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Abstract

While emerging deep-learning systems have out-

classed knowledge-based approaches in many

tasks, their application to detection tasks for au-

tonomous technologies remains an open field for

scientific exploration. Broadly, there are two

major developmental bottlenecks: the unavail-

ability of comprehensively labeled datasets and

of expressive evaluation strategies. Approaches

for labeling datasets have relied on intensive

hand-engineering, and strategies for evaluating

learning systems have been unable to identify

failure-case scenarios. Human intelligence of-

fers an untapped approach for breaking through

these bottlenecks. This paper introduces Dri-

verseat, a technology for embedding crowds

around learning systems for autonomous driv-

ing. Driverseat utilizes crowd contributions for

(a) collecting complex 3D labels and (b) tagging

diverse scenarios for ready evaluation of learn-

ing systems. We demonstrate how Driverseat can

crowdstrap a convolutional neural network on

the lane-detection task. More generally, crowd-

strapping introduces a valuable paradigm for any

technology that can benefit from leveraging the

powerful combination of human and computer

intelligence.
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Figure 1. Embedding the crowd around learning systems for both

training and evaluation, we can leverage the powerful combina-

tion of human and computer intelligence.

1. Introduction

Autonomous driving is a mission critical technology of the

future. Road traffic accidents are responsible for nearly 1.3

million deaths globally each year, and are the leading cause

of death among young people aged 15-29 (World Health

Organization, 2013). In the quest to making roads accident-

free, Advanced Driver Assistance Systems (ADAS) are

making significant milestones: Adaptive Cruise Control

systems adjust vehicle speed to maintain safe distance from

vehicles ahead, and Automatic Braking systems react to

imminent collisions (Markoff & Sengupta, 2013). The next

generation of ADAS will introduce features such as Traffic

Jam Assistance, Traffic Light Detection, and Lane Change

Assist, which enable a new suite of critical safety advance-

ments (Bar Hillel et al., 2012). Detection, or perception, is

a key piece of the puzzle that the next generation of ADAS

must solve (Ng, 2014): systems must perceive road bound-

aries, lane topologies, locations of other cars, pedestrians,

signs, and miscellaneous obstacles. (Levinson et al., 2011).

Classic techniques to solve the detection problem have re-

lied on intensive hand-engineering, and have been unable
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to capture the seemingly endless array of possibilities and

conditions encountered on the road.

Deep learning systems represent an alternative approach

(Hadsell et al., 2008). Powered by large network ar-

chitectures and fueled by the emergence of comprehen-

sively labeled datasets (Ng, 2015), deep learning systems

have made significant leaps in visual object recognition

(Krizhevsky et al., 2012), speech (Hannun et al., 2014), and

language understanding tasks (Socher et al., 2013). In the

context of autonomous driving, progress for learning sys-

tems is bottlenecked by the unavailability of both compre-

hensively labeled datasets and measures to evaluate perfor-

mance robustness.

On one end of the learning pipeline, approaches to label-

ing datasets for detection tasks in autonomous driving have

focused on hand-engineering (Borkar et al., 2012) or on

synthetic generation of labels (Pomerleau, 1989). These

approaches are (a) unable to capture the diversity and com-

plexity of labels on roads (b) require months of heavy fine-

tuning, and (c) are task-specific: an automated car-labeling

system is not an effective lane-labeling system.

On the other end of the learning pipeline, approaches to

evaluating the performance of learning systems for de-

tection tasks have not been comprehensive (Geiger et al.,

2012). While metrics for general system performance are

useful, they give little insight into system performance in

adverse lighting, road, and weather conditions. In building

a production-ready system for autonomous driving, it is vi-

tal to quantify and qualify its robustness under a slew of

different road, lighting and weather scenarios.

Human intelligence offers an untapped approach for both

ends of the pipeline. Driving is a complex, yet quotidian,

task for people. With experience in the driver’s seat, people

have good intuition about road structures, car motion, lane

topologies, and tricky environments. We hypothesize that

we can integrate the experience of people to crowdstrap

learning systems for autonomous driving.

As a step towards integrating human expertise into reliable

autonomous driving, we present Driverseat, a web system

that harnesses crowd contributions to bootstrap both the

training and evaluation for learning systems. Two funda-

mental building blocks constitute Driverseat’s architecture:

1. RoadEdit leverages crowd contributions to train

learning systems. It provides an toolbox for complex

labeling tasks that are hard to automatically annotate.

2. TagEval utilizes human intelligence to evaluate learn-

ing systems. It exposes a framework to tag diverse

road scenarios, on which the performance of learning

systems can be evaluated.

The overarching contribution of the work is the idea of em-

bedding human intelligence around learning systems for

reliable autonomous driving. Beyond fueling the perfor-

mance of learning systems, Driverseat is valuable in gain-

ing intuition about the strengths and shortcomings of a

learning system. For example, an early iteration of our de-

tection system trained on data from California highways,

which run North-South, performed poorly when facing the

sun. In enabling such learnings, Driverseat guides research

direction, especially important in building the perfect-

performance systems expected for autonomous driving.

As a concrete demonstration of crowdstrapping learning

tasks for autonomous driving, we focus on the lane de-

tection task, an unfinished, yet vital, milestone for au-

tonomous systems of the future. The lane detection task

involves understanding the topology of the lanes around

the car. It has been well investigated in the simple case,

where the task is to detect the boundaries of the lane be-

ing driven in, also called the ego-lane, for a short distance

ahead (Yenikaya et al., 2013). Approaches have relied on

sophisticated modelling of road and motion (Bertozzi &

Broggi, 1998; Cheng et al., 2006; Wang et al., 2004), yet

have not been able to accurately model lane topologies in

their full complexity.

In the remainder of this paper, we (a) describe the engi-

neering and design aspects of Driverseat, (b) detail how

machine automation can be leveraged to seed the crowd-

labeling task, and (c) demonstrate Driverseat’s capability

to crowdstrap a convolutional neural network for the lane

detection task.

While the work uses the lane detection task in autonomous

driving as an example, the idea of crowdstrapping learning

systems introduces a valuable paradigm for any technolo-

gies that can benefit from leveraging the powerful combi-

nation of human and computer intelligence. Autonomous

driving is a particularly powerful application, as we con-

tribute to a future in which our lives are easier, technologies

smarter, and world safer.

2. Driverseat: Engineering and Design

Driverseat is a web system that utilizes human intelli-

gence for (a) collecting complex labels and (b) identify-

ing scenario-specific weaknesses in learning systems. The

modules for achieving those goals are called RoadEdit and

TagEval, respectively.

The significant technical contribution of Driverseat is that it

introduces a 3D web interface for crowd-interaction. Tradi-

tional labeling interfaces exploit only 2D labeling (Russell

et al., 2008; Russakovsky et al., 2014). While 2D label-

ing is well suited for many tasks, complex labeling tasks in

autonomous driving demand a more sophisticated 3D in-
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teraction interface. Some of the key shortcomings of 2D

labeling for a task such as lane-labeling are that (a) depth

information of the points is not easily visible or modifiable

(b) points further from the car are hard to label accurately,

(c) segments need to be labeled redundantly when multiple

camera images shared the same stretch of the road, (d) lanes

occluded by cars are difficult to label, and (e) piecewise-

linear segments in 2D cannot capture sharp road-curves.

Driverseat is designed to overcome the shortcomings of the

2D lane-labeling system, making labeling more expressive.

2.1. RoadEdit Labeling

While some labeling tasks involve little more than draw-

ing a bounding box around an object in an image, other

labeling tasks are more complex (Kittur et al., 2011). In

autonomous driving, the key requirement of depth infor-

mation heightens the complexity of labeling tasks. While

there are techniques for automatically estimating depth

maps (Delage et al., 2007), implementation of such tech-

niques requires a significant engineering effort. Dri-

verseat’s RoadEdit provides a simple alternative, with an

interface that empowers the crowd to take over complex

3D labeling tasks.

We demonstrate RoadEdit in the concrete context of lane-

labeling, one of the most challenging labeling tasks for au-

tonomous driving. The user goal of RoadEdit is to have

the colored lane boundaries run through white lane-paint

points in 3D map (shown in figure 2). The user also as-

signs each lane, or lane-segment, a particular type, such as

white dotted or yellow solid. Each type corresponds to a

particular lane color.

Lane-labeling in RoadEdit enables capture of a variety of

lane structures: lanes arbitrarily curve, merge with each

other, split into several paths (such as a highway exit or the

fan out of an urban arterial into turning lanes at an intersec-

tion) or end abruptly (at the threshold of an intersection).

To capture these complex lane topologies, RoadEdit pro-

vides users with a variety of operations in their toolbox.

Imprecise Lane boundaries can be dragged to “line up” on

top of the lane markings. The drag range parameter con-

trols the range of points affected by the drag, allowing for

both short-range, and medium-range corrections. In addi-

tion to corrections, the user can use the fork operation to

model splits, append to extend a lane, delete and join to

model merges and abrupt ends. The combination of these

operations can capture lane topologies of high complexity,

which are unable to be be extracted automatically.

Although the RoadEdit toolbox is lane-labeling specific,

the techniques applied generalize to complex 3D labeling

in and beyond the context of autonomous driving. For

instance, any 3D labelling system must tackle the user-

interaction challenge that arises for 3D object manipulation

on the 2D screen. For an object in 3D space, there are 6

degrees of freedom: 3 translational, and 3 rotational. Con-

trolling all 6 degrees of freedom of an object is a nontrivial

interaction task. Driverseat implements the well investi-

gated workaround of introducing constraints on the control

to limit the degrees of freedom (Fisher et al., 2011). In

the context of lane-labelling, when a lane is dragged, lane

points are restricted to move only on the ground plane, re-

stricting lane movement to two degrees of freedom. An-

other generalizable technique that RoadEdit leverages is

the embedding of gamification in the labeling task, allow-

ing people to label while enjoying themselves (Von Ahn

& Dabbish, 2004). Driverseat gamifies labelling by sim-

ulating the car’s drive on the road. The virtual car moves

through the the virtual environment, following the path of

the data-collection vehicle. By combining simulation with

labeling, we make the labeling task interactive and intu-

itive.

Another facet of RoadEdit that extends to other labelling

tasks is its crowd-programming pattern, which follows a fix

and verify strategy (Bernstein et al., 2010). The dataset is

partitioned into individual drives, where each drive consists

of approximately 10 minute-long segments called runs.

Each run is marked by a marker-annotator and verified

by a verifier-annotator. For quality control, we (a) em-

ploy Expert Review (Quinn & Bederson, 2011), in which

an annotated run is endorsed by an expert, and (b) use an

expert to train and mentor a first-time annotator. Because

Driverseat is exposed as a a web interface, trained anno-

tators can perform labeling tasks remotely, and build on

each other’s progress. While this brings scalability to la-

belling, it poses the challenge of aggregating user contribu-

tions. To overcome this, RoadEdit implements a rudimen-

tary version control system that enables undo/redo opera-

tions within and across labeling sessions.

2.2. TagEval Evaluation

Evaluation of learning systems rarely gives insight into

where systems succeed and fail. This insight would be

valuable in guiding research direction, especially in the

context of autonomous driving, for which near perfect per-

formance is critical. If systems are able to recognize partic-

ularly precarious scenarios for which the confidence of the

detections are low, the driver can be preemptively alerted.

TagEval is Driverseat’s scenario tagging interface used

to tag road-conditions (splits, merges, bridges), lighting

conditions (shadows, sun-facing), and weather conditions

(rainy, snowy) on relevant road segments. These tags can

then be used to evaluate how learning systems perform un-

der these various scenarios.

The interface for TagEval is simple: labelers use a com-
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Figure 2. The Driverseat building blocks: RoadEdit (above) provides an toolbox for complex labeling tasks that are hard to automatically

annotate, and TagEval (below) exposes a framework to tag diverse road scenarios.
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Figure 3. Driverseat leverages a symbiosis between computers

and people: machine annotations bootstrap human computation,

which in turn bootstrap machine learning systems.

bination of the virtual 3D environment and the 2D cam-

era images to tag road-segment conditions (shown in fig-

ure 2) . The tagging process involves selecting a start and

end frame, and choosing a new/existing category associated

with the tag. User access to multiple streams of informa-

tion is beneficial: while the virtual 3D environment gives

better clues about road and lane semantics, the 2D images

give information about the environmental conditions.

3. Seeding Human Computation With

Automation

Driverseat motivates the use of human computation in coor-

dination with computer intelligence to solve complex prob-

lems (Hara et al., 2014). Having described how people can

be used to label data for and evaluate learning systems, we

now describe how computer automation can be used to sup-

plement the human annotation task.

Lane-labeling is among a set of tasks that is complex for

automatic labeling and time-consuming for human label-

ing. We describe how we can bootstrap automatic labeling

to generate an initial ground-truth estimate, and ease the

manual labeling task so that annotators only have to vali-

date and make corrections to labels in complex scenarios

(D’Orazio et al., 2009).

To generate an initial ground-truth estimate, we adopt a

two-step engineering methodology. Firstly, we extract the

left and right-lane boundaries of the ego-lane. Secondly,

we extend the ego-lane estimates to multiple lanes.

For ego-lane boundary generation, we leverage information

from the 3D road-maps and from data collection drives,

during which lane changes are not performed by the driver.

Thus, the GPS trajectory of the research vehicle runs within

the ego-lane boundaries. We thus filter road points belong-

ing to the ego-lane boundaries by keeping points that are

within a lane-width distance from the GPS track. We fur-

ther discriminate the points belonging to the left boundary

from those belonging to the right boundary by using the

Figure 4. (a) The automatic labeling generates decent results for

the ego-lane, but is unable to capture complex lane topologies

such as splits. (b) The crowd-workers, seeded by automatic label-

ing, can capture these complexities.

sign of the lateral distance. After obtaining the points be-

longing to the left and right boundaries, we fit a piecewise

linear curve to each boundary.

Because ground points away from the ego-lane are sparse,

the technique for ego-lane generation does not generalize

well in the multilane case. To generate estimates for multi-

ple lanes, we make the simplifying assumption that neigh-

boring lanes follow a very similar structure to the ego-lane.

We can thus make a good initial guess of all the lane bound-

aries by shifting the auto-generated ego-lane boundaries

laterally by the lane width. While we do not capture com-

plex road topologies such as splits and merges, we obtain

a good springboard for the human annotation task (refer to

figure 4) .

4. Crowdstrapping A Convolutional Neural

Network for Lane Detection

We concretely attempt to integrate the experience of peo-

ple to crowdstrap learning systems for autonomous driving

by using Driverseat to train and evaluate a convolutional

neural network on the lane detection task.
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To acquire labelled data to train the neural network, we

(a) collect data on California highways using our sensor-

equipped research vehicle, (b) process the data to build 3D

maps of the drives and generate an initial ground truth es-

timate for the lanes using automated labelling, and finally

(c) use Driverseat’s RoadEdit interface to have human an-

notators correct and label complex lane topologies.

This labeled data serves as input to the neural network, the

architecture of which is detailed in (Huval et al., 2015). The

neural network’s task is to predict the pixel (x, y, depth) lo-

cations of the lane boundaries given an image of the road.

We create a dataset consisting of lane-labelled images by

projecting the labeled 3D data from the global (x, y, z) co-

ordinates into the camera image. The neural network is

finally trained on a large subset of this data, while the rest

of the data is used for hold-out validation.

To evaluate the performance of the neural network, we

compare lane predictions against ground-truth labels to

compute precision and recall across a range of depths. We

then use Driverseat’s TagEval framework to evaluate net-

work performance in a variety of scenarios. Annotators

tag road segments in the holdout set with interesting road,

weather and lighting scenarios. Performance of the net-

work is then evaluated specifically on images correspond-

ing those scenarios, and their results quantitatively and

qualitatively analyzed. We can hence focus on collecting

more data for the scenarios which challenge the network,

and make the system robust for the road ahead.

5. Results

We evaluate the performance of the convolutional neural

network on the lane detection task in an array of different

scenarios tagged with Driverseat’s TagEval interface, cov-

ering (a) left and right off-ramps, (b) road curves, (c) shad-

ows, and (d) pavement changes (when the road changes

texture/color).

Qualitative evaluation of network performance on these

scenarios reveal strengths and difficulties for the network

(see figure 5). On one hand, (a) off-ramps are challeng-

ing for the network, and emerging lanes are often missed,

(b) shadows and pavement-changes are modestly difficult

too, and the network becomes susceptible to misinterpret-

ing reflective patches on the road with lane markings. On

the other hand, the network is (a) robust to curves on high-

ways, and (b) is able to detect lane boundaries even in the

presence of occluding vehicles.

Quantitative evaluation gives further insight (see figure 6).

For ego-lane boundary detection, we note that (a) perfor-

mance on road-curves, though comparable with general

performance, declines rapidly with distance (b) shadows

and pavement changes are the most challenging conditions

for ego-lane detection. Graphing performances on the lanes

adjacent to the ego-lane on either side, we identify (a) off-

ramps injure detection performance on the splitting lane,

and (b) shadows maintain to be a challenging scenario.

(a) Occasional left-side off-ramps challenge network detection
of the leftmost lanes.

(b) Labels from TagEval reveal that the network is weak at
capturing lanes in scenarios with off-ramps. However, note
that on the left, the network is able to make lane detections
even in the presence of the occluding truck.

(c) Shadows continue to pose a natural challenge for lane de-
tection systems.

(d) Curves on the road, which we hypothesized would hurt the
neural network’s performance, are handled well.

Figure 5. Example of neural network outputs on a slew of differ-

ent scenarios.



Driverseat: Crowdstrapping Learning Tasks for Autonomous Driving

(a) ego-lane left boundary (b) ego-lane right boundary

(c) left-adjacent lane (d) right-adjacent lane

Figure 6. Quantitative evaluation of performance in a diverse

range of scenarios.

6. Conclusions

The work presents Driverseat, a system that embeds crowds

around, or crowdstraps, learning systems. In training

of learning systems, we demonstrate how Driverseat uses

crowd contributions to annotate labels that are hard to auto-

generate. In the evaluation of learning systems, we demon-

strate how Driverseat can leverage human intelligence to

pinpoint scenario-specific weaknesses. To further motivate

how human computation can be combined with machine

computation, we demonstrate how automation can be used

to provide initial estimates of ground-truth for the human

annotation task. We conclude by applying all these tech-

niques to the concrete task of lane detection in autonomous

driving, a salient feature for the next generation of au-

tonomous vehicles. We evaluate the performance of the

network on a variety of scenarios, some of which are han-

dled better than others.

As our learning systems continue to get better and more ad-

vanced, new challenges and opportunities arise. As we ap-

ply learning systems to increasingly complex problems, we

need to explore more sophisticated strategies for combining

human and computer intelligence. In this work, we have

shown how we can integrate people’s knowledge and expe-

rience on the roads to “teach” machines to drive, en route to

our goal of making roads accident-free. Driverseat points

to a future in which artificial intelligence works hand-in-

hand with human intelligence to solve the most complex of

problems.
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