, level
sensors, etc., are adopted at a different scale in India. However,
the operation and maintenance of such high-end solutions
are costly. As discussed above, the willingness to pay is
directly proportional to consumer satisfaction. Hence, generating
financial returns of the considerable investment in automation
becomes an uphill task.

Institutional capacity
In India, as per the 73rd Amendment to the constitution
supplying clean drinking water is the state’s responsibility
(Ministry of Jal Shakti Government of India, 2019). WSS’s
institutional structure in India is fragmented; different states
have a varied institutional framework (Ahmed and Araral, 2019).
Most of the states have the Urban Local Body (ULB) as the
responsible authority for managingWSS. In contrast, others have
a centralized board to manage the water supply (Government
of India, 2009). An excellent institutional system has well-
trained staff, a financially sustainable tariff structure, an improved
revenue collection system, accountability, transparency, and
public participation (McIntosh, 2003; Bakker et al., 2008). A weak
institutional framework leads to the failure of WSS (Government
of India, 2009). In most ULBs or water supply boards, technical
and managerial skills are scarce (Klingel, 2012; Mathur, 2017).
Instead of suitable capacity building at the institute level, the
planning, design, and construction of WSS are outsourced to
private vendors. Only the operation and maintenance of the
scheme are done by ULBs or water supply boards.

1Exchange rate of currency 1 INR=0.013 USD 16th March 2021.
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The central government of India allocates funds to states
for the construction of WSS. At the state level, money from
various national level schemes is used to increase the number of
tanks and pipelines; there is no cognizance of WSS expenditure.
Separate funds are also allocated for capacity building, used
for various training programs for the engineer. However, the
actual issues and appropriate solutions are rarely discussed in the
training programs.

Furthermore, the dynamics between two different institutions
also impact the operation of WSS. In Maharashtra, India, the
institutional arrangement for water supply is complex (SI-2.4).
Maharashtra Jeevan Pradhikaran (MJP), a parastatal body, is
responsible for planning, designing, and constructing WSS. Post
construction, MJP handover the scheme to respective local
bodies. ULBs are accountable for the scheme’s operation and
maintenance in urban areas; Zilha Parishad and Gram Panchayat
in the rural area are responsible for the scheme’s operation and
maintenance. The relation between different institutions defines
the fate of the WSS. Moreover, the dynamics of a civil servant
and the engineers at various institutes also impact the water
distribution (Bawa, 2011).

In addition to it, the water tariff structure fixed by the
authority is unrealistic, institutions fail to recover the operating
cost of the scheme (Golin et al., 2015). The application of
GIS for maintaining the revenue collection database is yet to
be incorporated by all the institutions. As discussed in the
earlier section, lack of proper database management escalates
the problem of cost recovery. Furthermore, the actual issues
and appropriate solutions are rarely discussed in the training
programs used for capacity building. In the wake of such a
scenario, the consultant’s unrealistic design gets approved, and
the scheme enters the vicious cycle of failure (Figure 3).

To summarize, a robust institutional capacity will improve all
aspects of WSS, including planning, design, analysis, operation,
and tariff policy. The recently launched Jal Jeevan Mission
(JJM) by the Government of India has focused on strengthening
the institutional capacity with a four tier institutional setup
at the National, State, District, and Village level. Also, strong
database management and community involvement are made
mandatory for states (Ministry of Jal Shakti Government
of India, 2019). However, the provision for appointment of
the Project Management Unit (PMU) defies the purpose. In
PMU, the institutions are free to appoint consultants for
the design and operation of WSS. As the focus will be on
outsourcing, vendors will provide high-end solutions which
are generally suitable for developed nations. The issue of the
lack of appropriate interventions to improve WSS in India will
remain unresolved.

LEARNINGS AND WAY FORWARD

In the present study, a detailed analysis of drivers for IWS
in India is presented. It is clear that the drivers for IWS are
not independent and reinforce each other. One of the crucial
aspects of IWS is how to operate the WSS considering the
field conditions. As water is supplied intermittently, household

storage is a common phenomenon in IWS. Additionally, over
withdrawal from the network is also predominant in IWS.
However, such scenarios are hardly considered during the design
and planning phase, resulting in the WSS’s failure. Bhave and
Gupta (2000) proposed hydraulic devices such as orifice plate to
restrict the over withdrawal from the WSS.

The ultimate goal of a WSS is to provide water to consumers
in adequate quantity and prescribed quality in CWS mode.
However, with the present scenario of operating theWSS, directly
converting the IWS to CWS will result in more problems, as
such approach will not tackle the drivers to IWS. This will not
effectively use the investment made for achieving CWS as the
WSS will againmove back to IWSwith such an approach of direct
transition. There should be an intermediate step of improving
the performance of existing IWS such that the vicious cycle of
failure (Figure 3) is broken. To improve the existing IWS, the
application of appropriate design and operation interventions
is required. As discussed in the present study, limited studies
proposed the alternative design and operation methodology for
IWS. Kalbar and Gokhale (2019) described few design and
operation interventions, viz. shaft, manifold, and multi-outlet
tanks, for improving the efficiency of existing IWS. Furthermore,
Ghorpade et al. (2021) reported multi-outlet tanks’ superiority
over conventional single outlet tanks in terms of hydraulic and
operational aspects.

Once the performance of IWS is improved and consumer
satisfaction is achieved, a gradual transition to CWS is possible.
Such a transition will result in sustainable CWS. To summarize,
the approach of directly converting IWS to CWS will lead
to reinforcing the vicious cycle of failure. To overcome such
situations, an intermediate step is necessary to bridge the gap
between IWS to CWS.

CONCLUSIONS

IWS is the most common operational regime of WSSs in India.
In this study, the drivers for the IWS in India were identified
based on studies on field conditions and operational hydraulics.
Initially, an SLR was conducted to understand the various aspects
of IWS and the variety of work done to improve IWS. This
was followed by a detailed study of WSS in India, including
the layout, planning, design, analysis, and actual operation. It
was found that the WSSs of India are trapped in the vicious
cycle, wherein failure of one factor initiates the decline in the
performance of another factor, and ultimately the system fails to
deliver a satisfactory water supply to the consumers. Application
of solutions for improving the performance of WSSs in India
without understanding the vicious cycle and drivers of IWS will
lead to the continuation of the vicious cycle of failure. Also,
direct conversion of WSS operating in IWS mode to CWS is
not recommended as it will not address the drivers for IWS and
WSS will again convert back to IWS. The present study will help
understand the interrelation between various drivers responsible
for the vicious cycle of IWS. Once a thorough understanding of
the various drivers is developed in the practitioners, they can
develop strategies to overcome the vicious cycle of IWS. The
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success of national level missions like JJM (Rural and Urban)
and any future programmes depend upon overcoming the vicious
cycle of IWS.
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