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Drivers of woody plant encroachment over Africa
Z.S. Venter 1, M.D. Cramer1 & H.-J. Hawkins1,2

While global deforestation induced by human land use has been quantified, the drivers and

extent of simultaneous woody plant encroachment (WPE) into open areas are only regionally

known. WPE has important consequences for ecosystem functioning, global carbon balances

and human economies. Here we report, using high-resolution satellite imagery, that woody

vegetation cover over sub-Saharan Africa increased by 8% over the past three decades and

that a diversity of drivers, other than CO2, were able to explain 78% of the spatial variation in

this trend. A decline in burned area along with warmer, wetter climates drove WPE, although

this has been mitigated in areas with high population growth rates, and high and low

extremes of herbivory, specifically browsers. These results confirm global greening trends,

thereby bringing into question widely held theories about declining terrestrial carbon

balances and desert expansion. Importantly, while global drivers such as climate and CO2

may enhance the risk of WPE, managing fire and herbivory at the local scale provides tools to

mitigate continental WPE.
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C
ontinental-scale changes in woody plant cover have been
mapped for forests >5 m in height1, indicating an over-
whelming deforestation trend induced by human land

use2. A less well-known, yet equally important global trend is
gradual woody plant encroachment (WPE), occurring in non-
forest biomes3. In Africa, WPE has been identified as a concern
for rangeland management since the early 20th century, and has
the potential to reduce rangeland carrying capacities of wild and
domestic grazers through the displacement of herbaceous forage
by trees and shrubs. On the other hand, WPE may significantly
contribute to forage for wild and domestic browsers, household
fuel-wood provision, and may lead to increased carbon seques-
tration, with consequences for global carbon budgets and climate
change4. In order to manage the effects of WPE on these diverse
local and global ecosystem services, we need to understand what
is driving it.

The drivers of WPE are poorly understood compared to those
of deforestation where human-induced clearing is dominant.
Rising atmospheric CO2

5,6 and associated climatic changes,
coupled with changing fire and herbivore management regimes,
have been proposed as dominant drivers3,4,7,8. While homo-
genous global CO2 enrichment may enhance tree growth9, the
trends in WPE are spatially variable, suggesting other local- or
regional-scale drivers. For example, increases in rainfall have been
shown to correlate with WPE, while the influences of trends in
temperature are less clear10. Agriculturally induced transforma-
tion of Africa’s unique set of functional herbivore guilds11, and
the alteration of fire regimes12 may shift systems into tree-
dominated states at the local scale. However, quantifying these
drivers at continental scales has been limited by the paucity of
local-scale studies3 or continental analyses relying on low-
resolution remotely sensed data10. The lack of spatially explicit
measures of the magnitude and scale of WPE has made it difficult
to draw generalised conclusions about its causes, and to identify
the potential for the use of local drivers (i.e. fire, herbivory and
human disturbance) as management tools to mitigate the putative
effects of global (i.e. climatic) drivers on WPE.

We mapped change in woody plant cover excluding closed forest
(more than 40% cover by trees taller than 5m) at 30m resolution
for Africa over the past three decades. We considered a suite of
potential drivers to explain this change, including CO2 as a global

driver and other local- or regional-scale drivers that have received
less attention (Supplementary Fig. 1). We report that non-forest
biomes in Africa have undergone a net 8% increase in woody plant
cover over the past three decades, although the magnitude and
direction of this trend was spatially variable. During the same
period there have been significant increases in CO2, rainfall and
herbivory, and reductions in burned area. We develop a machine
learning model to elucidate these complex correlations and find that
a diversity of drivers other than atmospheric CO2 are able to
explain 78% of the spatial variation in African woody cover change.
WPE has been exacerbated by warming and wetting climates
associated with global climate change, but local changes in fire,
herbivory and direct anthropogenic disturbance (e.g. deforestation)
predominate. Altering fire and herbivory management regimes thus
has the potential to mitigate WPE.

Results and discussion
Broad-scale trends in woody plant cover. Over the past three
decades, 7.5 million km2 (55%) of non-forest biomes (see data
mask in Supplementary Fig. 2) in sub-Saharan Africa underwent
significant net gains in woody plant cover (Figs. 1, 2a, and Sup-
plementary Fig. 3). This is more than triple the 2.2 million km2

(16%) significant decrease in woody plant cover, confirming
local-scale studies indicating increases in WPE over the last
century3. Woody cover loss was prevalent in parts of the Sahel,
East Africa and much of Madagascar, but WPE dominated the
central-interior of Africa. Countries exhibiting a mean fractional
increase >30% were Cameroon, Central African Republic, South
Sudan, and Uganda (Supplementary Table 1). Almost all other
counties experienced net encroachment, with only Congo, Kenya,
Madagascar, Niger and Somalia undergoing a net decline in
woody cover. The highest rates of encroachment occurred in
areas with moderate initial woody cover (i.e. 30–60%) in 1986
(Supplementary Fig. 4). Areas with more than 75% initial cover
experienced highest rates of loss, probably due to human-induced
clearing (e.g. Supplementary Fig. 3). There was little difference
between WPE inside (13.9%) and outside of (12.5%) protected
areas. Encroachment trends were lowest in shrublands
(3.5 ± 0.4% increase) and highest in Caesalpinioid savannas
(20 ± 0.4% increase), but were pronounced across all vegetation
types (Supplementary Fig. 5), indicating that the drivers of this
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Fig. 1 Woody plant cover dynamics over sub-Saharan Africa. Satellite observations of 30 years of fractional woody plant cover (a) reveal a dominant

increasing trend (derived from the slope of the linear trend line between 1986 and 2016) (b). Histograms alongside colour scales indicate data

distributions. Grey areas were masked from the analysis and represent urban surfaces, wetland, cropland, and forest (areas >40% cover by trees >5m).

Maps were constructed in Google Earth Engine46
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change are globally available, but act regionally allowing WPE in
some areas and deforestation in others.

Drivers of woody plant cover change. The widespread trend in
WPE correlates with a significant rise in atmospheric CO2 and
rainfall (Fig. 2b, d), but also a significant increase in herbivore
densities and decline in burned area (Fig. 2c, e). To avoid drawing
conclusions about drivers of WPE from such continental-scale
correlations (Fig. 2) without acknowledging the spatial variation
in trends (i.e. some areas have increased in rainfall or woody
cover while others have decreased), we employed the established
machine learning technique of boosted regression tree (BRT)
modelling13,14 to investigate the relative importance of and
interactions between a set of >60 explanatory variables (climatic,
edaphic and disturbance) and woody cover change.

Our final model explained 78% of the deviance in spatially
explicit woody cover trends. WPE expresses a hump-shaped
response to human population growth (Fig. 3a). At high population
growth rates, WPE was inhibited, presumably due to clearing,
emphasising that deforestation trends1 are not limited to the forest
biome. Low population growth rates had a negligible effect on
curbing WPE, potentially due to a covariance with human-induced
landscape fragmentation and the subsequent reduction in fire
spread12. Local disturbances by fire and herbivory are known to
maintain open savannas in areas that could climatically support
closed-canopy forest15. Our analysis confirms that local disturbance
patterns can have continental consequences for WPE and are of
equal importance to edaphic and climatic variables in explaining the
spatial variation in woody cover change (Supplementary Figs. 6 and
7). Large reductions in burned area in Africa, consistent with the
global trend16, have driven larger WPE rates (Fig. 3e). Decreases in

fire reduces tree mortality and consequently reduces competition
from the grass layer and facilitates tree recruitment which further
reduces the grass fuel load for fires, creating a negative feedback
loop17. The bulk of the data for trends in herbivory suggest that
increasing herbivore intensity exacerbates WPE (shaded area in
Fig. 3c). Grazing herbivores, which dominate most African
rangelands18,19, reduce grass competition with woody plants and
reduce fuel loads for fires, thereby releasing woody plants from the
fire trap8,20. However, WPE might also be facilitated in areas with
large declines in herbivory (Fig. 3c). These contradictory herbivore-
induced effects on WPE are likely due to differing livestock
management contexts coupled with the widespread loss of mid-
Holocene herbivore functional guilds, such as browsers18,21.
Browsers play an important role in regulating woody plant
populations through direct mortality (e.g. elephant impact11,22–24)
or by inhibiting shrub and tree growth rates and thereby increasing
vulnerability to fire17,25. Indeed, we found that areas with high
browser densities experienced lower encroachment rates (Supple-
mentary Fig. 8a). In contrast, grazers reduce fuel loads for fire and
thus enhance WPE17; however, we found that extreme grazer
densities may inhibit WPE (Supplementary Fig. 8b). One possible
way that high grazer densities may reduce WPE is through
consumption and trampling of coppicing and young woody plants.

Areas experiencing increases in rainfall underwent greater WPE
than those where rainfall has decreased (Fig. 3d), confirming rainfall
as a potent determinant of tree cover26,27. Although rises in
temperature have been shown to enhance WPE at local scales
through declines in frost-induced tree mortality, the regional-scale
interaction between changes in temperature and woody cover are
less well understood for Africa8. Here we show that changes in
WPE with rising temperatures mirrored the effect of increases in
rainfall (Fig. 3b), suggesting that WPE may be set to continue under
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Fig. 2 Time-series data for woody cover and select environmental covariates averaged over Africa. Solid lines represent the mean values and linear trend

lines are indicated with dashes. Using 0.5° grid cells as replicates (n= 6255), 95% confidence interval ribbons have been included in a, c and e. The slope

of the trend line and p-value of the linear regression are displayed for each plot. Herbivore density and burned area have been hind- and forecast using

methods outlined in the supplement. Solid lines for rainfall (d) and temperature (f) indicate inter-annual trends once seasonality has been removed,

whereas this is not the case for CO2 (b). Inflection points for lines in a and c are plotted at the median timepoint for each epoch
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global warming scenarios. The detrimental effects of increased
transpiration and drought stress under warmer temperatures may
be mitigated by wetter climates and enhanced water use efficiency
induced by rising atmospheric CO2

7,28. Experimental evidence also
exists for increased seedling establishment under warmer climates
for some savanna woody species29.

Apart from the interactive effect with temperature and water use
efficiency, rising atmospheric CO2 levels might contribute to
continental WPE through enhanced C3 woody plant photosynthetic
rates and post-fire resprouting capabilities, relative to C4

grasses30,31. The lack of spatial variability in atmospheric CO2

trends precluded it from being incorporated into our model.
Notwithstanding, the changes we observe between 1986 and 2016
might reflect the legacy effects of post-industrial revolution CO2

trends, although the shape of continental trend lines suggests that
the temporal variation in WPE rate is not directly linked to that of
CO2 (Fig. 2a, b). While experimental studies have noted a positive
growth response in trees to elevated CO2

9,32, the strength of this
response relative to herbaceous plants is variable, especially when
considered in isolation from nutrient limitations and competitive
interactions present in natural systems but commonly absent in
experimental set-ups33,34. While CO2 may contribute to WPE, the
global trend in atmospheric CO2 has not led to homogenous trends
in WPE (Fig. 1b). Thus the other climatic and disturbance drivers
assessed here are important in determining the direction of
vegetation change and determining the magnitude of WPE.

Implications. The widespread continental increase in woody plants
shown here corroborates global trends of increasing leaf area index35

and vegetation greenness36 in semi-arid areas, thereby challenging
the long-held desertification narrative37. The inclusion of spatially
explicit greening trends into global carbon budgets have previously
relied on low resolution (>250m) estimates of net primary pro-
ductivity in semi-arid areas38. The present dataset of decadal woody
cover change might aid in more accurately quantifying the extent to
which WPE contributes to the global carbon sink, potentially off-
setting the carbon losses from deforestation. Despite the potential
benefits to the global carbon budget, the local-scale disadvantages
(e.g. reduced grazing capacity) and their effects on rural livelihoods
has motivated substantial governmental investment into clearing
alien and native invasive woody plants (e.g. ca.100 million US$ per
annum in South Africa)39. Initial indications from our models
suggest that WPE management interventions will be most needed in
areas that are expected to increase in temperature and rainfall under
future climate change scenarios. More importantly, manipulating
local disturbance patterns has the potential to override climatic
effects and significantly mitigate WPE. Management interventions
may include increasing fire using heterogenous management
regimes40, or through rewilding savannas with historical herbivory
pressures11,21, and diversifying herbivore functional guilds by
incorporating more browsers18. Thus, while global drivers such as
climate and CO2 may enhance the risk of WPE, the realisation of
WPE is largely dependent on management decisions.
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Methods
Fractional woody cover prediction. The study area included sub-Saharan Africa,
totalling 20.5M km2, equivalent to 22.8 billion Landsat pixels. Woody plant cover was
defined as fractional woody cover of 30 × 30m squares, defined by the Landsat pixel
grid. The dynamics of tree cover change have been comprehensively explored using
remote sensing techniques for forest biomes1. Given that the potential for WPE to
occur in areas already saturated with tree cover is negligible and that our aim was to
investigate WPE and its drivers, we excluded the forest biome from our analysis.
Pixels with >40% cover by trees of >5m in height were considered as closed forest41,42

and excluded using data from the Global Land Cover Facility43. Tree cover may be
unable to fully distinguish forests from densely wooded savannas44; however, these
ecotonal boundary areas are relatively small compared to the total area occupied by
true non-forest biomes. Thus, the erroneous masking of densely wooded savannas
was expected to have little effect on the continent-wide analysis. Forestry areas were
defined as pixels that have both lost and gained woody cover between 2000 and 2015
using global forest cover change data derived from Hansen et al. 20131 and were
excluded from our analysis. Urban surfaces, water, wetland, cropland, and natural-
cropland mosaics were also excluded from the analysis using the MODIS landcover
product45. This combined pixel mask (Supplementary Fig. 2) was applied to all
Landsat- and MODIS-derived data in this analysis.

The remote sensing analysis was performed using the Google Earth Engine
cloud computing platform for earth observation and data analysis46. The near-
complete set of Landsat surface reflectance data available for Africa (1986–2016)
from the USGS Earth Resources Observation and Science archive47 were analysed
to identify change in fractional woody cover. We analysed 6 epochs of Landsat data
between 1986 and 2016 (Supplementary Fig. 1). Landsat 5 Thematic Mapper (TM)
was used for the 1986–1991, 1991–1996 and 1996–2001 epochs. Landsat 7
Enhanced Thematic Mapper Plus (ETM+) was used for the 2001–2006, 2006–2011
and 2011–2016 epochs. Data gaps in the 2011–2016 epoch were filled by merging
the Landsat 7 ETM+collection with the Landsat 8 Operational Land Imager (OLI)
collection using published cross-calibration coefficients for surface reflectance48. A
cloud mask and confidence quality assessment data were used to create cloud-free
image collections, which were used to derive per-pixel time-series spectral metrics
for each epoch. Temporal reflectance data were derived from visible, near infrared,
and shortwave infrared bands, as well as three vegetation indices, namely
normalised difference vegetation index49, soil-adjusted vegetation index50, and
enhanced vegetation index51. Vegetation indices have been used extensively in
vegetation cover mapping and landcover classification52. Time-series metrics
derived from these included the minimum, maximum and selected percentile
values (10, 25, 50, 75 and 90% percentiles) and the mean reflectance values for
observations between selected percentiles (10–25%, 25–50%, 50–75%, 75–90% and
25–75%). Similar time-series metrics have been successfully used in forest cover
mapping using Landsat data1,53,54. To further assist in differentiating between
woody and herbaceous cover, which have different phenological metrics55, we
derived the variance and range in vegetation indices over time for each epoch.

Time-series metric data were used to train a Random Forest (RF) regression
model to predict fractional woody plant cover for each 5-year epoch
(Supplementary Fig. 1). RF is a supervised classification and prediction tool has
that has been extensively used because it avoids overfitting and can incorporate
non-parametric data56. Training data were derived from image interpretation
methods using very high spatial resolution images derived from Google Earth. We
generated 4000 randomly scattered 30 × 30 m sampling quadrats, aligning with the
Landsat pixel grid, within the unmasked areas for the given Landsat epoch
collection. We manually classified the fractional woody plant cover of each
sampling quadrat by identifying woody plant canopies using texture, colour and
canopy shadows as identification cues (Supplementary Fig. 9). We estimated the
woody plant cover to the closest percentile class (0, 0.25, 0.5, 0.75, 1). Sampling
quadrats were excluded if the image acquisition date fell outside of the epoch date
range or if there was any uncertainty in designating a fractional woody plant cover
value. A separate RF classifier was trained for Landsat 5 TM, Landsat 7 ETM+, and
gap-filled Landsat 7 ETM+ with Landsat 8 OLI collections. RF accuracy
assessment traditionally employs internal cross-validation between in-bag samples
used to train the trees, and out-of-bag samples used for model validation57.
However, recent literature suggests internal cross-validation may over-estimate
model accuracy, and suggest validation against an testing dataset independent from
that used in model construction56,58. Our RF regression models produced high
accuracies when using both internal and independent hold-out datasets for
validation (Supplementary Table 2).

The RF models were used to predict fractional woody plant cover across Africa
at 30 m resolution for each epoch. Pixel-level change was defined by the slope of
the linear regression between fractional woody cover and year. This is the same
metric of change employed by other remote sensing analyses of forest cover
change1. Although the response variable in the linear regression was bounded (i.e.
proportional woody cover), the model assumptions were checked and satisfied,
thus data were not transformed prior to fitting the model. Nevertheless, the analysis
of drivers of woody cover change was performed on both untransformed and logit-
transformed woody cover data, and both yielded similar results. Estimates of data
quality were calculated for each pixel based on the number of available Landsat
timepoints for the linear regression, and the total number of pixels used to derive
time-series metrics (Supplementary Fig. 10).

Environmental covariates. To explain the change in fractional woody cover we
obtained a broad set of climatic, edaphic, biotic, and demographic explanatory
variables (Supplementary Figs. 6 and 7). All variables were sourced and analysed
within the Google Earth Engine platform, except for herbivore density, protected
area status and soils data, which were obtained from sources documented below
and analysed within R59 and QGIS60.

High temporal resolution climatic data were obtained from the Global Land Data
Assimilation System (GLDAS) produced by NASA at 0.25° every 3 h between 1986
and 201661. Variables included were surface temperature, air temperature, rainfall,
potential evaporation rate, soil moisture and wind speed. Additional rainfall data were
obtained from the Tropical Rainfall Measuring Mission62 and Climate Hazards
Group (CHIRPS)63 for comparison with GLDAS. Annual counts of extreme rainfall
events, defined as any 5-day rainfall amount that exceeded the 95th percentile of all
measurements for that gird cell64, were calculated. Rainfall variability was calculated
as the standard deviation across both yearly and 5-hourly time series. The extent to
which rainfall is evenly distributed though the year was calculated as the precipitation
concentration index65 using data from the CHIRPS dataset. For each variable, we
calculated the long-term average and the slope of the linear trend over time.
WorldClim rainfall and temperature min, max, mean values for the driest, wettest,
warmest and coldest quarters, and seasonality were also included66.

Mid-troposphere daily CO2 concentration data at 2 × 2.5° resolution were
obtained from Atmospheric Infrared Sounder between 2010 and 201767. The means
and trends were calculated per grid cell, but after consideration were not included in
the modelling procedure for the following reasons: the data were collected at lower
spatial resolution than all other explanatory variables; they were collected for the
mid-troposphere and thus the relevance to ambient ground-level CO2 was
questionable; and, unlike other bio-climatic variables, the range in the means (2
ppm) and temporal trends in CO2 (0.35 ppm yr−1) concentrations were very small
(Supplementary Fig. 11) in comparison to the CO2 enrichment values necessary
(>160 ppm) to induce significant changes in woody plant growth34. An attempt was
also made to include the long-term CO2 trend in the model, however, because this is
spatially homogenous it had very low explanatory power and was thus excluded.

Edaphic data were derived from the ‘SoilsGrid 1 km’ global dataset68. These
included depth to bedrock (R horizon); bulk density (kg m3); cation exchange
capacity (cmol kg−1); clay and sand content (% gravimetric); soil organic carbon
content (g kg−1) and pH (in H2O). The data for six soil depths were aggregated by
depth-weighted averaging (i.e. averaged by weighting values for each depth-
interval). Digital elevation at 30 m resolution from the Shuttle Radar Topography
Mission69 was used to calculate a terrain ruggedness index70, which measures the
sum change in elevation between a pixel and its eight neighbouring pixels.

Herbivory data were supplied by Archibald and Hempson71 at quarter degree
resolution. These included modelled grazer, browser, mixed feeder and total
herbivore densities using the FOA livestock data19 and indigenous wildlife census
data from reserves across Africa. To obtain a change layer for herbivore density, we
constructed a BRT model (see methods in following section) to hind- and fore-cast
herbivore densities. The FAO reference year used in the dataset was 2005, thus the
2001–2006 epoch was used as the starting point for hind- and fore-casting. The
model was able to explain 72% of the total deviance in herbivore density.
Explanatory variables included population density, normalised difference
vegetation index, longitude, latitude, temperature, and rainfall which contributed
25, 24, 22, 21, 5, and 3% to the explanatory power of the model, respectively. The
slope of the linear trend in modelled herbivore density was calculated for each 0.5°
square. Despite the uncertainty in deriving herbivory trends, we found that its
removal/addition in woody cover change models did not unduly influence model
explanatory power. Removing change in herbivory from the model presented in
Fig. 3 reduced the explanatory power by only 4%.

Fire data from the MODIS (MCD45A1.051) burned area monthly product at
500 m resolution72 were used to derive the annual average and annual trend in
mean annual burned area, fire frequency, and burn date per 0.5 × 0.5° square
between 2000 and 2017. Due to technical problems on the MODIS satellite
experienced during 200173, we decided to exclude burned area for 2001 in our
analysis. To derive trends in fire data that are representative of the study period
(1986–2016), we followed the same approach as with herbivory and hind-cast fire
data using a BRT model. The model, trained on the mean fire data between 2000
and 2017, was able to explain 70% of total deviance. For further validation, a
separate model, trained on 2006–2011 mean data, was used to predict burned area
for 2001–2006 and 2011–2016 mean data. The adjusted R2 of the linear regression
between observed and predicted burned area for 2001–2006 and 2011–2016 was
0.66 and 0.72, respectively, thus corroborating the predictive capability of the
model used for hindcasting. Explanatory variables included in the model were
latitude, normalised difference vegetation index, population density, longitude,
rainfall, and temperature, which contributed 24, 22, 17, 15, 14, and 8% to the
explanatory power of the model, respectively. The equivalent analyses were
conducted on fire intensity data from the Fire Information for Resource
Management System dataset74. All fires that fell within the data mask
(Supplementary Fig. 1) used in the woody plant cover analysis were excluded.

We determined the proportion of each 0.5° square covered by protected areas
using data from Protected Planet (www.wdpa.org)75. Quarter degree squares were
classified into vegetation type76, ecoregion and biome77 based on the centroid of
each grid cell. The average and trend in African population density between 2000
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and 2015 at 1 km resolution was obtained from the Gridded Population of the
World, Version 4 (GPWv4) dataset78.

BRT modelling. To assess the interactions between explanatory variables and
fractional woody cover change, we used BRTs (Supplementary Fig. 1) which have
been used extensively in ecological studies to analyse complex systems, including
drivers of woody plant cover26. BRTs are an advanced form of machine learning
that iteratively fit and combine multiple regression tree models to improve pre-
dictive performance13. An advantage of BRTs is their ability to ingest explanatory
variables of multiple classes to model complex interactions with a given response
without making assumptions about variable interactions, as is often the case with
other forms of linear and non-linear modelling13. All BRTs were fitted in R59, using
the ‘dismo’ library following the procedure outlined by Elith et al.13.

Variables used in the modelling exercise were aggregated up to a common
spatial resolution of 0.5°. Raw data with a resolution >500 m were resampled to 0.5°
using bilinear resampling, and those with a resolution ≤500 m were reduced to the
mean value per 0.5° grid cell. Data points were assigned a quality weighting based
on the 30 m per-pixel quality layers (Supplementary Fig. 10) and the number of
unmasked pixels per 0.5° cell. This was used as a weighting variable by assigning it
to the “site.weights” call in the BRT model to prevent low quality data with small
samples sizes from having an undue influence on the model fitting and prediction.
Data with a quality score less than the 0.25 percentile value were excluded from the
BRT analysis.

Combined and separate models were fitted with explanatory variables termed
“drivers” and “facilitators” of woody cover change. We distinguished between
explanatory variables with a temporal component (e.g. slope of linear trend in
precipitation) and called these drivers, and those without a temporal component
(e.g. average precipitation) and called these facilitators of WPE. Prior to fitting the
models, we identified a limited set of strongly collinear variable groups with an
r>0.779 (Supplementary Fig. 12) and removed variables within these groups that
were deemed less likely to be influential for woody cover change. Nevertheless, the
excluded collinear variables were kept in mind during the analysis of model results.
Further, no trend variables were collinear, making interpretation of the model with
drivers of woody cover change (i.e. Fig. 3) simpler. Following parameter
optimisation, we used family=Gaussian, tree complexity= 5, learning rate= 0.01,
bag fraction= 0.5 and cross-fold validation= 10 as model parameters. The initial
BRT models were simplified using procedures described by Elith et al.13, and only
the variables with the highest explanatory power were included and analysed for
interactions with change in fractional woody cover. To ensure that the BRT results
were not a product of chance, we randomly assigned woody cover change values for
all 0.5° grid cells and re-ran the model. The model failed to resolve, thus confirming
the initial results were not a product of chance. The relative importance of
predictors was determined based on the number of times it was selected for
splitting, weighted by the squared improvements to the model, averaged over all
trees80. Our final models for the simplified set of 31 combined, 25 facilitator
(Supplementary Fig. 6) and 12 driver (Supplementary Fig. 7) explanatory variables
explained 78%, 75% and 51% of the total deviance in woody cover change,
respectively. Further to this, we reduced the trend model to include only drivers
that are most often inferred in woody encroachment literature (i.e. fire, herbivory,
population density, rainfall and temperature trends). This final model included five
predictors and explained 34% of the total deviance in woody cover change.

Data availability. Data that support the findings of this study are available from
the corresponding author upon request. The woody cover change raster is available
at full resolution online via Google Earth Engine upon request.
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