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Drivers of within-field spatial and 
temporal variability of crop yield 
across the US Midwest
Bernardo Maestrini & Bruno Basso  

Not all areas of a farmer’s field are equal; some always produce more relative to the rest of the 
field, others always less, while still other areas fluctuate in their production capacity from one year 
to the next, depending on the interaction between climate, soil, topography and management. 
Understanding why the yield in certain portions of a field has a high variability over time—we call these 
areas unstable—is of paramount importance both from an economic and an environmental point of 
view, as it is through the better management of these areas that we can improve yields or reduce input 
costs and environmental impact. In this research, we analyzed data from 338 fields cultivated with 
maize, soybean, wheat and cotton in the US Midwest to understand how topographic attributes and 
rain affect yield stability over time. In addition to this high resolution yield monitor dataset, we used 
publicly available data on topography, rain and soil information to test the hypothesis that within-field 
areas characterized by a low topographic wetness index (proxy for areas with probability of lower water 
content) always perform poorly (low and stable yield) compared to the rest of the field because they 
are drier, and that areas of a field characterized by a mid-high wetness index (high and stable yield) 
always perform well relative to rest of the field because they have greater water availability to plants. 
The relative performance of areas of a field with a very high wetness index (e.g. depressions) strongly 
depends on rain patterns because they may be waterlogged in wet years, yielding less than the rest of 
the field, or wetter during dry years, yielding more than the rest of the field. We present three different 
observations from this dataset to support our hypothesis. First, we show that the average topographic 
wetness index in the different stability zones is lower in low and stable yield areas, high in high and 
stable yield areas and even higher in unstable yield areas (p < 0.05). Second, we show that in dry years 
(low precipitation at plant emergence or in July), unstable zones perform relatively better compared 
to the rest of the field. Third, we show that temporal yield variability is positively correlated (p < 0.05) 
with the probability of observing gleying processes associated with waterlogging for part of the year. 
These findings shed light on mechanisms underlying temporal variability of yield and can help guide 
management solutions to increase profit and improve environmental quality.

Precision Agriculture technologies have the ability to potentially increase yield or reduce environmental impact 
and input costs through a variable-rate input application1,2. �is simply translates to what is o�en de�ned as the 
4 R strategy: the Right thing, at the Right place, at the Right time and in the Right manner. �e prescription of 
input for areas whose yield is consistently higher or lower than the �eld average is relatively simple; input appli-
cation can be proportional to the yield, or it can follow recommendation rates based on a strategic management 
where the input response is known due to previous observations (low N response to low yield areas, or high 
N response to high yield areas3,4). However, the management of areas where yield �uctuates from year to year 
necessitates a tactical approach3–5 based on in-season observations from remote sensing data, or process-based 
modeling, to determine the crop conditions before a management strategy (e.g. side-dress N application) is 
implemented.

Previous studies on the e�ects of topography on crop yield or biomass concluded that yield varies according 
to position on the landscape6,7, but they were limited to small transects or single �elds8,9 and/or a limited number 
of seasons10.
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In this study, we investigated the spatial and temporal variability of crop yield using a large dataset of 
high-resolution yield monitor data (338 �elds, with a minimum of three years of data for each �eld). Of the 338 
�elds included in the study, 118 are located in Arkansas, Kansas and Colorado, where irrigation is predominant. 
�e remaining 220 �elds are located in states where annual crops are usually rainfed (Michigan, Illinois, Iowa and 
Indiana). We split the analysis between irrigated and rainfed �elds.

�e �rst objective of this study was to compare the magnitude of spatial and temporal variability, where spatial 
variability represents variations in yield observed within a �eld in a single year and where temporal variability 
is the variation in yield observed for each �eld across the years. �is clari�es the relative contributions to yield 
�uctuations of climate variability (temporal variability), topography and/or soil variability (within-�eld spatial 
variability).

Our second objective was to use our yield monitor data to provide evidence for the hypothesis that the inter-
action between topography and weather is one of the drivers of yield variability from one growing season to the 
next. �e relationship between yield and topographic features such as elevation, curvature, cumulative �ow and 
slope has been previously explored by a multitude of smaller studies that con�rm the theory that upper portions 
of the �elds are characterized by lower yields6,11. Here we provide evidence for the interaction between weather 
and topography and hypothesize that this theory explains the mechanisms governing temporal variability of 
yield. We hypothesize that the depressional areas of a �eld have a higher temporal variability of yield because they 
are most likely to be partially waterlogged in wet years (resulting in decreased emergence rate and lower yields) 
and most likely to be wetter in dry years, when water is a limiting factor during grain �lling (resulting in higher 
yields). In fact, topography is the main driver of waterlogging in the absence of tile drains, as it controls both 
vertical and horizontal water distribution12, as in�uenced by precipitation patterns.

A similar hypothesis has been previously proposed and validated by Kravchenko and Bullok6 in a study of 
eight corn and soybean �elds located in Indiana and Illinois. Kravchenko and Bullok6 observed that areas char-
acterized by moderate curvature showed no consistent relation between yield and precipitation. However, they 
concluded that yield from concave areas was negatively correlated with May precipitation (seedling emergence) 
and positively correlated with August and September precipitation (grain �lling). Kumhálová et al.9 found in a 
four-year �eld experiment in the Czech Republic cropped with rape and cereals that the yield was more strongly 
correlated with �ow accumulation in dry years than in wet years.

Our hypothesis was designed to understand the causes of unstable zones, which we address with evidence 
from a large dataset.

To facilitate the visualization and interpretation of our observations, we divided each �eld into three stability 
classes based on the average productivity and variability across the years of the yield map pixel of the �eld. �e 
classes were low and stable; high and stable; and unstable as de�ned in previous studies4,13,14.

We provide the following observations to support our hypothesis:

 (1) Portions of �elds located in di�erent stability classes (low yield and stable; high yield and stable; unstable 
yield) have di�erent topographic wetness index means. �e stability class of each cell is based on the aver-
age and the standard deviation of observed yield across time.

 (2) �e relative yield performance of unstable zones is negatively correlated to precipitation during plant 
emergence and grain setting and �lling period (for maize vegetative stages, V6 for six leaves fully extended, 
VT for maize plant with tassel).

 (3) A positive correlation exists between yield temporal stability and the probability of observing gleying 
layers. In fact, gleying processes (redistribution of reduced iron along the pro�le) are indicators that soil is 
waterlogged, at least for part of the year15.

 (4) �e observations 1, 2 and 3 do not hold for irrigated �elds because these �elds are usually �at and, there-
fore, the topographic di�erences play a minor role, and because the irrigation provides the necessary water 
for the plants without any waterlogging.

Materials and Methods
Dataset formation. Yield dataset. We analyzed a dataset of about 600 �elds with yield maps collected 
directly from farmers in the US Midwest. We eliminated those �elds where less than three years of yield was 
available and any yield maps where the yield was recorded on less than 75% of the �eld area. �e resulting dataset 
is comprised of 338 �elds and 1625 yield maps (Table S1). Crops grown in these �elds included, in order of fre-
quency, maize (Zea mays L.), soybean (Glycine max, L.), cotton (Gossypium spp L.) and wheat (Triticum spp L.) as 
shown in Table S1. Fields located in Arkansas, Colorado and Kansas were identi�ed as irrigated, and �elds located 
in Illinois, Indian, Iowa and Michigan (Figure S1) were identi�ed as rainfed.

We obtained spatial yield data points from datasets collected by yield monitor sensors mounted on farmers’ 
combines. We transformed georeferenced dry yield data into raster data with a resolution equal to the resolution 
of the 1 arcsecond (30 m) National Elevation Dataset (NED) digital elevation model (DEM).

Points within a 20-m bu�er of the �eld border were set as missing values to remove the e�ect of the �ll and 
�nish mode error that occurs during harvest monitoring16. We also removed the points that were 0.1 times below 
the median and points that were 3 times above the median of the yield map.

For each �eld we obtained a digital elevation model from the 1 arcsecond National Elevation Dataset17. �e 
average di�erence between maximum and minimum elevation was 8 m for rainfed �elds and 2 m for irrigated 
�elds (Figure S2).

Digital elevation model. We used the DEM to calculate the topographic wetness index of each raster cell using 
the following formula18:
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where area was measured in m2, and slope in radians. We calculated slope over an area corresponding to the �eld 
boundary extended by 200 m, to ensure the measurability of the slope at the border of the �eld, whereas the con-
tributing area was calculated considering null the contributions from the area outside the �eld.

Rain data and planting dates. Twelve years of precipitation data was obtained for each �eld using the Daymet 
gridded estimates of daily weather parameters19. Because sowing dates for each �eld were unknown, we used 
USDA progress crop reports20 as a means to estimate those dates. We used USDA weekly crop reports to deter-
mine the week of the year when 50% of the land cultivated with the crop of interest had been planted. �ese values 
were used as the planting week for each state-year-crop combination. As a proxy of the amount of rain received 
for the plant to emerge, we used the cumulative rain between one week before the planting week and two weeks 
a�er the planting week. We report the planting weeks for maize and soybean in the Supplementary Materials.

Gleying. Gleying is de�ned as the processes of waterlogging in poorly drained soils. We used the Soil Survey 
Geographic Database21 to identify where gleying processes are observable. �e SSURGO dataset is spatially 
explicit and maps soil characteristics with polygons smaller than the �elds in our dataset. Fields in the rainfed 
states in our study averaged 5 polygons for every �eld, and those in irrigated states averaged 2.5 polygons per 
�eld. We used the following algorithm to extract information about the presence of gleying processes from each 
polygon:

 (1) We extracted all the map units intersecting a given �eld.
 (2) Each map unit is composed of multiple components; the components are not mapped, but an estimate of 

the (expressed as percentage of the map unit area) of the area occupied by each component is provided. 
From each map unit we extracted the most representative component using the �eld comppct.r.

 (3) For each map unit we determined whether any of the soil horizons and layers were designated with the 
su�x g that indicates strong gleying. We searched for the g su�x in the horizon name (�eld hzname). If 
strong gleying processes were present, the map unit was marked as TRUE, therefore transforming gleying 
processes into a Boolean variable.

Temporal variability and stability classes. We estimated temporal variability by calculating the standard devia-
tion across the years of the normalized yield. We normalized the yield of every �eld-year yield map by centering 
it on 0 and scaling it to a standard deviation of 1, and then for every pixel of every �eld we calculated the standard 
deviation of the normalized yield across all the years available for that �eld.

�e division of each �eld into stability zones and the attribution of a stability class to each raster cell were 
completed with the following algorithm:

 (1) We normalized the yield of each �eld-year yield map as described above.
 (2) We calculated the temporal variability map for each �eld as the standard deviation across the years for 

each cell of the raster. Similarly, we calculated the average normalized yield as the average across the years 
for each cell of the raster. Cells with at least one missing value were excluded from the computation of the 
average normalized yield and were categorized as not available.

 (3) Cells were classi�ed as unstable if their temporal variability was greater than 1 and as stable otherwise.
 (4) Stable points with an average normalized yield greater than 0 were classi�ed as high and stable. Stable 

points with an average normalized yield lower than 0 were classi�ed as low and stable.

Quantification of spatial and temporal variability. We compared spatial and temporal variability sepa-
rately for each �eld and crop. We quanti�ed spatial variability as the standard deviation of the distribution of yield 
observed in each yield map, whereas for the temporal variability we used as an estimator the standard deviation 
of the averages across the years. We tested for each crop if the di�erence between temporal and spatial variability 
di�ered signi�cantly from 0 by using the Wilcoxon signed ranked test.

Statistics that support the influence of topography on yield stability. Topographic wetness index 
and yield stability class. We checked the statistical signi�cance of the observation 1 by �tting the following linear 
mixed e�ect model to the data. �e model was �t separately to the cells in the “irrigated” and “rainfed” states:

α ε ε ε= + + +−Topographic wetness index stability class field field stability residuals

where αstability class are parameters depending on the stability class estimated in the stability map (low and stable; 
high and stable; unstable); εfield is a random e�ect whose levels are the individual �elds; ε −field stability is a random 
e�ect where the levels are all the possible combinations of �eld and stability zones; and εresiduals are the model 
residuals. We tested the differences between the three levels of the parameter αstability class, and applied the 
Bonferroni correction to the p-value since multiple comparisons were completed for this statistical analysis. 
Because we compared three stability classes (low and stable; high and stable; and unstable), we had three post-hoc 
hypotheses. �erefore, the corrected p-value to reject the null hypothesis was 0.05/3 = 0.017.
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E�ect of rain on relative yield performance depending on the stability class. We modeled the relative yield perfor-
mance of maize and soybean in rainfed states to test the statistical signi�cance of observation 2 using the follow-
ing linear mixed e�ect model:

α ε β ε= + + +− ⁎logit yield rain( ) ( )ranked stability class field stability stability class residual

where yieldranked indicates the yield percentiles obtained by each cell relative to the �eld-year yield map (e.g., 
for �eld number 234, year 2015 the pixels were transformed to percentiles so that the lowest would be 0 and the 
highest 100). Since the percentiles are bounded between 0 and 100, we divided the percentile values by 100 and 
applied the logit function to expand their domain from [0, 1] to the set of the real numbers (−∞, +∞). We back 
transformed the results using the inverse logit function. �e αstability class and βstability class are respectively intercepts 
and slopes, depending on the stability class estimated in the stability map (low and stable; high and stable; unsta-
ble);ε −field stability is a random e�ect of the slope, having as levels the combinations of �elds and stability zones; 
εresidual are the residuals of the model. We �t the model separately using as rain predictor, �rst the cumulative rain 
at emergence (see paragraph Rain data and planting dates for further details on the determination of the emer-
gence period) and then the cumulative rain in the month of July. To remove any in�uence of the response variable 
(yieldranked) on the stability class (one of the predictors) for each year, we calculated the stability map by removing 
the year. For example, if for a given �eld the years 2014, 2015, 2016, 2017 were available, the stability map for 2015 
was calculated using data for years 2014, 2016 and 2017; while for 2017, data for years 2014, 2015 and 2016 were 
used.

Our null hypothesis—that unstable and stable portions of a �eld respond equally to rain during emergence 
and growing season—is considered falsi�ed if the probability that the model parameters βstability class are equal is 
lower than 0.05.

Presence of gleying processes as determinant of yield temporal variability. We tested whether yield temporal varia-
bility may explain the presence of gleying processes using the following model, �t separately to the subset of �elds 
in irrigated states and in rainfed states:

α β ε ε= + ∗ + +gleying temporal variability county residuals

where α and β are the slope and intercept parameters; temporal variability is the average of the temporal variabil-
ity measured within each map unit polygon; εcounty is a random e�ect of the intercept whose levels are the counties 
where our �elds are located; and εresiduals are the model residuals. For this model, the single observations were the 
map units of SSURGO; for each map unit we averaged the temporal variability observed at its interior; therefore, 
the total number of observations was the number of map units intersecting our �elds.

We used R (version 3.2) extended by the packages raster22 for the operations on the spatial data and by the 
packages lme423 for the linear mixed models.

Results
We found that the temporal variability was larger than the spatial within-�eld variability for every crop in all �elds 
(Fig. 1). Statistical analysis con�rmed the statistical signi�cance of our three observations.

Using our classi�cation algorithm, approximately 50% of the �eld was categorized as high and stable; 32% as 
low and stable; and 18% as unstable (Table S2).

�e portions of rainfed �elds classi�ed as unstable by our algorithm had, on average, a higher topographic 
wetness index (12.9) when compared to both the low stable and high stable portions of the �eld (respectively, 
12.4 and 12.7, p < 0.05, Fig. 2). �is was not true for irrigated �elds, where the unstable portions of the �eld were 
associated with the lowest topographic indices (Fig. 2). We repeated this analysis using only one crop at a time to 
produce the stability maps in �elds where the same crop was grown for more than one year. In this case similar 

Figure 1. Temporal and spatial variability. Comparison of temporal and spatial variability by crop.
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trends were observed, but no signi�cant di�erence was observed between the average topographic index of the 
high and stable and the topographic index of the unstable portions of the �eld (Figure S7).

Second, the relative performance of unstable zones was negatively correlated with both the cumulative rain 
at emergence and cumulative rain in July (Fig. 3, p < 0.05), whereas the relative performance of high and stable 
zones was substantially una�ected by the amount of rain received. In addition, unstable zones were positively 
correlated with cumulative rain (Fig. 2).

Our third observation supporting the hypothesis that yield stability is topography-driven is that the probability of 
observing gleying processes increases with yield temporal variability in �elds located in rainfed states (Fig. 4, p < 0.05), 
whereas this trend was not observed for �elds in irrigated states (Fig. 4). As expected, we observed a positive corre-
lation between the topographic wetness index and the probability of observing gleying processes (Fig. 5, p < 0.05).

Discussion
Yield temporal and spatial variance. Temporal variance was generally larger than spatial variance. �is 
has important implications for �eld management and for precision agriculture. In fact, precision agriculture 
prescription maps with the application of variable rate input are o�en based solely on soil maps, neglecting inter-
actions between soil, weather and management that may result in vastly di�erent yields in di�erent years. Simply 
put, this implies that if yield variability was only driven by the spatial variability of soils, yield maps would always 
look alike, yet they seldom do when compared over the years. �e concept of a stability map with a detailed 
understanding of why some areas of the �eld always produce more than others and of areas that change over the 
years, with some years giving high yield and other years giving low yield, is extremely important and rather novel 
when presented with the type of analysis we report in this paper or in Basso et al.14 and Maestrini and Basso4. 
Understanding unstable zones is important for in-season adaptive management, better de�ned as tactical man-
agement3, to adapt to the deviation from original strategic approach (before the season management plan) as a 
result of a unique set of weather conditions. In-season observation to understand whether an unstable zone is 
behaving like a high yielding zone or like a low yielding one in a speci�c year provides the farmer with a useful 

Figure 2. Topographic wetness index of the di�erent stability zones of the �eld. �e bars are the standard error 
of the �xed e�ect term in the model explaining the topographic wetness index as a function of the stability level 
(i.e. the standard error of the parameters αstability class) and the letters indicate signi�cant di�erences between the 
averages.
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insight to decide whether or not to apply sidedress Nitrogen (N) fertilizer to that area. If the year has been favora-
ble, this kind of zone should be managed just like the high yielding zones, but if the weather did not cooperate, 
then it should be managed like the low yielding zones. For example, crop simulation modeling with a simulated 
response function of N fertilization rates is critical for determining the amount of fertilizer to be applied based on 
the condition of the crops till the time of side-dressing and on di�erent forecast scenarios for the remaining of the 
season. �is approach allows farmers to reduce risks when making decisions, and it also provides them with an 
idea of the optimal N fertilizer as tradeo� between pro�t and environmental impact.

The interaction of topography and rain determines yield at within-field scale. Our study con-
�rmed the theory that zones with topographic attributes that allow for the right water accumulation (neither 
much runo�, nor waterlogging) are associated with higher yields. �is theory has been proposed in di�erent 
formulations, using topographic index24, relative elevation25, landscape position26,27 and curvature28,29 as a proxy 
for topography. Our study provided an extensive validation of this theory and showed that this principle holds 
true in the stable portions of the �eld.

Figure 3. Yield relative performance as a function of stability class and cumulative rain. �e �gure shows the 
predictions of the relative yield the predictions have been back-transformed using the inverse logit function. 
�e colored areas indicate the 95% con�dence interval of the prediction based solely on the standard error of 
the �xed e�ects.

Figure 4. Correlation between the probability of having a gleyc horizon (data binned in deciles) and yield 
temporal variability. �e colored areas indicate the 95% con�dence interval of the prediction based solely on the 
standard error of the �xed e�ects.
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Using three independent observations derived by matching our yield dataset with three independent and 
publicly available datasets, we determined that the interaction between topography and weather is a driver of 
yield stability.

Our observations support the thesis that the relative performance of the unstable zones is good when a dry 
period occurs and poor when precipitation is excessive. To investigate the potential impact of di�erent rain pat-
terns, we created a map of the correlation between the cumulative rain in May and July using the data recorded 
by 571 weather stations in the Midwest over the last century (Figure S6). �e map showed that this correlation 
was generally low, ranging between 0 and 0.17, although some individual weather stations exhibited a higher 
positive or negative correlation (min correlation −0.56, max correlation 0.7). �e map showed no correlation in 
areas more heavily in�uenced by the Great Lakes (r coe�cient ca. 0, Michigan, Illinois, Indiana, Iowa), with slight 
increments in the states farther away from the Great Lakes. �e lack of correlation between precipitation in May 
and July shows that having both an extremely wet (or dry) emergence and �lling period is unlikely.

We can interpret the in�uence of rain patterns in the unstable zones in light of their topographic and hydro-
logical characteristics. To support the assumptions behind our hypothesis—that unstable zones are located in 
depressions and are more prone to waterlogging—we showed that unstable zones have a higher topographic wet-
ness index (Fig. 2), that a correlation exists between topography and yield temporal variability, and that the prob-
ability of observing a soil horizon subject to gleying processes is positively correlated to yield temporal variability.

Our model explained yield temporal variability as a function of �eld-scale topography and rain in rainfed 
areas. As far as irrigated areas are concerned, �elds are usually �atter; therefore di�erences in topography are 
usually less pronounced. In fact, irrigated �elds generally exhibit a higher topographic wetness index (Fig. 3) and 
a lower elevation range (Table S2).

Understanding the underlying causes of yield temporal variability has important practical consequences. For 
example, if attaining the yield potential in an unstable area is hindered by low emergence rates due to waterlog-
ging, that portion of the �eld may bene�t from tile drains. Another important implication of our �ndings is that 
areas that can bene�t more from tiling may not be those characterized by overall low yields but may instead be 
those that exhibit larger temporal variabilities in yield.

We stress here the importance of having a su�cient number of years to produce the stability maps. In fact, 
when the stability maps were produced using only one crop (Figure S7), we were not able to detect signi�cant 
di�erences between the average topographic wetness index of the high and stable and the unstable portions. �is 
could be due to a decrease in the statistical power of our analysis (fewer �elds had at least two years with the same 
crop) or a decrease in the precision of the reliability of the stability maps. In fact, a lower number of available years 
reduces the accuracy in the estimate of the average and the standard deviation of the normalized yield.

Conclusion
Using a large yield dataset and independent observations, we showed that the interaction between �eld-scale 
topography and rain patterns is an important driver of yield, across several common crops of the US Midwest. 
�is occurs because yield variation is highly a�ected by two hydrological processes: waterlogging in wet springs 
and grain �lling in the summer. Our observations rely on two assumptions: the �rst being that farmers utilized 
fertilization rates that were uniform in space and time and the second being that no tile system was in place in 

Figure 5. Probability of gleying processes as a function of the topographic wetness index. �e line shows the 
probability of having gleying processes as a function of the topographic index, the data have been binned in 17 
quantiles. �e colored areas indicate the 95% con�dence interval of the prediction based solely on the standard 
error of the �xed e�ects.
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any of the �elds. Although it is unlikely that all �elds met our assumptions, we don’t believe that our �ndings were 
signi�cantly weakened. For example, we found a correlation between topography and temporal stability even 
though some of the �elds were certainly tiled and thereby less likely to be waterlogged during emergence. �is 
only strengthens our hypothesis that waterlogging is a cause of yield instability. Because our models are mostly 
inferential, that is, they serve the purpose of supporting our hypothesis, they have limited predictive power due 
to the large ecological heterogeneity that exists within our scope of inference. But in conclusion, we showed that 
the concept of stability zones lead to a di�erent approach, compared to the original idea of precision agriculture, 
based on farming by soil. Our study introduces a novel insight, which is farming by stability zones, but it relies 
on the concept of strategic management for the stable zones and tactical management for unstable zones, using 
within-season observations (remote sensing) of the crops to determine the fate of the unstable zones and then 
adapting management to circumstances with a tactical management strategy.
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