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ABSTRACT 

This paper analyses the role of Renewable Energy Sources (RES) in Spain as a factor to 

balance the driving force CO2 emissions. To that end, a multi-sectoral analysis based on 

the Log-Mean Divisia Index Method (LMDI I) was conducted for the 1995-2009 

period.Data came from the World Input-Output Database (WIOD) and determined the 

period under consideration. The paper focuses on the 35 productive sectors included in 

the WIOD.Major findings show that RES acted in detriment to the drivers of CO2 

emissions. This can be stated for the last few years under consideration. The positive 

trend for the share of RES in Spain's energy matrix together with the negative tendency 

in the use of fossil fuels leads us to be optimistic.The results are interesting, not only for 

researchers but also for utility companies and policy-makers. In fact, this paper speaks 

directly to the authorities of Spain and their political agenda with regard to RES policy. 

1. Introduction 

Together with the well-known targets established for Horizon 2020 (H2020), European 

Union (EU) authorities are currently defining a more ambitious scenario. For 2030–the 

new scenario—Green House Gas (GHG) emissions must be reduced by 40% (20% for 

H2020) and Renewable Energy Sources (RES) must account for 27% in the energy 

matrix (20% for H2020). The benefits of a higher RES share are commonly 

acknowledged and include the mitigation of GHG emissions, positive employment 

effects [1], the creation of business opportunities, a reduction in primary energy 

dependence and thus improvement in energy security [4]. 

In recent years, the deployment of numerous RES technologies in Spain explains its 

elevated incorporation into the country’s energy matrix as shown in this paper.  

However, it is not without controversy when contemplating the terms of the legal 

instruments used to promote said use (Royal Decree 436/2004) and to what extent these 

instruments are effective [6]. In fact, the application of a number of such legal 

instruments is now on hold (Royal Decree 1/2012). One of the key questions for future 

policy decisions is to have better knowledge of the role that RES plays in the mitigation 

of GHG.  

Due to its geographical location and socioeconomic characteristics, Spain is vulnerable 

to climate change [7]. As a member of the EU, Spain faces strong commitments derived 

from the H2020 programme—the largest ever EU Research and Innovation programme.  

Its objectives include fighting against global warning. These objectives involve 

reducing GHG emissions by 20% with respect to 1990 levels, increasing the renewable 

energy share and improving energy efficiency by 20% by 2020 [8]. Now, H2030 targets 

are also relevant as has been mentioned. However, CO2 emissions in Spain for 2012 
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were 26.1% higher than in 1990, the base year taken for the Kyoto Protocol obligations.  

If 2009 is used as the reference year, the last year of the period under consideration in 

this paper [9], then CO2 emissions are 33.1% higher. 

Consequently, Spain has to make efforts to meet the established EU targets for 2020 and 

2030, but these efforts should not damage domestic competitiveness. The best way to 

succeed is to incorporate policies that avoid hindrances for competitiveness. 

Only if decoupling is achieved can Spain’s economy meet the H2020/H2030 emission 

target without damaging its competitiveness. This will involve appropriate energy 

policy decisions based on robust analysis. To aid these political decisions, this paper 

analyses the role of RES in Spain as a factor to balance the driving force of CO2 

emissions. Not only is this a relevant question; the time is right to pose it. The results 

are interesting, not only for researchers but also for utility companies and policy-

makers. In fact, this paper speaks directly to the authorities of Spain and their political 

agenda regarding the RES policy. 

This paper focuses on CO2 emissions, the dominant anthropogenic greenhouse gas flux 

from fuel combustion. Emissions from biomass and marine and aviation bunkers are 

excluded from the analysis.  

To that end, a multisectoral analysis based on the Log-Mean Divisia Index Method 

(LMDI I) was conducted for the 1995-2009 period [10]. Data came from the World 

Input-Output Database (WIOD) and determined the period under consideration. This 

paper focuses on the 35 productive sectors included in the WIOD. A search of the 

literature failed to discover a similar analysis; however, this paper has benefitted from 

the work by Alcántara and Padilla [13] and Butnar and Llop [14]. For the case of Spain, 

similar papers have focused on GHG but not on CO2; these include Llop [15], Roca and 

Serrano [16], Tarancón and Del Río [17], Bartoletto and Rubio [19], Alcántara et al. [20], 

Bhattacharyya and Matsumura [21], Cansino et al. [22] and Demisse et al. [23], among 

others. Our paper enhances the available literature because i) to our  knowledge, this is 

the first paper that answers the question for the case of Spain from a multisectoral 

approach and ii) it uses a free access database, thus facilitating the review of  our 

results. 

This paper addresses the topic of the Green Energy Economy [24]. According to these 

authors, the “Green Energy Economy is understood as the scientific subject area that 
focuses on how the economic system can pursue growth by bringing together economic, 

environmental, social, and technological aspects through the expansion of clean energy 

production, distribution and consumption”. 

This work is structured as follows: the Introduction is followed by Section 2 that offers 

methodological aspects. The database is described in Section 3. Section 4, which 

includes the discussion, presents the results obtained and Section 5 presents the 

conclusions.  



4 

 

 

 

2. Methodology 

A decomposition analysis was used to quantify changes over time for a wide range of 

variables. Its application has been particularly prolific in identifying the determinants 

for variations in GDP levels, energy consumption and import volume.   

The two methodological approaches for the decomposition analysis—which are more 

developed in the literature—include Structural Decomposition Analysis (SDA) and 

Index Decomposition Analysis (IDA). Both allow variations in an indicator 

(environmental, socioeconomic, economic and employment, etc.) to be decomposed 

among its determinants. These techniques have been developed independently and are 

often used to analyse variations in energy consumption and CO2 emissions.  

In energy and environmental studies, IDA is the most commonly used analysis to better 

understanding the energy consumption in a specific sector.  Researchers using an 

extended input-output analysis use SDA to study changes in energy consumption or 

emissions. Ang and Zhang [25] and Ang [26] provide a comprehensive review of the 

various IDA types.   

Essentially, the IDA methodology entails the application of an index number theory for 

the decomposition of an aggregate indicator. Since the 1980s, literature on 

decomposition based on Divisia type indices has been extremely prolific. Törnqvist et 

al. [27], Boyd et al. [28], Liu et al. [29], Ang and Lee [30], Sun and Ang [31], Albrecht et 

al. [32], Ang [33], Fernández and Fernández [34] and Choi and Ang [35] all presented 

studies based on these methods and have proven their practical application. Freitas and 

Kaneko [36] offered an overview of decomposition studies from the seminal paper by 

Grossman and Krueger [37]. 

There are differences and similarities between both analyses. Hoekstra and van den 

Bergh [38] performed the first study comparing IDA and SDA; they provided a review 

of studies based on these methods up to 2001. A more recent review of both methods 

was provided by Su and Ang [39]. Comparatively, an IDA has certain advantages over 

SDA. IDA enables decompositions for any aggregate (value, ratio or elasticity). Also, 

index-based decomposition analysis requires less data than decomposition methods 

based on input-output analysis and is useful when decomposing energy intensity 

changes between its different components. 

Herein, we develop a specific methodology based on Divisia type indices. More 

specifically, the LMDI I method was used, as proposed initially by Ang and Choi [10], 

and revised by Ang et al. [11] and Ang and Liu [12]. This paper follows the criteria of 

Ang [26], who evaluated the different decomposition methods. He concluded that LMDI 

I is a more recommendable method due to both its theoretical base and its set of 

properties which are satisfactory in the case of index decomposition. LMDI I is a 

“refined” non-parametric approach based on the Divisia index method, with weighted 
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logarithmic mean. An additional argument that favours LMDI I is that it allows perfect 

decomposition (that is, without residuals) and provides a simple and direct association 

between the additive and the multiplicative decomposition form [40]. 

As previously explained, there are two index-based decomposition methods for 

multiplicative and additive decomposition. In the first case, the effects are the result of 

the factorisation of an index, thus being dimensionless. In the second case, the effects 

are quantified in the measurement units of the decomposition variable.  

Below, details are provided for the additive decomposition of the variation for total CO2 

emissions in Spain between 1995 and 2009.  This period was chosen as it coincides with 

the available database. A five-factor decomposition has been proposed to identify, 

quantify and explain the main determinants of this variations. 

The Impact=Population×Affluence×Technology (IPAT) equation is used to assess the 

contribution of drivers of CO2 emissions. Specifically, the IPAT model [41] and the 

‘Kaya identity’ ¡Error! No se encuentra el origen de la referencia.[46] are extended by using IDA 

[47][48] to assess the key drivers behind Spain's CO2 emissions. The ‘Kaya Identity’ has 
been used in a number of studies addressing energy, economy and climate-related 

intensities at the global level [49]. 

The principal formula for the CO2 emissions can be illustrated as:                    

(1) 

where the decomposition factors are the Carbon Intensity factor (CI), the Energy 

Intensity factor (EI), the structural composition of Spain’s economy (Economy 

Structure, ES), the Economic Activity factor (EA) and Population (P), respectively. The 

CI factor corresponds to the ratio of CO2 equivalent emissions, measured in Gg, and 

energy consumed in a given period for every sector, measured in TeraJules (TJ).  

Carbon intensity represents the quality of the energy mix from a GHG mitigation 

perspective. An energy mix is composed of high embodied energy and low carbon 

content which would effectively contribute to mitigating CO2 emissions. 

The EI factor is defined as the ratio of energy consumed and a measure of the output. In 

this paper, the economic output per sector is measured as the total output in terms of 

Input-Output Tables. The output is converted into 1995 constant prices. EI is often used 

as a measure or aggregate proxy of the energy efficiency or technology level of a 

country’s economy [50]. 

The ES factor shows the structural composition of Spain’s economy for each year of the 

1995-2009 period. This factor indicates the relative weight of the sectoral output within 

the total output of the overall economy; it incorporates the relative impact of structural 

change in Spain’s economy in terms of CO2 emissions for a given year into the analysis. 
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The EA factor is the output per capita and captures the income effect on CO2 emission 

changes from energy consumption.  This is the traditional affluence effect in the IPAT 

equation. 

Finally, equation (1) allows the analysis of the effects of population growth as a 

determinant for energy demand. This is how the P factor is treated. 

A decomposition analysis may be performed from equation (1), by independently 

considering the various economic sectors of a given economy. This allows a 

multisectoral decomposition analysis to be performed. Applying the decomposition 

proposed in equation (1) to n industrial sectors, the total CO2 emission may be presented 

as follows: 

                      
                         

    

(2) 

where,    represents the CO2 emissions of sector  ;    denotes the energy consumption 

of sector  ;    represents the output of sector  ;   denotes the total output, and   

represents the Population. 

According to the studies by Freitas and Kaneko [36], Ang and Liu [12], Ang [33] and Wu 

et al. [52], CO2 variations may be decomposed as the sum of the following factors:                                           

(3) 

where,                          
 

    

(4)                          
 

    

(5)                          
 

    

(6)                      
 

    

(7)                   
 

    

(8) 
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The term       is the estimated weight for the additive LMDI I method [33]. This 

weight is defined as:                                          

(9) 

 

Applying this previously described method for each factor results in a positive or 

negative value. If the result of a factor is positive, then said factor contributes to 

increasing emissions; if it is negative, that factor contributes to reducing emissions.    

To accommodate cases of zero value, Choi and Ang [10], Ang et al. [11] and Ang and 

Liu [53] analysed and proposed that the best way to handle it is by substituting zeros for 

a δ value between 10-10
 and 10

-20
. This is known as the small value (SV) strategy. Ang 

and Liu [54] also showed that the SV strategy is robust when an appropriate value is 

used, and that it would provide satisfactory results even for highly extreme cases. 

 

 

3. Database 

The data used in this paper comes from the World Input-Output Database (WIOD), as 

described in Timmer [55] and Dietzenbacher et al. [56]. This is not the only useful 

database to solve our question; however, it is a well-constructed database from a 

number of interesting aspects. For example, it is a free-access database. It is financed 

and developed by the EU and analyses the effects of globalization on trade patterns, 

environmental pressures and the socioeconomic development of a large group of 

countries. The WIOD database is heavily grounded upon official statistics from the 

national statistical institutes. WIOD opened to the public on the 16
th

 of April in 2012.  

The data include world input-output tables for the 27 European Union countries and 13 

other major world economies. It covers the 1995-2011 period and includes 35 industries 

and 59 commodities. The WIOD environmental accounts offer information on sectoral 

energy consumption and CO2 emissions, but only for 1995-2009. Although other 

databases offer similar information about energy consumption, CO2 emissions and 

macroeconomic variables, the WIOD was chosen to facilitate multisectoral analysis. 

The same 35 productive sectors appear as data. 

The environmental satellites included in the WIOD are defined to cover the broadest 

range of environmental topics that are reasonably achievable, while maintaining quality 

data that is well grounded in the empirical availability of primary data. In general, the 

variables cover: use of energy, emission of main greenhouse gases, emission of other 

main air pollutants, use of mineral and fossil resources, land use and water use [56]. In 

the case of air emissions, they may serve to derive a number of environmental impact 

categories to analyse internationally relevant environmental topics, such as the 
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decoupling between economic growth and CO2 emissions. The above authors grant 

utmost importance to three impacts for which operational characterisation methods are 

internationally well-established, namely: global warming, acidification, and 

tropospheric ozone formation potential.  

Data for per barrel oil prices came from annual free-market commodity price indices 

(1960 – 2013) provided by the United Nations Conference on Trade and Development 

(UNCTAD) Statistical Department [58]. Precipitation and population rate data ware 

taken from Spain’s National Statistics Office (Instituto Nacional de Estadística-INE) 

[59][61]. More specifically, the precipitation data originally came from Spain’s National 
Weather Service (AEMET). The population data are the same as those used as 

population figures by all international organisations. To elaborate these figures, the 

main element comes from the Population Census carried out every ten years. In addition 

to being able to offer updated figures, other statistical instruments were used to measure 

population developments using the best information available, basically, variations in 

the census. Population Projections constitute a simulation of future resident population 

developments, calculated from the population figures, not from the census. 

The electricity mix data came from Spain’s national electricity distribution operator, 

Red Eléctrica de España (REE). The time series for annual energy demand 

developments, expressed in GWh, was obtained from REE publications [62][63] for the 

years 1997, 1998-2001 and 2002-2009, respectively. For 1995 and 1996, data came 

from the peninsular balance of electrical energy statistical series [65]. The data referring 

to Spain’s electricity mix show the next generation structure needed to cover the 

demand, and the percentage of generation coming from renewable and non-renewable 

energy sources. Additionally, data are offered on the electrical energy demand, 

corrected for temperature and work patterns; that is to say, corrected for the influence 

exerted by the work calendar and temperatures on the energy demand, as well as the 

programmed maximum power demand and the recorded daily energy use. 

 

4. Results 

Figure 1 shows CO2 emission from 1995 to 2009, consecutively. The contribution of the 

various factors appears in a bar graph in the upper section of the Figure, while total 

emissions appear as a line. CO2 emission variations appear as percentages at the bottom 

of the Figure for each factor. The sum of these variations in absolute values explains the 

total variation.   

From 1996 to 2005, CO2 emissions increased annually, except in 2003. For the 2005-

2009 period, the variation rate for emissions decreased, with the exception of 2007. 
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Fig. 1. Decomposition of the CO2 emissions.  

Source: Own production. 

 

The carbonisation factor for CI captures the cleanliness of Spain’s energy matrix. CI 

does not follow a regular pattern during the 1995-2009 period; some years are negative, thus 

contributing positively to diminishing CO2; but for other periods, it is positive [66]. However, it 

is possible to carry out a richer analysis based on figures of Tables 1 and A.1. 

 

 

Table 1. Gross inland consumption. Thousand tonnes of oil equivalent (TOE) 

Source: Eurostat [66]. 
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Table 1 shows the total primary energy consumption in Spain, thus leading to an 

interesting discussion. During the 2006-2009 sub-period, the CI factor has negative 

values. As Table 1 indicates for 2006, Spain’s energy mix is cleaner, which helps 

reduce total CO2 emissions. The CI factor is negative, thus coinciding with years when 

there was a lesser use of coal as a primary energy source, an increase of natural gas (a 

low carbon emission source) and renewable energy sources. The same happens when 

we consider the use of total petroleum products as a primary energy source. The 

exception is 2007. For the 2006-2009 sub-period, a decreased use of coal and total 

petroleum products is balanced by a greater use of RES. 

As a whole, RES shows an increasing trend for 1995-2009 but not all technologies 

behave in the same manner.  Hydroelectric power is unpredictable, as it depends on 

rainfall. The main contribution within RES is from biomass (solid biofuels) which is 

used, essentially, for heating purposes but also as a fuel in combined cycled plants for 

power generation. Wind-power technology advanced greatly between 1995 and 2009. 

As summarised in  Table 1, the negative value of C for most of the years at the end of 

the period considered is due to a greater contribution of  coal, petroleum products and 

an increase of RES; in other words, a cleaner mix.  

It is also possible to analyse the contribution of this factor to the total CO2 emissions by 

analysing the contribution of the various technologies to Spain’s electricity mix (not 

primary energy consumption matrix). Table A.1 in the Appendix shows the structure of 

Spain’s electricity mix.  

By analysing the contribution of the CI factor from the data in Table A.1. a similar 

discussion can be established based on the figures in Table 1. In the 1995-2001 sub-

period, the contribution of the CI factor does not follow a specific pattern. In 1996 and 

1998, the coal and fuel/gas (both high carbon technologies) contribution to the 

electricity mix decreased in favour of hydro and nuclear technology (clean 

technologies). During these years, the contribution of the CI factor to the variation in 

CO2 emissions was negative. In 1997 and 1999, the situation was exactly the opposite. 

In 2000, although the contribution of coal and fuel/gas increased slightly, this did not 

occur at the expense of hydro and nuclear technology, as both increased. Furthermore, 

wind energy almost doubled its contribution in 1999. There were high levels of 

precipitation in 2001 [61], coinciding with an increase in the contribution of hydro and 

nuclear technology and carbon reduction. The results show that the CI factor depends 

significantly upon the hydroelectric and carbon energy participation in the electricity 

mix. In years with elevated precipitation, the predominance of hydroelectric 

contributions makes CI take a negative value. However, when a lack of precipitation 

reduces the contribution by hydroelectric power and increases the contribution of coal-

fired power stations, the CI has a positive value. In Spain, the capacity of large 

hydroelectric plants has reached its limit.  
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Between 2002 and 2005, the CI factor was positive, contributing to increase the 

variation of CO2 emissions, except in 2003. These years coincide with limited 

precipitation [61], which produced a major decrease in hydroelectric generation, thus 

resulting in an increase in the usage of coal. However, in 2003, carbon dependent 

energy remained stable but a reduction in fuel/gas was seen. By the end of this period, 

renewable technologies played an important role in the electricity demand in Spain. 

During the 2006-2009 period, with the exception of 2007, hydro and wind generated 

electricity increased with an ensuing decrease in coal and fuel/gas usage. During this 

time, the contribution of the CI factor was negative. In 2007, a reduction in the 

contribution of nuclear and fuel/gas was produced with an important increase in the 

usage of coal, thus producing a positive CI factor. That same year, there was a major 

increase for net electricity generation. For this period, the energy policy in Spain sought 

to reduce the participation of coal-fired power stations in the electricity mix. Similarly, 

the contribution of renewable energy has continued to grow over time. The results show 

that the value of the CI factor has been negative in most years. 

Regarding the EI factor, it must be stressed that, until 2004, EI behaved as the driving 

force behind CO2 emissions. In seven of the ten years studied, it showed a positive 

value. The exceptions correspond to 1996, 1999 and 2011. Since 2005, this factor has 

been negative, indicating that it contributed to a decrease of the CO2 emissions in 

Spain’s economy. 

Essentially, the progression of the EI factor was due to two causes: i) changes to more 

or less energy consuming technologies and ii) the effect of the prices on unit 

consumption and energy saving. The second cause may be provoked by the substitution 

of certain energy sources for others. 

To find a regular pattern in the behaviour of this factor, Table A.2 in the Appendix 

shows the disaggregated values for the 35 sectors included in the WIOD. Table A.2 

allows the behaviour of the EI factor to be analysed by sectors. The two main economic 

sectors that effectively influence the sign of the EI are the Electricity, Gas and Water 

Supply Sectors and the Coke, Refined Petroleum and Nuclear Fuel Sectors.  

Before continuing with a detailed, year-by-year discussion, the role of the Power Sector 

requires clarification. This sector is a major electricity consumer associated with 

transformation processes to obtain final energy from primary energy sources [20]. This 

implies that from an energy policy perspective, efforts may focus not only on the Power 

Sector but also on those sectors that are the largest electricity consumers. Those are the 

cases of Public Administration (which shares 16.7 % in total electricity consumption by larger 

consumer), Public lighting (16.4 %), Restaurants (4.8 %) and Retail sector (4.1 %). Any 

improvement in energy efficiency in these sectors will help to reduce energy consumption in 

Power Sector. We will return to this point in the conclusion.  

For 1995, 1997-2000 and 2002-2004, the EI was positive for the Electricity, Gas and 

Water Supply Sectors and the Coke, Refined Petroleum and Nuclear Fuel Sectors. The 
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same occurred for the average value. However, for 1996, 1999, 2001 and 2005-2009, 

the value of EI was negative for these sectors, and also for the total average value.  

In these years, the Crude Oil-refining Sector developed a number of technologies such 

as cooling systems, torch networks or steam management to enhance certain production 

processes by using compressors and turbines. Together with this, the Electricity 

Generation Sector has implemented better technologies to monitor combustion and 

turbines in addition to introducing improvements in lighting efficiency. A number of 

power generation technologies made important investments. For example, many thermal 

plants enhanced the optimisation of their cooling source, installed or modified pumps, 

used the heat from vents, installed dry ashtrays and optimised the efficiency of turbo 

alternators. Spain’s nuclear power plants developed an optimisation system for 

secondary circuits, deployed actions in turbines and auxiliary systems and focused on 

optimising controls and operations, together with reducing auxiliary devices. Finally, 

hydroelectric plants introduced changes in rolls and power transformers and rewinding. 

These changes contributed to inverting the EI factor into negative values. Due to their 

weight upon all other sectors, the symbol of EI for these sectors had a definite impact 

upon the symbol of the total average value.  

It is important to analyse what occurred in the industrial sector after 2008; it was the 

first year that Spain’s production plummeted as a consequence of the crisis. An increase 

in energy intensity may arise during periods of decreased production. This could be 

explained by the decoupling of energy consumption and industrial sector production. 

Decreased production levels could have provoked an increase in energy consumption 

per unit produced and a reduction in the use of productive capacities. The low use of 

productive capacities and maintaining a fixed consumption explains, to a great extent, 

the increased consumption per production unit. However, this does not correspond with 

the results of this paper, where a reduction in energy intensity was seen between 2005 

and 2008.  

The explanation of the symbol change in the EI factor since 2005 is of interest. After 

2004, international oil prices began to spike. Figure 2 shows the progress of the price 

per barrel of crude oil and EI factor values. Due to the significant price increase, it is 

possible that the industrial and residential sectors responded to that market trend with a 

decrease in the consumption of oil-derived products.  

Spain’s Strategy for Energy Saving and Efficiency [67] was approved in November, 

2003. This was the most important policy aimed at promoting energy efficiency and 

savings. Another strategy was the 2008-2012 Action Plan. 

In summary, in 2004, two events could explain the symbol change of the EI factor. One 

was the market trend in the light of increased oil prices, and the other was a policy 

measure aimed at promoting energy efficiency. A more in-depth study is needed to 

know which of the two events played a greater role. 
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The weight of the ES factor as a determinant of the CO2 emissions variation has failed 

to show a consistent pattern. This occurred despite the relative weight loss of the Non-

Metallic Minerals and Metallurgy and Metallic Product Sectors, linked to the 

construction sector. Specifically, the Non-Metallic Mineral Sector is generally 

responsible for the high energy intensity of Spain’s industrial sector, given its high 

energy consumption, which is approximately one quarter of the energy consumption for 

the industrial sector as a whole ¡Error! No se encuentra el origen de la referencia.. 

Table A.3 of the Appendix shows that during the 1995 - 2000 sub-period, the sector that 

most influenced the contribution of this determinant, whether positive or negative, was 

the refining oil and nuclear fuel. The weight of this sector increased or decreased 

depending on the production in that year compared with the previous year. However, in 

2001, the Other Non-Metallic Minerals and Electricity, Gas and Water Sectors were the 

cause of the economic structure having a positive contribution to increasing CO2 

emissions. For the rest of the period from 2001 to 2009, the Coke, Refined Petroleum 

and Nuclear Fuel Sectors, once again, influenced this determinant most.  In Spain, 

refining is the truly important subsector. 

 

Fig. 2. Oil price per barrel and the contribution of the EI factor for the Coke,  

Refined Petroleum and Nuclear Fuel sector. 

Source: UNCTAD [58]. 

 

Overall, the results in Figure 1 show that economic activity and population growth are 

determinants that contribute positively to increase CO2 emissions. The contribution of 

these factors to emissions coincides with the results of Freitas and Kaneko [69]. The real 
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importance of the EA and P factors as determinants of CO2 emission variation in Spain 

has been covered previously by Pirlogea and Cicea [70], Wang [71] and Yildirim and 

Aslan [72]. Authors such as Alcántara and Roca [73], Steve and Tamarit [75] and Sephton 

and Mann [76] have analysed the relationship between CO2 emissions and economic 

growth in the case of Spain, and analysed whether the hypothesis for the environmental 

Kuznets curve has been fulfilled. 

Spain’s economic activity increased between 1995 and 2007 as evidenced by the GDP. 

Figure 1 shows that the weight of the EA, as a determining factor in the variation of 

emissions, contributes to increase CO2 until 2007. However, in 2008 and 2009, this 

weight is negative, contributing to a decrease in emissions. This is because, for the 

period under review, there is a link between the activity of the Spain’s economy and 

CO2 emissions from the combustion of fossil fuels. Figure 3 shows that GDP and 

emissions have an upwards trend until 2007. It is important to stress that, for 2005-

2006, indications of “decoupling” can be observed, CI <0, EI<0 with positive economic 

growth. Alcántara and Padilla [13] pointed out the change in CO2 emission trends for the 

years 2005-2007, but remained doubtful as to whether this was a structural change. 

 

 

 
 

 

Fig.3. CO2 emissions and GDP of Spain (1995-2009). 

Source: Own production. 

 
The role of population as a driver of CO2 has been widely considered in the literature.  

Figure 1 shows that demographic growth has contributed to increased CO2 emissions in 



15 

 

Spain for the period under consideration. These results are in line with those found for 

other countries by Freitas and Kaneko [69], Jeong and Kim [77], Wu and Zeng [78], Ren 

et al. [79] and Wang et al. [80]. 

 

5. Conclusions 

For the period under consideration, RES acted in detriment of the drivers of CO2 

emissions. This can be stated for the last few years under consideration. Due to the short 

period in which this happens, we must be cautious. However, the positive trend for the 

share of RES in Spain’s energy matrix together with the negative tendency in the use of 

fossil fuels leads us to be optimistic. 

RES acted against CO2 drivers but it is not the only factor. Improvements in energy 

efficiency facilitated this issue. 

Previous conclusions could be derived from the methodological approach used this 

paper. Although the IPAT equation was initially used to emphasise the contribution that 

a growing global population had on environmental impacts, the ‘Kaya Identity’ builds 
upon it and allows an LMDI analysis to be used and answer to our main question.  

It can be said that Spain’s economy is moving towards a low carbon economy. As of 

2006, this is possible thanks to improved performance in the CI and EI factors 

outweighing the role of affluence and effects of population as traditional drivers of CO2 

emissions. So, RES technologies are a useful tool for reducing that gap. However, the 

contribution of the economic structure factor remains inconclusive and demands further 

research.  

Spain’s carbon intensity reflects a step forward on the path towards independence from 

fossil fuels with the development of its energy-economy system. Thanks to the rapid 

expansion of RES, mainly wind energy, and a decreased use of coal, among other 

aspects, a relatively sustained decarbonisation of its energy supply mix can be seen as of 

2000, with improvements compared to previous years. In fact, absolute reductions of 

CO2 emissions can also be seen until 2006, prior to the onset of the economic crisis.  

The estimated energy intensity provides an indication of greater efficiency in Spain’s 
energy-economy system when compared to previous years. The statistics show a 

“decoupling” trend; that is a situation in which resource or environmental impacts 

decline with regards to economic growth. A relatively sustained reduction in energy 

intensity can be observed for the 2005-2009 sub-period.  

In any case, these results must be viewed cautiously. Mundaca et al. [81] found a 

rebound effect in CO2 emissions for various developed regions in a post-crisis scenario. 

IDAE ¡Error! No se encuentra el origen de la referencia. noted that the energy intensity 

decreased until 2009 -the last year for which information is available in WIOD-, but 

increased in 2010. 
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It must be born in mind that despite the consistency in carbon and energy intensity 

trends, their negative values in the decomposition analysis carried out only coincide 

with a positive economic growth for 2006. Together with this, the influence of oil prices 

on the energy efficiency path needs further consideration. 

In accordance with the results obtained, the energy intensity of the Power Sector and the 

Refining Sector must continue to receive specific attention due to their determinant role 

in the behaviour of the CI factor for the entire group of sectors. Those sectors that act as 

drivers of electricity consumption must receive specific attention too. Over the 

forthcoming years, two types of energy policy recommendations should be developed. 

Firstly and focusing on the Power Sector, the gradual reduction of energy consumption 

since 2005 has been due to the greater share of wind and solar technologies. The 

auxiliary services for these technologies have lower electrical consumption needs 

compared to thermal power stations. In future years, although a very intense 

development of solar-electrical technology is not expected, wind power seems to have 

reached grid-parity and is likely to continue increasing its share in Spain’s electricity 

mix; this will help reduce the sector’s energy intensity. 

Secondly, energy efficiency improvements in the industrial sector as a whole will 

encourage the installation of new cogeneration plants at industrial sites. The primary 

energy savings achieved by cogeneration in industrial activities with respect to 2007, 

measured in ktoe, have been 17.4 (2008), 44.6 (2009) and 55.2 (2010) ¡Error! No se 

encuentra el origen de la referencia.. Renewal by substituting high-intensity generation 

equipment and vehicles for lower consumption machinery must form part of this 

strategy. In this regard, public support with the acquisition of new, more efficient 

machinery should be limited to guaranteed energy efficient goods. Generally, all users 

requesting the support of the public sector to co-finance their energy efficiency 

improvement plans must incorporate auditing systems that facilitate the verification of 

whether efficiency improvements have actually been produced. Other measures, such as 

eco-labelling, aimed at changing consumer patterns, educational programmes and green 

taxes might remain in force. 
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Appendix 

Tabla A.1. Annual evolution of the coverage of electricity demand. Peninsular electricity system (GWh). 

Source: REE [62-65]. 

 
1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 

Hydraulics 21,929 37,655 33,168 33,992 24,171 27,842 39,424 22,598 38,874 29,777 19,170 25,330 26,352 21,428 23,862 

Nuclear 55,445 56,329 55,298 59,003 58,852 62,206 63,708 63,016 61,875 63,606 57,539 60,126 55,102 58,973 52,761 

Coal 64,737 52,394 62,098 60,190 72,315 76,374 68,091 78,768 72,249 76,358 77,393 66.006 71,833 46,275 33,862 

Fuel/gas 3,868 2,149 6,843 5,658 9,925 10,249 12,398 16,474 8,027 7,697 10,013 5,905 2,397 2,378 2,082 

Combined 

cycle        
5,308 14,991 28,974 48,840 63,506 68,139 91,286 78,279 

Ordinary 

regime 
145,979 148,527 157,407 158,843 165,263 176,671 183,621 186,164 196,016 206,412 212,955 154,933 223,823 220,340 190,846 

Consumption 

in generation 
-6,248 -5,511 -6,351 -6,309 -7,224 -7,827 -7,584 -8,420 -8,162 -8,649 -9,080 -8,904 -8,753 -8,338 -7,117 

Special regime 
  

16,161 19,733 24,253 26,613 30,278 35,401 41,412 45,868 50,365 51,633 57,548 68,045 80,353 

Hydraulics 2,223 3,544 3,429 3,578 3,740 3,836 4,289 3,771 4,942 4,592 3,650 4,149 4,125 4,638 5,474 

Wind 160 304 620 1,237 2,474 4,462 6,600 9,257 11,720 15,753 20,377 22,881 27,249 31,758 37,401 

Photovoltaic 

solar 
20 21 21 22 22 23 23 5 9 18 40 102 463 2,406 5,896 

Solar thermal 

electric             
8 15 103 

Other 

renewable       
2,107 2,830 2,946 3,038 4,005 3,758 4,121 4,463 4,689 

Non-renewable 
      

17,282 19,543 21,804 22,481 22,332 20,744 21,582 24,764 26,788 

Net generation 149,326 146,885 155,126 157,371 164,275 177,165 206,338 213,150 229,275 243,645 254,279 197,663 272,618 280,046 264,080 

Consumption 

in pumping 
-2,082 -1,523 -1,761 -2,588 -3,666 -4,907 -4,131 -6,957 -4,678 -4,605 -6,709 -5,307 -4,432 -3,803 -3,794 

International 

exchanges 
4,489 1,059 -3,073 3,402 5,719 4,441 3,458 5,329 1,264 -3,027 -1,343 -3,273 -5,750 -11,040 -8,086 

Demand (b.c.) 151,733 156,208 162,383 173,081 184,345 194,992 205,643 211,516 225,850 235,999 246,187 255,022 262,436 265,206 252,201 
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Table A.2. EI weight factor for the 35 industrial sectors. 

Source: Own production. 

 
1996-

1995 

1997-

1996 

1998-

1997 

1999-

1998 

2000-

1999 

2001-

2000 

2002-

2001 

2003-

2002 

2004-

2003 

2005-

2004 

2006-

2005 

2007-

2006 

2008-

2007 

2009-

2008 

Agriculture, Hunting, Forestry and 
Fishing 

-1389.83 -733.03 -404.33 1345.98 852.27 -349.37 -227.13 1961.54 1357.71 364.88 -2016.46 -340.45 -715.55 -873.63 

Mining and Quarrying -220.99 -94.86 190.63 -5.77 430.90 -515.88 67.55 -271.61 -51.79 379.34 -245.41 15.39 -80.13 172.32 

Food, Beverages and Tobacco -139.33 167.83 172.76 -407.59 -195.58 -146.74 735.62 -75.72 -180.45 -337.33 -636.98 -13.32 258.04 -298.03 

Textiles and Textile Products -50.08 88.91 44.43 38.19 -56.81 -245.34 110.71 -5.57 106.09 -35.52 -553.99 -67.27 -47.24 252.24 

Leather, Leather and Footwear -15.95 -4.37 10.34 23.76 66.55 -7.48 23.47 -3.20 37.30 8.02 -55.49 -13.37 -20.80 21.63 

Wood and Products of Wood and 
Cork 

-47.46 73.00 79.93 375.07 -81.40 1.19 13.67 40.09 139.46 -73.97 -125.30 80.70 -24.38 121.89 

Pulp, Paper, Paper , Printing and 
Publishing 

-162.79 315.88 69.26 633.65 -196.88 -234.32 205.09 760.77 -519.52 87.04 -322.42 288.78 -149.52 -75.79 

Coke, Refined Petroleum and 
Nuclear Fuel 

-913.43 -1141.39 2969.25 -4133.00 3170.27 207.42 1924.69 1908.07 2079.37 -2931.20 -2509.45 -4777.88 3950.99 -6281.25 

Chemicals and Chemical Products -832.48 563.16 -129.26 -345.49 577.87 -271.82 175.15 -307.90 -225.85 -734.58 -63.12 -616.59 -79.02 -963.57 

Rubber and Plastics -97.97 108.37 -24.42 -33.66 151.42 10.89 50.63 -64.57 241.33 211.65 -452.77 467.15 -123.25 32.72 

Other Non-Metallic Mineral 2867.70 2128.04 -1631.85 136.27 1613.17 -3295.78 -5431.02 7017.62 -4805.39 -176.86 -7740.79 -131.06 360.19 6358.57 

Basic Metals and Fabricated Metal -179.33 1025.98 100.39 -1674.83 527.44 772.80 -565.13 554.50 141.76 -1841.45 -1992.51 74.49 -320.30 -677.24 

Machinery, Nec -13.68 59.38 3.36 -25.35 86.47 70.11 -30.32 63.05 -59.27 -39.38 -126.01 -5.85 -15.72 57.23 

Electrical and Optical Equipment 1.97 25.70 7.92 -25.60 44.35 40.13 -1.52 7.63 30.28 19.34 -139.78 75.96 -27.63 18.20 

Transport Equipment -2.32 48.32 141.52 -27.66 45.25 2.58 -94.55 163.18 -6.63 -366.94 -377.45 107.97 48.66 259.66 

Manufacturing, Nec; Recycling -85.19 83.26 11.92 -85.78 50.00 4.31 45.38 -33.71 147.30 160.16 -471.24 317.40 -80.73 41.81 

Electricity, Gas and Water Supply -5261.92 3656.85 -698.69 976.43 -4055.03 -7728.37 2953.57 -4633.59 1277.65 -6370.24 -5723.59 1442.08 -6264.64 -12372.76 
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Construction -809.00 599.87 388.99 -238.96 -302.39 -240.84 -355.41 -255.01 436.97 260.00 -774.19 446.66 -270.80 -200.70 

Sale, Maintenance and Repair of 
Motor Vehicles and Motorcycles; 

Retail Sale of Fuel 
-5.24 11.16 145.30 -49.19 49.48 94.14 -88.04 -71.32 57.06 147.31 184.22 -280.11 121.23 -205.86 

Wholesale Trade and Commission 
Trade, Except of Motor Vehicles 

and Motorcycles 
51.80 6.35 62.73 42.58 51.99 86.16 -3.18 -79.58 93.82 157.36 222.16 -232.89 58.89 -119.44 

Retail Trade, Except of Motor 
Vehicles and Motorcycles; Repair 

of Household Goods 
59.56 -20.66 88.42 33.76 93.45 64.94 -16.72 11.93 95.00 -28.94 206.85 -122.39 -57.31 -122.78 

Hotels and Restaurants 16.36 13.73 28.62 18.00 -43.35 20.99 8.77 10.99 23.90 2.38 18.23 -23.79 -7.48 -16.08 

Inland Transport 15.04 589.79 58.34 -885.91 409.15 1189.76 93.53 2451.29 -1358.75 725.13 -537.52 -398.02 -1852.04 -1068.41 

Water Transport 115.20 -241.67 -2.71 -110.32 -246.91 -60.16 93.16 75.63 -95.68 -85.34 227.81 -257.00 -165.53 -207.86 

Air Transport -85.80 -158.65 18.50 -943.56 -611.82 1497.41 1206.64 -424.43 1173.30 -623.10 763.41 -581.58 -727.78 5345.60 

Other Supporting and Auxiliary 
Transport Activities; Activities of 

Travel Agencies 
1.24 -39.59 -12.84 -34.73 -56.26 -64.07 59.87 -119.47 57.51 -40.66 -24.87 -181.29 -10.01 -26.59 

Post and Telecommunications -22.75 -44.18 -10.91 7.99 79.78 -24.05 -9.39 -17.18 10.36 -7.87 53.32 -37.75 -13.42 -22.92 

Financial Intermediation 19.95 -0.46 13.00 4.48 -66.97 -13.98 -19.99 -19.58 -32.05 -68.93 -1.96 -38.15 -3.04 13.83 

Real Estate Activities 3.75 5.37 6.88 1.92 50.09 -1.49 -0.18 3.63 5.71 5.84 15.03 -6.70 0.06 -15.11 

Renting of M&Eq and Other 
Business Activities 

1.66 -1.14 10.77 1.90 -17.62 4.32 5.55 -2.15 16.96 0.94 9.61 -14.53 -2.32 -13.37 

Public Admin and Defence; 
Compulsory Social Security 

17.64 3.45 41.01 8.36 14.99 11.17 6.06 -13.52 27.70 -37.49 63.86 -40.37 -10.25 -29.30 

Education 0.50 -0.84 2.96 1.64 3.26 0.52 1.09 -1.10 2.77 -2.08 1.39 -2.59 -1.26 -1.35 

Health and Social Work 17.44 13.98 62.59 26.07 -93.33 32.56 8.70 -7.96 65.49 -24.65 33.06 -46.16 -51.56 -32.69 

Other Community, Social and 
Personal Services 

-38.53 -263.42 162.40 81.72 -226.29 -18.84 51.98 124.69 222.90 -43.75 387.26 -10.63 -24.48 47.20 

Private Households with Employed 
Persons 

0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
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Table A.3. ES weight factor for the 35 industrial sectors. 

Source: Own production. 

 
1996-

1995 

1997-

1996 

1998-

1997 

1999-

1998 

2000-

1999 

2001-

2000 

2002-

2001 

2003-

2002 

2004-

2003 

2005-

2004 

2006-

2005 

2007-

2006 

2008-

2007 

2009-

2008 

Agriculture, Hunting, Forestry and 
Fishing 

1188.48 -23.25 -324.73 -726.64 -88.96 -675.31 -332.44 -305.22 -428.37 -1568.16 490.76 444.83 -318.12 574.25 

Mining and Quarrying -64.78 41.23 -225.98 -17.72 -303.64 78.69 -35.53 85.61 -70.00 -108.51 -44.89 -52.60 -54.48 -318.49 

Food, Beverages and Tobacco -148.33 42.38 -81.45 -142.92 -129.05 128.26 -271.21 -90.65 44.64 -190.25 -436.13 -149.51 -122.37 261.24 

Textiles and Textile Products -18.16 36.66 -63.32 -13.19 -28.52 -97.84 -101.53 -75.02 -208.49 -102.18 -127.96 -203.54 -47.34 -318.59 

Leather, Leather and Footwear 2.38 8.59 -3.27 -27.00 -23.37 -11.03 -22.10 -20.52 -21.05 -24.48 -21.11 -17.05 3.55 -32.57 

Wood and Products of Wood and 
Cork 

-8.10 6.10 14.27 11.57 19.92 -3.01 -13.22 -12.80 -26.30 -18.90 -12.92 -45.80 -30.45 -144.66 

Pulp, Paper, Paper , Printing and 
Publishing 

-18.77 -69.25 29.68 -44.79 107.13 -90.07 -29.86 -112.21 -51.60 1.56 -111.06 -139.44 -174.37 -75.31 

Coke, Refined Petroleum and 
Nuclear Fuel 

467.30 866.12 -2459.08 2948.45 -4338.30 -1286.94 -2851.53 -2380.85 -2006.90 2261.55 1807.28 3542.29 -3723.92 5820.66 

Chemicals and Chemical Products 10.97 -150.50 373.27 -267.91 -96.85 75.44 -394.99 -12.17 -354.44 -168.45 -365.93 155.47 -90.05 562.32 

Rubber and Plastics 0.41 2.78 28.43 -4.86 27.94 20.88 0.73 -7.85 -13.01 6.71 -63.08 -7.39 40.93 -48.84 

Other Non-Metallic Mineral -2234.23 2000.31 1739.94 2494.64 868.12 5223.88 -918.32 -1200.35 388.15 1984.16 212.76 -841.54 -2870.50 -9276.23 

Basic Metals and Fabricated Metal -116.19 -24.64 223.14 742.84 162.38 23.05 63.65 -224.90 377.15 -409.02 2.00 195.56 -425.07 -1829.96 

Machinery, Nec 37.37 -1.89 31.63 4.91 -16.62 44.60 -13.66 -23.03 10.17 -46.02 21.44 -12.75 12.00 -64.27 

Electrical and Optical Equipment 13.61 -1.53 5.18 0.43 1.30 10.13 -27.93 -13.48 -8.32 -5.19 0.90 -5.00 -3.17 -33.53 

Transport Equipment 19.05 83.77 15.83 11.76 57.38 -52.63 -21.37 7.96 -47.71 -80.24 -31.42 29.07 -87.36 -349.37 

Manufacturing, Nec; Recycling 9.30 1.06 12.63 10.68 2.97 -9.12 -12.37 -8.78 14.37 -19.31 -20.30 -18.24 -4.56 -57.03 

Electricity, Gas and Water Supply 1648.63 -589.46 -787.15 1384.13 7790.63 3692.89 -127.45 1778.99 1212.38 4870.33 3696.97 -2375.87 2652.95 6340.50 
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Construction -169.20 -80.94 65.65 79.05 16.22 172.46 619.03 148.74 -142.54 189.13 132.66 -353.24 -100.72 -98.73 

Sale, Maintenance and Repair of 
Motor Vehicles and Motorcycles; 

Retail Sale of Fuel 
15.41 27.33 37.77 -39.92 -39.71 32.79 -7.95 -12.14 71.66 28.04 -153.19 79.39 -103.09 249.44 

Wholesale Trade and Commission 
Trade, Except of Motor Vehicles and 

Motorcycles 
11.28 14.22 -11.61 8.04 -56.76 -34.94 -26.76 53.27 34.42 -60.53 -30.23 65.47 -62.07 -79.97 

Retail Trade, Except of Motor 
Vehicles and Motorcycles; Repair of 

Household Goods 
0.78 -6.39 -4.07 -5.16 -8.97 10.37 4.11 -7.18 26.76 15.88 5.52 27.65 75.83 40.59 

Hotels and Restaurants -8.59 -6.55 -8.71 -6.66 -22.53 -19.58 -12.68 6.00 -1.95 -14.14 -9.83 -5.75 0.27 16.92 

Inland Transport 244.43 157.07 -248.64 423.36 346.66 -1229.62 -878.77 -731.31 -96.73 -81.89 -423.43 -30.13 346.98 334.91 

Water Transport -87.14 -17.58 4.43 21.41 47.89 21.62 -230.17 58.50 199.93 -24.11 -268.23 -120.23 -54.32 -166.24 

Air Transport 243.82 52.71 -106.77 142.45 455.21 -664.19 -977.46 -77.38 -845.78 442.63 -458.13 178.35 -1688.49 -25.50 

Other Supporting and Auxiliary 
Transport Activities; Activities of 

Travel Agencies 
9.26 -14.28 0.24 7.47 -11.26 12.86 -13.75 -9.27 7.86 11.92 36.22 18.08 -7.66 -5.52 

Post and Telecommunications 28.14 13.55 8.37 14.02 23.75 11.78 7.58 4.78 13.42 18.23 -8.25 9.38 9.46 12.08 

Financial Intermediation -11.41 4.87 -3.91 -28.13 14.67 -1.44 10.02 8.59 35.05 38.31 39.32 16.08 -0.17 -1.78 

Real Estate Activities -0.30 -1.01 -0.60 -1.07 -1.81 -0.65 1.83 0.46 -1.62 -2.26 -3.21 -1.21 1.33 0.73 

Renting of M&Eq and Other 
Business Activities 

2.99 1.29 4.80 10.81 3.36 -2.96 -6.90 -2.74 1.79 7.97 14.54 9.44 3.40 4.79 

Public Admin and Defence; 
Compulsory Social Security 

-8.40 3.88 -10.16 -11.59 -0.60 -1.32 -5.38 10.67 7.80 -1.83 -3.22 10.11 27.31 33.82 

Education -0.23 -0.16 -0.27 0.33 -0.64 -0.42 -0.37 -0.08 -0.19 -0.80 -0.85 0.32 1.11 2.18 

Health and Social Work -7.86 -10.09 -15.31 7.07 10.04 -29.11 -2.50 17.69 35.09 23.24 -14.60 28.78 61.53 90.34 

Other Community, Social and 
Personal Services 

-8.36 -54.26 21.07 -5.26 9.81 22.66 2.20 -10.72 49.03 24.60 -10.85 51.12 69.91 119.85 

Private Households with Employed 
Persons 

0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

 


