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Résumé. 2014 Par une analyse microscopique, nous montrons que les deux définitions de la valence
efficace, l’une en termes de flux de charge associé au déplacement du défaut, l’autre en termes de
force agissant sur l’impureté, sont équivalentes.

D’autre part, en utilisant la thermodynamique des processus irréversibles, nous montrons que
la force sur une impureté est proportionnelle à sa résistivité spécifique dans la matrice, quel que
soit le potentiel d’impureté.

Abstract. 2014 Through a microscopic analysis the thermodynamic definition of the effective valence
as the flux of electric charge associated with a unit flux of the solute is shown to be equivalent to
the usual definition in terms of the force acting on the impurity in an electric field.
Using the thermodynamics of irreversible processes, we show that the force acting on an impurity

is proportional to its specific resistivity in the host metal, whatever the strength of the impurity
potential.
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1. Introduction. - When a direct electric current

is passed through a solid solution, the drift velocity
of the solute is given by the Nemst-Einstein relation [1]

where E is the applied electric field, D; is the diffusion
coefficient and Zi* - is the effective valence of the
solute. Using the principles of the thermodynamics
of irreversible processes, it is possible to show that
Zi* I e is equal to (J/Ji)E=o? the total flux of electric
charge (ionic as well as electronic), associated with
a unit flux of the impurity, in the absence of an applied
electric field :

Although the equivalence between the defini-

tions (1) and (2) follows from Onsager’s relations,
it is customary to use eq. (1) to calculate Z;* : an
electric field E is applied to the sample and the force
Fi = Z* I e E on the impurity is calculated. It is

usually thought that F; can be split up in two parts ;

Fes, the so-called direct electrostatic force which
describes the direct action of the field on the impurity,
whereas Ff, the friction force, is due to the transfer
of momentum from the charge carriers to the impurity:

In the interpretation of their results most experi-
menters assume that Fes = Zi I e E, where Z; is the
true ionic charge, as if the diffusing entity were a bare
ionic charge. As for Ff, it has been calculated semi-

classically by Huntington [2] and Fiks [3] and in quan-
tum mechanics by Bosvieux and Friedel [4] within the
Bom approximation. In those papers use is made of a
Boltzmann equation to describe the statistics of the
perturbed electron gas.
More recently, Turban [5], Kumar and Sorbello [6]

and Schaich [7] have calculated Ff through a linear
response formalism. All these papers show that Ff is
related to the specific resistivity p; = d(Ap)/dn;,
where Ap is the resistivity change of an initially pure
sample when it dissolves ni impurities per unit volume :

In this expression, no is the number of conduction
electrons per unit volume and p = po + pi ni is the

resistivity of the alloy.
The aims of the present paper are (i) to demonstrate

the validity of (4) for an arbitrary strength of the

Article published online by EDP Sciences and available at http://dx.doi.org/10.1051/jphys:01976003702015900

http://www.edpsciences.org
http://dx.doi.org/10.1051/jphys:01976003702015900


160

electron impurity interaction, and (ii) to show that
the electrostatic force vanishes, the effect of the

electric field on the ion being cancelled by that on the
accompanying screening cloud. We shall carry out
the analysis in the simple case of an impurity moving
in an homogeneous system, like a liquid metal. The
extension to real crystals raises new problems due to
the fact that the force depends on the position of the
impurity in the unit cell (it varies during the hopping
process), hence a difference between interstitial and
substitutional impurities, etc. In order to make our
formulation as transparent as possible, we choose to
ignore these complications by considering an homo-
geneous background.

In part 2 of the present paper, we give a simple,
rigorous microscopic derivation of the equivalence
between (1) and (2) and we establish the validity of (4).

In part 3, we compare these results with a simple
phenomenological analysis of the friction effects.

2. Microscopic analysis. - From definition (2) the
effective valence is related to the net flux of electric

(ionic and electronic) charge associated with the

displacement of a solute ion. Starting from microsco-
pic considerations, it is possible to give a general
demonstration of this relation and to show why the
direct electrostatic force on the impurity vanishes.

2.1 FLUX OF ELECTRIC CHARGE INDUCED BY THE

DISPLACEMENT OF AN IMPURITY ION. - We consider a
unit volume containing one impurity at position
r(t) moving with the velocity u = r(t) along the

x-axis, u being much smaller than the Fermi velo-
city vF. The Hamiltonian of the electron system can
be written :

where Jeo contains the kinetic contribution to JC(t)
as will as electron-phonon and electron-electron inter-
actions ; V is the electron-impurity interaction poten-
tial :

rl representing the position of the 1 th electron and

v(r) = - Zi e2 (actually, the exact form of V is irre-
r

levant to our following argument).
Let us define the operators :

The total electron flux can be written as :

where bp is the change of the density matrix induced
by the displacement of the impurity. In order to

calculate bp, we take advantage of the fact that the

velocity u is small : thus the Hamiltonian, although
complicated if the interaction potential V is strong,
is slowly varying in time. We can therefore use a

method employed by Iche and Nozieres in another
context [8]. If the relaxation of the electron bath were
infinitely rapid, the density matrix would correspond
to the instantaneous equilibrium :

Because the relaxation rate of the electron system
is finite, p departs from po :

where 6p is small as long as u is small, and obeys the
dynamic equation :

We see that 6p is forced by the time variation of po.
For low velocities bp in (11) represents in fact a higher
order correction so that we can replace (11) by the
simpler equation :

In writing (12) we added the new term - iq 6p
with q - + 0 in order to define unambiguously the
energy denominators that come into the theory.
Physically, we can view this term as an infinitesimal
external relaxation towards the instantaneous equi-
librium, which is enough to dispose of the irrever-
sibility paradox. In real life, relaxation is supposed to
occur in the electron system itself.
The solution (12) is straightforward if at each time

we use as a basis the eigenstates of the instantaneous
Hamiltonian X(t) (thereby using a rotating basis).
The matrix elements of bp are then found to be :

where vm = (po)mm is the occupation number of the
level Em(t) corresponding to the eigenvector I m(t) &#x3E;
of JC(t). In our problem :

where

is the operator for the x-component of the force on
the impurity with position r(x, y, z) and velocity
u = x.

Inserting (13) and (14) into (8) we obtain the elec-
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tron current induced by the displacement of the

impurity and :

where the equation of motion of the operator X has
been used :

We note that the relation (16) is exact, irrespective
of the strength of the interaction V between the elec-
trons and the impurity : we only assumed that the
velocity u is small. It remains perfectly valid if we
take account of the Coulomb interactions between
electrons (all these features are imbedded in the

eigenstates I m(t) )). Finally, Je is the total current

operator, from its very definition. It includes thus the
convective current, Zi u, due to the motion of the

screening cloud with the impurity as well. as the

friction current due to the scattering of the free
carriers by the moving impurity. Let us use j"(2) for
this latter term, which would be obtained for instance
in a Boltzmann equation analysis. We have :

This distinction between the two kinds of currents
will be of importance in defining the direct electrosta-
tic force.

2.2 FORCE ON A FIXED IMPURITY IN THE PRESENCE OF

AN ELECTRIC FIELD. - In order to establish (2), we
must compare (16) with the total force Fi acting on
the impurity when it is held fixed in the presence of
an electric field. This force is the sum of that on the

bare ion and the force exerted by the electrons.

We write it as :

where F is the electron-impurity force operator
defined in (15). We note that F is the total force exerted
by the electrons on the impurity, whether due to the
electrons in the screening cloud or to the scattering
of free electrons off the impurity. At the moment,
we do not distinguish between these different mecha-
nisms and therefore there is no ambiguity in the

definition of F.
In order to calculate ( F ) we use the standard

linear response theory. The result is again exact to
first order in the electric field E. We assume that E is

introduced adiabatically from t = - oo to t = 0 so
that the Hamiltonian describing the electron system
is now : 

where R(0) and X are defined by (5) and (7) respec-
tively and ’1 -+ + 0. The eigenvalues of R(0) and
diagonal elements of po are Em and (p 0).. = vm
respectively as defined in (13). The friction force on
the impurity is :

Using Liouville’s equation :

it is straightforward to show that to first order in the
applied field :

so that the matrix elements of 6p are now :

On comparing (22) and (20) with (16), we see that
the total interaction force ( F &#x3E; in the presence of an
electric field is related to the total current Je induced
by the moving impurity :

This expression is exact as it was derived on

very general arguments, without any handwaving
interpretations.
The net force on the impurity is given by (18) and

according to the definition (17), we may write it as :

We have thus clarified and demonstrated the
relation (2). We see that we have the choice between
two equivalent interpretations :

(i) either we include in Je the convective current of
the screening cloud : we must then include in Fi the
electrostatic force on the bare ion,

(ii) or we only keep in Je the current due to the
scattering of free electrons by the impurity, dis-

regarding the transport of the screening carriers : then,
we must exclude the bare electrostatic force.

Put another way, either we treat the impurity as
globally neutral everywhere (both in Fi and in Je) : this
is the view advocated by Bosvieux and Friedel. Or,
instead we single out the bare ion everywhere (includ-
ing the bare electrostatic force in F; as well as the
screening cloud convection in Je). Choosing between
these two attitudes is mostly a matter of taste.
One last remark : we carried the preceding dis-
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cussion for one impurity. Actually, it remains per-
fectly valid for a system of n; impurities as long as
they all move with the same velocity u ; V is then the
total electron-impurity interaction. The net current Je
and the net force Fi are both multiplied by ni so
that (2) remains true.

Z . 3 SPECIAL CASE WHERE THE ELECTRONS EXPE-

RIENCE FRICTION ONLY ON THE IMPURITIES. - In the
most general case the force operator F can be written
as :

where P = E p, is the x-component of the total
i.

momentum of the electron gas. We now assume that

the impurity potential provides the only friction

mechanism acting to slow down the electrons (no
thermal scattering, etc.). Then P commutes with the
rest of the Hamiltonian and consequently :

This expression is simply the statement that F

provides the whole momentum transfer to the electron
gas :

and

The total electron current induced by the displace-
ment at velocity u of the impurities is accordingly :

Such a result was indeed to be expected : if the

electrons interact only with impurities, they are

dragged along as the latter are moving, hence a net
current nu. We note that this result is independent of
the impurity concentration ni : in the absence of other
friction mechanisms the electrons sit still in the frame
of reference moving along with the impurities,
whatever their number. 

In this special case the force exerted by the electrons
on the impurities in the electric field E is from (23) :

( F ) is the net force, including the scattering force
as well as the force on the screening cloud). Once
again (30) was to be expected from simple considera-
tions of equality of action and reaction : under steady
conditions the force - ( F ) exerted by the impurities
on the electrons must balance exactly the electrostatic
force - n I e I E experienced by the electron gas
and (30) follows at once.

The result (30) is actually pathological in that the
force F ) does not depend on the impurity concen-
tration n; and the force on a given impurity behaves
as 1 /n;. This unphysical feature arises from our

assumption that there is strictly no friction except on
the impurities. Then a single moving impurity is in
principle able to drag along the whole electron gas :
conversely the net electrostatic force on the electron
gas is transferred to the impurities, however few they
are. These features disappear as soon as other friction
mechanisms are taken into account : the force ( F &#x3E;
is then proportional to ni, as any extensive quantity
should be. We discussed this point at some length to
show the internal consistency of our approach and to
emphasize the pathological nature of the case where
the impurities provide the only friction mechanism
on the electrons.

2.4 RELATION BETWEEN THE EFFECTIVE VALENCE

AND THE SPECIFIC RESISTIVITY. - We now return to

the general case where other friction mechanisms act
in addition to impurity scattering. In order to

connect F;, the net force on a given impurity, to its
specific resistivity, we use a phenomenological argu-
ment. We divide the electrons in two classes, (i) those
that build the screening cloud, denoted by the index 1,
form a total charge - n; Z; I e 1, (ii) those that are
free to reach the end of the crystal and which therefore
give rise to electrical conduction, these we denote by
the index 2.

For one impurity, the bound electrons 1 are subject
to : 

- the electrostatic force - Zi I e E,
- the elastic force f2 exerted by the impurity ion

which bounds the screening charge to the impurity,
- the force g exerted on the screening electrons 1

by the moving free electrons 2.

The mechanical balance of these forces implies
that :

Similarly the electrons 2 (no in number) experience :
- the force - no I e I E from the direct action of

the electric field,
- the force n; f i due to the bare impurities,
- the force - n; g due to the interaction with

bound electrons 1.

The net friction force on the moving electrons
is nl( f i - g) : it is that combination that controls the
impurity resistivity.
Now, what we found in section 2.2 was the total

force exerted by all the electrons (whether bound or
free) on one impurity ion. Owing to the equality of
action and reaction, this force is :
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On combining (32) with (31) we see that we can
write the net friction force on the moving electrons 2 as :

n;(fi - g) = - ni[ F&#x3E; + Zi I e I E] = - n; F; . (33)

It follows that n; F;, the total force on the impu-
rities, is opposite to the net friction force on the

moving electrons, irrespective of the presence of a
screening cloud. It is to be noticed that the proof of
this result does not make use of the thermodynamic
relation (2).
The final step of the argument is now straight-

forward : n¡(fl - g) represents the friction force on
the free electrons due to the impurities. On the other
hand, the total friction force due to the impurities and
all other scattering mechanisms must balance the
electrostatic force - no I e ( E on the free electrons
and therefore it is equal to no I e E. Assuming that
the Matthiessen’s rule is valid, we can write that the
contribution of each scattering mechanism to the

resistivity is proportional to the friction force it

applies to the free electrons. We can then write the
ratio of the impurity resistivity to the total resistivity p
as :

From (33) it follows that the net force on a given
impurity is :

where p = po + pi ni is the total resistivity of the
system. We thereby demonstrate the validity of (4),
together with the fact that the so-called direct elec-
trostatic force Fes vanishes, as emphasized by Bosvieux
and Friedel.

3. Thermodynamic analysis. - The above results
can also be derived in a phenomenological way
which stresses their physical origin. We consider
a solution containing ni impurities of valence Z; and
n = no + Z; ni electrons per unit volume. We assume
that the ions move slowly, carrying their screening
cloud adiabatically along with them. We shall thus
consider as the basic entity the screened neutral

impurity interacting with the free electrons (no in

number). We define the thermodynamic forces Xi and
Xe acting on a neutral impurity and a free electron
respectively :

where pi = kT In ni and Jle = Jl’(ni) - I e I V are their
chemical potentials. The solid solution is assumed

very dilute so that no activity coefficient appears in
the definition of A. and the term p’(n) exhibits the
dependence of Jle on the impurity concentration.
According to the thermodynamics of irreversible

processes, the fluxes of impurity atoms and of elec-
trons are respectively (9) :

where Lei = Lle from Onsager’s relations. The coeffi-
cients Lee and Lu are related to the electric resistivity p
of the alloy and to the diffusion coefficient D; of the
impurity by the equations :

r 1

In order to identify the coefficients L;e and Lei we
examine more closely the friction processes leading
to a stationary current in the system. The friction
force (pe acting on the electrons of a unit volume of
the alloy can be written in a linear approximation :

where ue and u; are the drift velocity of electrons and
impurities with respect to the lattice; a and fl are the
friction coefficients of electrons on the lattice and
on an - impurity respectively. In the same way the

friction force (pi on the ni impurities contained in a
unit volume is :

The first term in this expression is the friction force
of free electrons on the perturbation due to the pre-
sence of impurities. The coefficient y expresses the
mean friction force experienced by the diffusing
atom during its diffusion excursions.
When a stationary state is reached the net forces

ni Xi + (pi on impurity atoms and no Xe + cpe on free
electrons vanish. It is then possible to solve for the
velocities u, and ue and to obtain the fluxes Ji and J,
as functions of the thermodynamic forces X; and Xe.

This procedure leads to the following identification
of the phenomenological coefficients :

where

As we consider a very dilute solution we assume

that ni # is much smaller than a ; on the other hand
the friction coefficient y of an atom on the lattice is

very much larger than the friction coefficient no fl on
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the electron gas. This allows us to neglect the second
term in (42) and we obtain :

From (43) we identify the specifiic resistivity p; of
the solute :

and from (45) the usual result for the effective valence
of the solute is recovered :

An equivalent procedure to derive this expression
has been used previously by Flynn [10] and Turban [5].
The fact there is no contribution to Zi* of a direct

electrostatic force follows from our considering per-
fectly screened ions.

4. Conclusion. - In this paper we have shown
that an analysis of the friction forces acting on the
electron gas leads to the well known relation (15)
between the effective valence and the specific resis-

tivity of an impurity. Through a linear response for-
malism we have also shown the microscopic equiva-
lence between the definitions (1) and (2) established in
the framework of the thermodynamics of irreversible
processes. Our treatment can be largely extended to a
substitutional impurity. In particular the electrostatic
force vanishes because there is no net transport of
electric charge when a permutation between an

impurity and a vacancy occurs. There is a funda-
mental question regarding the value of p; to use

in eq. (4). For a slowly diffusing impurity in a liquid
for instance, it seems likely that the impurity is

accompanied by its neighbours during an elementary
displacement so that the specific resistivity p; determin-
ed in a standard resistivity measurement is relevant to
the diffusion problem. In case of a rapidly diffusing
impurity in a.solid or a liquid, it is not clear if p; is

actually relevant because it contains a contribution
of the relaxed neighbours as well as of the jumping
ion itself. Although some attempts [11] to solve this
problem have been made, it is necessary to perform a
complete dynamical analysis of the jump process in
presence of the electric field in order to identify the
forces responsible for the drift velocity of the solute.
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