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Abstract:  

Rear-end collisions have been estimated to account for 20 to 30 percent of all crashes, and 

about 10 percent of all fatal crashes. A thorough investigation of drivers’ collision avoidance 

behaviors when exposed to rear end collision risks is needed to help guide the development of 

effective countermeasures. Urgency or criticality of the situation affects drivers’ collision 
behavior, but has not been systematically investigated. A high fidelity driving simulator was 

used to examine the effects of differing levels of situational urgency on drivers’ collision 
avoidance behaviors. Drivers’ braking and steering decisions, perception response times, 

throttle release response times, throttle to brake transition times, brake delays, maximum brake 

pedal pressures and peak decelerations were recorded under lead vehicle decelerations of 0.3 

g, 0.5 g, and 0.75 g and under headways of 1.5 s and 2.5 s. Results showed 1) as situational 

urgency increased, drivers released the accelerator and braked to maximum more quickly; 2) 

the transition time between initial throttle release and brake initiation was not affected by 

situational urgency; 3) at low situational urgency, multi-stage braking behavior led to longer 

delays from brake initiation to full braking. These findings show that effects of situational 

urgency on drivers’ response times, braking delays, and braking intensity should be considered 
when developing forward collision warnings systems. 
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1. Introduction 

In the US, rear-end collisions account for approximately 32% of all crashes and 6% of 

fatal crashes (Traffic Safety Facts, 2013), in Japan, about 35% of all crashes (Watanabe and Ito, 

2007), and in Germany about 22% of all crashes (German Federal Statistical Office, 2009). In 

Shanghai, China, Wang et al. (2011) reported that rear-end crashes accounted for about 20% of 

all crashes, but 49% of elevated expressway crashes and 67% of tunnel crashes. 

Rear-end collisions are usually attributed to 1) insufficient headway, 2) late brake response, 

and 3) insufficient brake force (Winsum and Heino, 1996). A thorough investigation of how 

drivers respond and brake in collision imminent situations is needed to improve FCW systems.  

Perception Response Time (PRT), a component of collision avoidance behaviors, is 

defined as the time required to perceive, interpret, decide, and initiate a response to some 

stimulus, e.g., sudden brake of the lead vehicle (LV) (Sohn and Stepleman, 1998). PRT is an 

important component of Forward Collision Warning (FCW) timing algorithms (Kiefer et al., 

1999) and is essential for accident reconstruction analyses (Ising et al., 2012). Previous 

research has reported PRTs from 0.5 to 10 sec for various tasks (Muttart, 2005). This large 

range is attributable to the dependence of PRT on a myriad of factors including expectation, 

age, gender, and cognitive load (Green, 2000). 

One key variable affecting PRTs is urgency or criticality of the situation (Summala, 2000). 

Situational urgency has been measured using two types of indicators. One type characterizes 

situational urgency by the initial state of the scenario, e.g., the following distance, headway, 

and Time to Collision (TTC) at LV brake onset. Another type characterizes situational urgency 

by the rate of LV deceleration. 

Using the initial state urgency indicator, Liebermann et al. (1995) and Schweitzer et al. 

(1995) tested effects of both speed and following distance on PRT. Neither study found an 

effect of speed, however both studies found shorter following distances (6 m vs. 12 m) 

produced faster responses. Summala et al. (1998) tested drivers’ PRTs under 4 different initial 

distance and speed combinations (15 m, 30 km/h; 30 m, 30 km/h; 30 m, 60 km/h; 60 m, 60 

km/h). They also found no speed effect. PRT increased with increases in following distance. 

Aust et al. (2013) reported that PRT was overall significantly longer in the long initial headway 

(at LV brake onset) condition. Based on a meta-analysis of several experimental studies, 

Engström (2010) found that PRT was almost linearly correlated with initial headway, that is, 

the shorter the initial headway, the faster the response. Using the rate of LV deceleration 

urgency indicator, Hulst (1999) tested the effect of LV deceleration rate on PRT, and found the 

PRT for fast decelerations (2 m/s2) was shorter than for slow decelerations (1 m/s2). 

To date, few studies, e.g., Lee et al. (2002), manipulated situational urgency using both the 

initial state and deceleration rate urgency indicators. Considering that urgency as defined by an 

initial state is operationally different from urgency defined by deceleration rate, it is 

advantageous to consider both definitions to realize a full understanding of the effects of 

situational urgency on PRT. 

Previous studies concerning the effects of situational urgency focused on drivers’ response 
times before braking by capturing brake/perception response times or accelerator release times. 

These measures reflect what drivers do before braking, but tell us nothing about what drivers 

do with the brake after the foot gets to the pedal. However, studies on braking behaviors have 
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consistently shown that a driver-related delay was observed between initial brake application 

and full emergency braking (Ising et al., 2012; Hirose et al., 2008; Perron et al., 2001; 

Kiesewetter et al., 1999; Yoshida et al., 1998). Also, studies have shown that drivers, especially 

unskilled ones, often fail to apply sufficient force on the brake pedal in an emergency (Kassaagi 

et al., 2003; Roody, 2011). Therefore, investigating effects of situational urgency on braking 

delay and intensity is necessary to fully understand drivers’ braking behaviors. 
The objective of this study was to quantify the response times and braking behaviors 

drivers exhibit under varying levels of situational urgency. Driving simulators are ideal for 

performing these kinds of studies because of their ability to systematically vary perceived 

urgency while capturing quantitative data on relevant aspects of driver and system performance 

(Boyle and Lee, 2010). In this study, the Tongji University Driving Simulator was used to 

generate different urgency levels by varying headway and LV deceleration while capturing data 

on perception response times (PRT), throttle release response times, throttle to brake transition 

times, brake delays, maximum brake pedal pressures and peak decelerations. The relationships 

uncovered between situational urgency and drivers’ collision avoidance behavior measures can 

provide information that can be used to develop improved FCW systems. 

 

2. Methods 

2.1.Experimental Design 

2.1.1. Independent Variables 

A three-factor within-subjects design was used. The independent variables were LV 

deceleration, initial headway and exposure. Three levels of LV deceleration (0.3 g, 0.5 g, and 

0.75 g) and two levels of initial headway (1.5 sec and 2.5 sec) were combined to produce rear-

end scenarios with different urgency levels. The order of presentation was counterbalanced 

across drivers using a pseudo-randomization procedure described by Curry et al. (2005). This 

procedure resulted in 2×3=6 trials experienced by each participant. The exposure referred to 

the presentation order of the trial within a subject, and had 6 levels, and aimed to test whether 

drivers behaved differently across the 6 trials. A description of the independent variables is 

presented in TABLE 1. 

Effects of driver age, gender, and driving experience were considered, but were not reported 

in this research. All the decelerations mentioned in this article refer to absolute values of 

deceleration rates and therefore no minus signs were added. 

TABLE 1 Description of Independent Variables 

Independent Variables Conditions 

Initial headway (within) 1.5 sec; 2.5 sec 

LV deceleration (within) 0.3 g; 0.5 g; 0.75 g 

Exposure (within) 1st trial; 2nd trial; 3rd trial; 4th trial; 5th trial; 6th trial 

2.1.2. Dependent Variables 

Ten dependent variables were used to measure drivers’collision avoidance behaviors. Each 

is defined below: 
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1) Number of Rear-end Collisions: A collision was defined as the SV striking the rear or side 

of the LV. Each recorded collision was verified by a second researcher. 

 

2) Perception Response Time (PRT): Time between LV brake onset and SV brake/steering 

onset. If both braking and steering maneuvers were observed during the conflict interval, 

then the PRT was calculated with reference to the first avoidance maneuver. 

 

3) Time to Initial Throttle Release (TInit): Time between LV brake onset and the moment when 

the SV started to release the throttle pedal. 

 

4) Time to Final Throttle Release (TFinal): Time between the initiation and complete release of 

the SV throttle pedal. 

 

5) Time to Initiate Braking (Tbrake): Time between complete release of the SV throttle and 

initiation of pressure on the SV brake pedal. 

 

6) Time to 25% Brake (T25%Brake): Time between initiation of pressure on the SV brake pedal 

and the moment when the SV brake pedal pressure reached 25% of the maximum force  

that can be placed on the brake pedal (25 daN), if applicable. 

 

7) Time to 50% Brake (T50%Brake): Time between initiation of pressure on the SV brake pedal 

and the moment when the brake pedal pressure reached 50% of the maximum brake pedal 

force limit (25 daN) if applicable. 

 

8) Time to Maximum Brake (TMaxBrake): Time between initiation of pressure on the SV brake 

pedal and the moment the SV brake pedal force reached the maximum value observed during 

the braking event. 

 

9) Maximum Brake Pedal Pressure (Brakemax): The maximum value of brake pedal pressure 

observed during the braking event, which is less than or equal to 25 daN. 

 

10) Peak Deceleration (Decpeak): The maximum absolute value of SV deceleration rate 

observed during the braking event. 

2.2.Sequential Timing of Events and Measurements 

Fig. 1 shows the sequence of timed events and example curves for vehicle speed, 

acceleration, throttle, steering wheel angle, and braking pedal pressure as they change during 

a collision avoidance episode. 
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Fig. 1 A Typical collision avoidance event sequence 

  

Based on the key time moment in Fig. 1, the measures quantifying drivers’ response times 

and braking behaviors are shown in Fig. 2. 

PRT

TInit TFinal Tbrake T25%Brake

T50%Brake

TMaxBrake

LV Brake
Onset

SV Initial

Throttle Released

SV Final

Throttle Released

SV Brake
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SV Brake
to 25%

SV Brake
to 50%

SV Brake
to Max

Pr e- br ake r eact i on sequence Post - br ake r eact i on sequence

Fig. 2 Measures quantifying drivers’ behavior during a rear-end collision avoidance event 

2.3.Participants 

Six females and 23 males, (ages 23–54, M = 33.2, SD = 8.3), who possessed valid driver’s 

licenses and had at least one year and 10,000 kilometers of driving experience recruited from 

the population of drivers in Shanghai served as participants. One participant showed symptoms 

of simulator sickness and was replaced. Concerning the male female disparity in China—
female drivers accounted for 23.48% of all drivers in 2014, and so our male female ratio was 
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in line with that. Drivers older than 54 were avoided because the average retirement age was 

55 in China when the experiment was conducted, and most retirees drive infrequently after they 

stop working. 

2.4.Apparatus 

Fig. 3 shows the Tongji University driving simulator used in this study. This simulator, 

currently the most advanced in China, incorporates a fully instrumented Renault Megane III 

vehicle cab in a dome mounted on an 8 degree-of-freedom motion system with an X-Y range 

of 20 × 5 meters. An immersive 5 projector system provides a front image view of 250° × 40° 

at 1000 × 1050 resolution refreshed at 60 Hz. LCD monitors provide rear views at the central 

and side mirror positions. SCANeRTM studio software (OKTAL) presented the simulated 

roadway and controlled a force feedback system that acquired data from the steering wheel, 

pedals and gear shift lever. The transmission of the Renault Megane III vehicle was automatic, 

and the braking system was a non-ABS. The overall performance of this driving simulator was 

validated using three tests: simulator sickness, stop distance, and traffic sign size. Test results 

showed that the driving simulator satisfied the three criteria (i.e. at least 75% of participants 

show no simulator sickness, stop the car within 2 meters of a designated stop line and judge 

the realism of the traffic sign size) for validation. 

 
Fig. 3 Tongji University driving simulator 
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2.5.Procedure 

2.5.1. Orientation Phase 

On arriving at the driving simulator facility, participants were given general information 

about the research and asked to read an informed-consent document. They then completed a 

questionnaire covering demographics, driving history, and simulator sickness. Following this, 

they were briefed on the operation of the simulator vehicle, and told they would perform a 

normal vehicle-following task in the simulator vehicle.  

Participants were next given a few minutes to gain familiarity with the simulator and 

instructed to pay particular attention to the feel of the steering wheel, accelerator pedal, and 

brake pedal. Next they were given a 7-minute practice drive during which they experienced a 

following exercise and a braking exercise. For the following exercise, drivers were asked to 

maintain a distance of between 60 m and 80 m behind a white LV on a straight road while the 

actual distance between their vehicles and the LV was displayed on a forward screen. The 

braking exercise came immediately after the following exercise. Participants were asked to 

accelerate to 100 km/h and then to stop the car behind a stationary truck. Each subject 

performed this action twice. After the practice drive, participants were given a 5-minute break. 

If they showed no signs of simulator sickness, they continued with the actual test phase. 

2.5.2. Test Phase 

Participants resumed driving on the inner lane of a two-lane freeway under good weather 

daytime conditions with light traffic (see Fig. 4-b), and were asked to accelerate to the target 

speed (120 km/h) at the beginning of the scenario. To minimize distractions, traffic was not 

present in the same direction of the SV, although for realism, light traffic was presented in the 

opposite direction. After about 2 minutes, a white lead vehicle (LV) moved in front of the SV. 

The LV was programmed to operate at a constant speed of 120 km/h, and participants were 

again asked to follow the lead vehicle at distance of 60 m to 80 m. The LV was programmed 

to make 6 unpredicted full stops with brake lights on, at prearranged initial headway settings 

of 1.5 sec and 2.5 sec, and at varying intervals. To reduce the predictability of LV stops, there 

were two cases during the test phase where LV slowed down but with small deceleration rates 

of 0.02 g to 0.1 g. When the LV was triggered to stop, if the control program determined the 

SV was not within the specified headway range, a “Speed Up” message was displayed on the 

screen until the SV reached the targeted headway. To prevent drivers from anticipating collision 

situations in association with “Speed Up” messages, instances were included in the experiment 
in which the “Speed Up” message was displayed but without a subsequent sudden LV brake. A 

minimum period of 5 seconds was then introduced during which it was confirmed that the 

participants were following the LV steadily. Once confirmed, the LV would come to a stop at 

the programmed deceleration rate. It should be noted that all the programmed events occurred 

on flat straight roads, thus eliminating the effects of horizontal curves and longitudinal slopes 

on drivers’ braking and steering. Test phases were completed after 6 full stops were made, and 

required about 30 minutes. A post-simulation survey of participants conducted showed that 

more than 60% of drivers said the vehicle dynamics, motion systems, and visual and audio 
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systems of the driving simulator had a high level of realism. 

Throughout the experiment, participants were visually monitored using four video cameras 

(see Fig. 4-a). 

 

Fig. 4 Video monitor displays (a) and experiment scenario (b) 

3. Results 

3.1.Data Analysis 

The overall reaction sequence and avoidance maneuver data were recorded at a frequency 

of 20 Hz using SCANeRTM Studio software. A database containing information for 173 (29×

6－1) simulated rear-end scenarios (one missing-data scenario was excluded) was created. 

Further examination of the data revealed that in 32 of the scenarios, drivers released the 

accelerator before the LV began to brake, making those trials not appropriate for pooling with 

trials when this did not occur. Therefore, 141 simulated rear-end scenarios were used in the 

analysis. 

It should be noted that a minimum 5-second period was imposed between the conditions 

required to have the LV stop and the actual LV brake onset. Drivers’ headway at LV brake onset 

thus varied around the initial requirement of 1.5 and 2.5 sec, and was categorized into three 

levels: Short (less than 1 sec) Medium (1 sec up to 1.5 sec), and Long (1.5 to 2.5 sec) for 

subsequent analysis. Analyses of Variance (ANOVA) were performed to determine whether 

drivers’ response times and braking behaviors differed significantly under these varying levels 

of situational urgency. A series of post-hoc analyses using Tukey’s (Tukey, 1949) method was 

then conducted to determine differences between drivers’ response times and braking behaviors 

under various levels of situational urgency. The statistical significance level was set at α = 0.05. 

3.2.Collision Avoidance Maneuvers and Their Effectiveness 

Drivers were free to choose their preferred collision avoidance maneuvers in the various 

rear-end collision scenarios: braking only, steering only, or both steering and braking. As shown 

in Fig. 5, of the 141 valid rear-end scenarios, 121 (85.82%) scenarios involved using a brake-

only maneuver, and 20 (14.18%) scenarios involved a brake-with-steering maneuver. No 

drivers used a steering-only maneuver. Of those scenarios with a brake-only maneuver, 29.75% 

preceded collisions, while braking-with-steering scenarios did not precede any collisions. 
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Fig. 5 Number of scenarios and proportion of all collisions of each collision avoidance maneuver 

 

Fig. 6 shows the number and percentage of observed collisions for the 121 brake-only 

scenarios under different levels of situational urgency as established by differing LV 

decelerations and initial headways. Most of the brake-only collisions (about 72%) occurred 

under LV deceleration of 0.75 g. 

 

 

Note: “S” denotes initial headway <1 s, “M” from 1 to 1.5 s and “L” from 1.5 to 2.5 s, as it is for other figures. 

Fig. 6 Observed collisions for brake-only cases (Initial headway condition/LV deceleration in g’s) 

3.3.Perception Response Time 

Fig. 7 shows mean Perception Response Time (PRT) of the drivers under different LV 

deceleration and initial headway conditions. As can be seen in the figure, drivers responded 

faster when the LV deceleration (absolute value, as it is for other decelerations mentioned in 

this paper) increased or the initial headway decreased. ANOVA revealed significant main 
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effects of initial headway (F[2,99]=26.54, p<0.0001), LV deceleration (F[2,99]=6.47, p=0.0023) 

and exposure (F[5,99]=4.81, p=0.0006) on PRT. 

 

Fig. 7 Perception response time (Initial headway condition/LV deceleration in g’s) 

 

Post-hoc analyses were done to test the significance of Least Squares Means differences 

(LSM) of PRT for each paired conditions. The post-hoc analysis of PRT is shown in TABLE 2. 

Significant differences (p-value < 0.05) are in bold. The difference of PRT for long and short 

headway conditions was quite large (0.97 sec). 

TABLE 2 Post-hoc analysis for PRT (sec) 

 Paired Condition 

L&M* L&S M&S 0.3g&0.5g 0.3g&0.75g 0.5g&0.75g 

Difference 0.5865 0.9792 0.3927 0.3146 0.5236 0.209 

P-Value <0.0001 <0.0001 0.0047 0.0219 0.006 0.4277 

* Difference of PRT for paired condition L&M denotes PRT of long initial headway condition minus that of 

medium headway condition, in the same way for other paired conditions. 

 

For the exposure factor, the Post-hoc analysis showed that drivers responded significantly 

more slowly in the first trial than in the remaining trials, with an average PRT difference of 

0.67 sec. The differences of PRT among trials 2–6 were not significant. 

3.4.Reaction Sequence 

3.4.1. Pre-brake Reaction Sequence 

As illustrated in Fig. 2, each driver’s reaction sequence was decomposed into a pre-brake 

reaction sequence and a post-brake reaction sequence. The pre-brake reaction sequences were 

reflected in Time to Initial Throttle Release (TInit), Time to Final Throttle Release (TFinal) and 

Time to Initiate Braking (Tbrake) measures. Fig. 8 shows the mean of pre-brake reaction 

sequences. TInit decreased when the initial headway decreased; TFinal decreased when LV 

deceleration increased, while Tbrake did not change systematically along with the initial 

headways or LV decelerations. 
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Fig. 8 Pre-brake reaction sequence (Initial headway condition/LV deceleration in g’s) 

 

The ANOVA revealed a significant main effect of initial headway (F[2,99]=7.95, p=0.0006) 

on TInit. Post-hoc analysis for TInit is shown in TABLE 3. However, the ANOVA revealed no 

significant main effects on TFinal and Tbrake. The average value across all observations for TFinal 

and Tbrake were 0.30 sec and 0.52 sec respectively. Fitch et al. (2010) recorded a mean Tbrake of 

0.33 sec in their test-track study where drivers encountered a barricade that inflated out of the 

road when TTC reached 2.5 sec. 

TABLE 3 Post-hoc analysis for TInit (sec) 

 

Paired Condition 

L&M L&S M&S 0.3g&0.5g 0.3g&0.75g 0.5g&0.75g 

Difference 0.2712 0.6197 0.3485 -0.02119 0.2234 0.2446 

P-Value 0.1484 0.0004 0.0386 0.9872 0.5004 0.4427 

 

3.4.2. Post-brake Reaction Sequence 

Drivers’ post-brake behaviors were examined by Time to 25% Brake (T25%Brake), Time to 

50% Brake (T50%Brake) and Time to Maximum Brake (TMaxBrake). Fig. 9 shows drivers’ post-

brake reaction sequences. As can be seen, even in the most urgent situation (S/0.75g condition), 

a 0.92 sec delay between brake initiation and full braking was observed. T25%Brake and T50%Brake 

decreased as the LV deceleration increased or the initial headway decreased. TMaxBrake 

decreased as LV deceleration increased, while it did not show systematic changes under 

different initial headways. 
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Fig. 9 Post-brake reaction sequence (Initial headway condition/LV deceleration in g’s) 

ANOVA showed that initial headway (F[2,92]=5.73, p=0.0045) and LV deceleration 

(F[2,92]=13.32, p<0.0001) both have significant main effects on T25%Brake. Post-hoc analysis for 

T25%Brake is shown in  TABLE 4. 

 

 TABLE 4 Post-hoc analysis for T25%Brake (sec)  

 

Paired Condition 

L&M L&S M&S 0.3g&0.5g 0.3g&0.75 0.5g&0.75g 

Difference 0.4937 0.526 0.03235 0.6984 0.8272 0.1288 

P-Value 0.0089 0.0102 0.9768 <0.0001 0.0007 0.8155 

 

The main effects of initial headways (F[2,62]=7.25, p=0.0015) and LV decelerations 

(F[2,62]=9.81, p=0.0002) were significant on T50%Brake. Post-hoc analysis for T50%Brake is shown 

in TABLE 5. 

TABLE 5 Post-hoc analysis for T50%Brake (sec) 

 

Paired Condition 

L&M L&S M&S 0.3g&0.5g 0.3g&0.75g 0.5g&0.75g 

Difference 1.1481 1.5924 0.4443 1.7169 1.989 0.2721 

P-Value 0.024 0.0011 0.2162 0.0002 0.0008 0.7549 

 

In addition, ANOVA showed significant main effects of LV deceleration (F[2,98]=11.30, 

p<0.0001) on TMaxBrake. Post-hoc analysis for TMaxBrake is shown in TABLE 6. The difference of 

TMaxBrake for LV deceleration of 0.3 g and 0.75 g is quite large (2.5 sec). 

 

TABLE 6 Post-hoc analysis for TMaxBrake (sec) 

 

Paired Condition 

L&M L&S M&S 0.3g&0.5g 0.3g&0.75g 0.5g&0.75g 

Difference 0.1754 0.1844 0.00902 1.413 2.5703 1.1573 

P-Value 0.9153 0.9213 0.9998 0.0031 0.0001 0.1378 
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3.5.Maximum Brake Pedal Pressure/Peak Deceleration 

Fig. 10 shows the mean of maximum brake pedal force (Brakemax) and peak deceleration 

(Decpeak). As can be seen from the figure, Brakemax and Decpeak increased as the LV deceleration 

increased. For different initial headway conditions, no obvious differences were observed. 

 

 

Fig. 10 Maximum brake pedal pressure and peak deceleration (Initial headway condition/LV 

deceleration in g’s) 

The ANOVA revealed a significant main effect of LV deceleration on Brakemax 

(F[2,98]=50.38, p<0.0001). Post-hoc analysis for Brakemax is shown in TABLE 7. The obtained 

Brakemax for L/0.5g condition was 17.64 daN, which is consistent with Fitch et al. (2010), who 

reported a mean Brakemax of 16 daN when drivers encountered a surprise barricade in a test 

track when TTC reached 2.5 sec. 

 

TABLE 7 Post-hoc analysis for Brakemax (daN) 

 

Paired Condition 

L&M L&S M&S 0.3g&0.5g 0.3g&0.75g 0.5g&0.75g 

Difference −1.7891 −1.7496 0.03951 −6.2948 −11.2154 −4.9207 

P-Value 0.1487 0.2328 0.9991 <0.0001 <0.0001 0.0004 

 

The ANOVA revealed significant main effects of both initial headway (F[2,99]=5.60, 

p=0.0050) and LV deceleration (F[2,99]=25.50, p<0.0001) on Decpeak. Post-hoc analysis for Decpeak 

is shown in TABLE 8. 

 

TABLE 8 Post-hoc analysis for Decpeak (m/s2) 
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Paired Condition 

L&M L&S M&S 0.3g&0.5g 0.3g&0.75g 0.5g&0.75g 

Difference -0.8903 -0.9881 -0.0978 -1.5216 -2.5377 -1.0161 

P-Value 0.0109 0.0107 0.943 <0.0001 <0.0001 0.038 

3.6.Summary of Results 

TABLE 9 summarizes the descriptive statistics for the dependent variables. For all the 

time-based metrics, the means are larger than the medians, indicating a right-skewed 

distribution. 

TABLE 9 Statistical summary of dependent variables 

Variable Mean Median Standard Deviation N Min Max 

PRT (sec) 1.93  1.62 0.81  141 0.96  5.56  

TInit (sec) 1.12  1.01 0.69  141 0.00  3.95  

TFinal (sec) 0.30  0.15 0.46  141 0.00  3.28  

Tbrake (sec) 0.52  0.46 0.23  140 0.25  1.82  

T25%Brake (sec) 0.57  0.25 0.87  134 0.03  5.00  

T50%Brake (sec) 1.01  0.56 1.23  103 0.05  5.71  

TMaxBrake (sec) 2.39  1.62  2.13  140 0.10  10.01  

Brakemax (daN) 17.13  17.00  6.37  140 3.90  25.00  

Decpeak (m/s2) 8.71  9.45  1.72  141 1.11  11.12  

 

TABLE 10 summarizes the main effects of initial headway and LV deceleration on drivers’ 
collision avoidance behaviors. As can be seen, the perception-response process (PRT, TInit) is 

mainly affected by initial headway, and the braking behavior is mainly affected by LV 

deceleration, while the transition process (TFinal, Tbrake) is affected by neither initial headway nor 

LV deceleration. The significant effect of exposure on PRT indicated that a learning effect was 

observed in trials 2-6. This learning effect only had an impact on drivers’ cognitive activities 

(PRT), rather than the subsequent physical activities because effects of exposure were not 

observed for other dependent variables. 

 

TABLE 10 Summary of main effects of initial headway and LV deceleration (P<0.05) 

Factor 

Variable 

PRT TInit TFinal Tbrake T25%Brake T50%Brake TMaxBrake Brakemax Decpeak 

Initial headway √ √   √ √   √ 

LV deceleration √    √ √ √ √ √ 

Exposure √         

Note: “√” denotes significant main effects of the factor on the corresponding variable were observed. 

4. Discussion 

4.1. Decision to Brake only or to Brake and Steer 

A lower crash rate was observed for scenarios when drivers reacted by both braking and 
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steering. Although a possible benefit of brake-with-steering in avoiding the collision was 

shown, only 12.15% of the 141 analyzed rear-end scenarios were observed using this maneuver. 

This is consistent with the findings reported in the literature review by Adams (1994), in which 

he found that drivers are more likely to brake than to steer in collision avoidance situations. 

According to Adams (1994), the possible reason for the low percentage of steering maneuvers 

may be that 1) drivers’ tendency to maintain their own lanes of travel, 2) their lack of 

knowledge of about alternative maneuvers and 3) the handling capability of their vehicles. 

 Fig. 11 shows the proportion of scenarios with brake-with-steering maneuver under 

different LV decelerations. As can be seen, as the LV deceleration increased, the proportion of 

scenarios with brake-with-steering maneuver also increased. Similarly, Limpert and Gamero 

(1974), using accident data, found that as speed increases, the number of drivers who attempt 

to avoid the collision by steering also increases. These two findings suggest that drivers might 

be more likely to use a steering maneuver at high risk situations. 

 

Fig. 11 Proportion of scenarios with brake-with-steering maneuver under different LV 

decelerations 

4.2.Perception Response Time 

As described by McGehee et al. (2002), drivers’ perception response time is a complex 

sequential process that begins when drivers identify a hazard, decide the likely action of the 

threatening vehicle and select an action, and ends with execution of a maneuver (steering, 

braking, or both). In this study, the obtained mean PRTs for different combinations of initial 

headway and LV deceleration ranged from 1.34 (S/0.75g condition) to 3.01 sec (L/0.3g 

condition). 

TABLE 11 presents a summary of PRTs reported by previous studies. All of the reviewed 

studies used LV deceleration as an emergency scenario except McGehee et al. (2002), who 

used stationary LV scenarios. The studies are sorted by the initial headway values. As can be 

seen, PRT is near 1 sec when the initial headway is around 1.5 sec, but PRT increases, 

sometimes dramatically, at greater headways. 
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Some may argue that as initial headway and LV deceleration varied, drivers’ reaction time 
did not change, and instead, drivers might intentionally delay braking until the distance or 

headway or TTC reached a somehow constant value. If this were the case, the distance or 

headway or TTC at SV brake onset should be constant regardless of variation in the initial 

headway or LV deceleration. To examine this possibility, analyses on the distance, headway, 

and TTC at SV brake onset were conducted. These analyses showed that initial headway had a 

significant main effect on both distance (F[2,100]=102.59, p<0.0001) and headway 

(F[2,100]=102.00, p<0.0001) at SV brake onset, and that LV deceleration had a significant main 

effect on TTC at SV brake onset (F[2,100]=36.44, p<0.0001). This shows that drivers did not 

intentionally delay braking until the distance or headway or TTC reached a constant value. 

 

 

 

TABLE 11 Summary of PRT and throttle release time in current and previous studies 

Study Headway (sec) LV deceleration (g) PRT (sec) Throttle release time (sec) 

Current study <1.0 0.75 1.34 0.61 

Jamson et al. (2008) 1~3 0.4 1.20  

Ohlhauser et al. (2011) 1.5 1.00 1.10~1.30  

Abe and Richardson (2006) 1.7 0.80 0.94~1.14 0.65~0.82 

Abe and Richardson (2004) 2.0 0.90 1.20 0.80 

Abe and Richardson (2006) 2.2 0.80 0.92~1.20 0.62~0.81 

Current study 1.5~2.5 0.75 1.94 1.00 

Lee et al. (2002)  1.7~2.5 0.40~0.55 2.69 2.04 

Lee et al. (1997) 2.7 0.85 2.98* 2.48 

Lee et al (1997) 3.2 0.85 2.70* 2.20 

McGehee et al. (2002) 3.2  2.53  

*Because PRT was analyzed in Lee et al. (1997) but not reported, PRTs of Lee et al. (1997) were estimated by 

adding an assumed 0.5 sec throttle to brake transition time to throttle release time. According to results of the Lee 

et al. (1997), throttle to brake transition time was not affected by situational urgency and had a value around 0.5 

sec. 

All of these studies were simulator studies and all of these studies used LV decelerating as an emergency scenario 

except McGehee et al. (2002), who used stationary LV scenarios. 

PRTs and throttle release times of Abe and Richardson (2004) and Jamson et al. (2008) were estimated from 

figures because no explicit values were reported. 

Throttle release time = TInit + TFinal. 

 

This study also found an effect of exposure on PRT. Specifically, drivers responded 

significantly more slowly in the first trial than in the latter trials, with an average PRT difference 

of 0.67 sec. This is consistent with the finding of Lee et al. (2002) in which the reaction time 

for throttle release decreased from 2.11 sec in the first trial to 1.67 sec in the second trial. These 

findings provide further support to the viewpoint of Green (2002) that PRT is affected by driver 

expectation. Meanwhile, this significant change (0.67 sec) in PRT after the first trial may also 
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indicate that the practice drive was not sufficient for drivers to be familiar with the simulated 

driving environment or the vehicle controls (brake pedal, accelerator pedal, etc.) of simulator 

car. 

4.3.Pre-brake Reaction Sequence 

Driver’s pre-brake reaction sequence is comprised of TInit, TFinal, and Tbrake. The obtained 

TInit, ranged from 0.62 to 1.62 sec under different initial headways. This large range can also 

be seen in TABLE 11. However, neither initial headway nor LV deceleration had a significant 

effect on TFinal or Tbrake, indicating TFinal and Tbrake are two largely fixed components of the pre-

brake reaction sequence. This supports the opinion of Young and Stanton (2007) that as drivers 

have increased amounts of time available to react to the braking of the lead vehicle, they devote 

this extra time to cognitive, rather than physical, activities. 

4.4.Post-brake Reaction Sequence 

The post-brake reaction sequence, which is comprised of T25%Brake, T50%Brake, and TMaxBrake, 

examined the delay from the driver’s initial brake application to various degrees of brake pedal 

pressure. The results showed that these delays varied significantly under different levels of 

situational urgency. The obtained mean TMaxBrake for different combinations of initial headway 

and LV deceleration ranged from 0.92 to 4.21 sec. To further examine the cause of this variation, 

profiles of brake pedal force under L/0.3g and S/0.75g conditions were mapped to a 0 to 1 

timeline and compared, as shown in Fig. 12. The solid line shows brake pedal profiles under 

low urgency condition (L/0.3g), and the dashed line show brake pedal profiles under high 

urgency condition (S/0.75g). 

 

Fig. 12 Plots of brake pedal force profiles under L/0.3g and S/0.75g conditions 
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Note: The number of scenarios under L/0.3g and S/0.75g conditions were 15 and 14 respectively, and all the 

observations were used to produce the current figure. 

Time point 0 stands for LV brake onset for each rear-end scenario, and time point 1 stands for 5 seconds after SV 

stopping onset or crash onset. 

 

As can be seen in the figure, at low levels of situational urgency (e.g., L/0.3g condition), 

drivers typically exhibit multi-stage braking behavior in response to potential rear-end 

collisions. Namely, drivers initially applied the brake moderately and then held the brake pedal 

momentarily at a moderate application level. If the driver then perceived that the threat could 

not be avoided by moderate braking, he then changed to full brake application (Every et al., 

2014). This multi-stage braking behavior caused drivers to take much longer time to reach full 

emergency braking. 

Similar multi-stage braking phenomena have been seen among truck drivers (Every et al., 

2014). According to Prynne and Martin (1995), this behavior pattern is a result of humans not 

having instinctive reactions to situations of vehicle emergency. They regarded the first stage as 

an initial reaction to the given emergency situation, and the following stages as a result of the 

driver’s decision on a course of action. 

4.5.Brake Intensity 

Unlike the time-based metrics, maximum brake pressure measures the force a subject 

exerts on the brake pedal. Together with peak deceleration, it measures the intensity of drivers’ 
braking. The obtained mean of peak deceleration ranged from 0.7 to 1g. This range is 

compatible with a previous study by Mazzae et al. (2003) that recorded a mean peak 

deceleration of 0.72 g in their test-track study. Kiefer et al. (1999), also using a test track, found 

maximum decelerations of 0.9 g when participants were instructed to brake at the last second 

in response to lead vehicle decelerations. Results showed the maximum brake pressure and 

peak deceleration depended on LV deceleration. As can be seen from Fig. 12, drivers brake 

harder at higher LV deceleration rates.  

5. Summary and Implications 

A high fidelity driving simulator was used to test drivers’ collision avoidance behaviors 

under different initial headways and different lead vehicle deceleration rates. Drivers’ braking 

and steering decisions, perception response times (PRT), throttle release response times, 

throttle to brake transition times, brake delays, maximum brake pedal pressures and peak 

decelerations were assessed. The major findings are summarized below: 

 

1) Drivers’ response times and brake behaviors varied under different levels of rear-end 

situational urgency. Generally, as situational urgency increased, drivers released the 

accelerator faster, braked to full braking more quickly, and braked harder; 

 

2) PRT was near 1 sec when the initial headway was around 1.5 sec, but PRT increased, 

sometimes dramatically, at larger headways; 
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3) Transition time between initial throttle release and brake initiation was a fixed 

component (about 0.8 sec) of the pre-brake reaction sequence, which was not affected 

by initial headway or LV deceleration rate; 

 

4) There was a at least 0.92 sec driver-related delay between brake initiation and full 

braking; 

 

5) At low situational urgency, drivers exhibited multi-stage braking behavior in response 

to potential frontal crash conflicts, which led to longer delay from brake initiation to 

full emergency braking; 

 

6) Drivers modulated their braking intensities based on how fast the two vehicles were 

closing (reflected by LV deceleration rate), and braked harder when LV deceleration 

rate increased; 

 

7) Exposure affected drivers’ PRT. Specifically, drivers averagely responded 0.67 sec 

more slowly in the first trial than in the latter trials. 

 

Driving simulators have been shown to be a reliable source of driver behavior data under 

rear-end collision scenarios (Lee et al., 2002; McGehee et al., 2002). One common issue 

concerning driving simulators has been the validity of their results. The validity of the current 

study is supported by the following: 1) the Tongji University driving simulator passed an 

overall capabilities test on several dimensions that measured validity; 2) the maximum SV 

decelerations during rear-end scenarios ranged from 0.70 g to 1 g, with the mean value of 0.89 

g, and this is consistent with previous test-track studies (0.72g) (Mazzae et al., 2003); 3) 

subjective evaluations of realism obtained from participants supported the validity of the 

driving simulator. 

 Although this study provided information on drivers’ collision avoidance behaviors under 

different levels of situational urgency, two limitations associated with the current study could 

be addressed in future research. Effects of driver age, gender, and driving experience on drivers’ 
collision avoidance behaviors were not explored, and similar to the Kiefer et al. CAMP study 

(1999), traffic was not present on the adjacent lane of the SV in the current study. Given that 

in actual driving situations, drivers need to monitor nearby vehicles, it is likely that drivers’ 
response times would be longer in real world. And also, an issue related to the experimental 

design could be handled more carefully in future studies— during the 30 minute test phase, 2 

cases were randomly introduced where LV slowed down but with small deceleration rates of 

0.02g to 0.1g. These cases can reduce the predictability of LV stops, but may also misplace the 

trust of participants for the actual LV stops. 

An FCW is an on-board electronic safety device that has the potential to warn the driver of 

the host vehicle of an impending collision with preceding traffic. These systems use a forward-

looking radar that continuously monitors traffic obstacles in front of the host vehicle and warn 
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the driver when a risk of collision is imminent (Jamson et al., 2008). The findings of this study 

have several implications for FCW development: 

1) FCW systems may benefit from considering the effects of situational urgency on 

drivers’ response times and braking intensity. The timing of a FCW alarm is 

fundamental to the functionality of the complete system. Late warnings, that allow 

insufficient time for a driver to react to an unfolding scenario, result in more collisions 

than no system at all. On the other hand, the earlier a warning occurs, the more likely 

it is to be interpreted as a false alarm, which in turn leads to a reduction in drivers’ 
future system use (Jamson et al., 2008). FCW systems apply assumptions describing 

driver response time and braking intensity to determine when an alert should be 

presented (McLaughlin, 2007). Results of this study suggest that situational urgency 

affects both drivers’ response times and their braking intensity, and these effects should 

be considered when developing FCW timing algorithms, e.g., Wang et al. (2016); 

2) It has traditionally been assumed that full braking occurs upon completion of the 

mechanical brake delay (Ising et al., 2012). The findings of this study suggest that at 

least 0.92 sec driver-related delay between brake initiation and full braking should be 

noticed; 

3) Given the observation that drivers do not always apply full braking pressure, FCW 

warnings might be followed by braking assist measures that automatically increase the 

vehicle deceleration in collision imminent situations. 
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