
This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2021.3089660, IEEE Access

Date of publication xxxx 00, 0000, date of current version xxxx 00, 0000.

Digital Object Identifier 10.1109/ACCESS.20xx.DOI

Driving Maneuver Classification Using
Domain Specific Knowledge and
Transfer Learning
SUPRIYA SARKER1, MD. MOKAMMEL HAQUE1, AND M. ALI AKBER DEWAN.2, (Member,
IEEE)
1Department of Computer Science and Engineering, Chittagong University of Engineering and Technology, Chittagong, Bangladesh
2School of Computing and Information Systems, Faculty of Science and Technology, Athabasca University, Athabasca, AB T9S 3A3, Canada

Corresponding author: Md. Mokammel Haque (e-mail: mokammel@cuet.ac.bd).

ABSTRACT With the increasing number of vehicles, the usage of technology has also been increased
in the transportation system. Although automobile companies are using advanced technologies to develop
high performing transports, traffic safety still remains to be a concerning issue. Drivers’ driving behavior
is considered as one of the key factors of the traffic safety, which could be monitored from their individual
driving maneuvers. In this paper, we present a supervised learning model and a semi-supervised transfer
learning model for the classification of driving maneuvers from the sensor fusion time series data. The
semi-supervised model consists of an unsupervised long-short term memory (LSTM) autoencoder and a
supervised LSTM classifier. The supervised model consists of a supervised LSTM model. Because of
using LSTM, both of the models can analyze time-series data. In the semi-supervised model, the LSTM
encoder learns from unlabeled data as a compressed low dimensional feature vector, which then transfers
the learning to the supervised LSTM classifier to classify the driving maneuvers. With the proposed models,
we use domain specific knowledge data of the driving environment, such as data changing rules of various
driving maneuvers as well as the temporal features over time. We use class functions for seven driving
maneuver types and convert those into binary feature vector to use with the LSTM models. We present
a comparative analysis of the per class accuracy of the proposed semi-supervised and supervised models
with and without using domain-specific knowledge, where the models with the domain specific knowledge
outperform. Our proposed semi-supervised and supervised models are compared with the other existing
approaches, where our models trained with the domain specific knowledge provide better performance. We
also compare the per class accuracy for both the supervised and semi-supervised models, where all the
maneuver class accuracy for supervised model is above 98% and semi-supervised model is above 95%.
Although the supervised model outperforms the semi-supervised model, semi-supervised model would be
more beneficial in applications where the labeled driving maneuvers data is hard to capture or insufficient.

INDEX TERMS Driving maneuver classification, domain specific knowledge, LSTM autoencoder, semi-
supervised learning, transfer learning.

I. INTRODUCTION

TRANSPORTATION system has greatly influenced by
the industrial revolution. With the expanding number of

vehicles, the concern of traffic safety is growing concurrently.
Though massive endeavors have been taken over the decades
to ensure road safety by adopting new technologies, traffic
safety is still a concerning issue [1]– [4]. Drivers’ driving
behavior has a great impact on accidents. Recent studies
have shown that the knowledge of predictive driving assistant
systems about the intention of the driver can be utilized to

notify about dangerous driving and alleviate traffic mishap
[5]– [11].

The two general ways of collecting information regarding
moving vehicle are Controller Area Network (CAN) [12]
bus and Micro Electro Mechanical System (MEMS) [13].
Through CAN bus one vehicle can communicate to other
vehicles using microcontrollers and other devices without a
host computer and bear all the required information to rec-
ognize the state of the vehicle. CAN bus information can be
access using On-Board Diagnostic (OBD) port. However, the

VOLUME 4, 2016 1

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2021.3089660, IEEE Access

capability of accessing the vehicle information through OBD
port relies on the expertise of private protocol of the vehicle
[14]. Recently, MEMS is getting much popular because of
its compact size, lightweight, energy efficiency. MEMS can
be mounted in the subject vehicle to integrate several sensors
e.g., accelerometer, gyroscope, GPS, and so on [15].

Various approaches have been adopted by utilizing inertial
signals from various sensors such as accelerometer, gyro-
scope, GPS, video to monitor driving maneuvers [16], [17].
However, excessive input worsens the performance of the
system and increases computational cost [14]. Nonetheless,
it is proven in previous research that inertial sensors are
capable of recognizing particular driving maneuvers [14].
With the spread of smartphones, few researchers successfully
exploited smartphone in sensor platform [16], [18], [19].
They mounted smartphones with sufficient amount of sensors
in the subject vehicle and the collected data was stored inside
the smartphone. However, in a real-life situation, this setup
may be interrupted because the drivers may use smartphone
for communication and navigation [14]. To overcome this
problem, some researchers utilized previously collected sen-
sor fusion dataset [20]–[22]. Researchers proposed various
fuzzy inference, machine learning, deep learning techniques
to classify driving behavior from inertial sensors data [20].
However, they ignored the domain-specific knowledge of
the driving environment. The knowledge of the environment
where the data belong to is referred as domain-specific
knowledge. During movement, a vehicle can be considered
as a rigid body and the change rule of the data collected
by the sensors during various driving maneuvers can be
explained by the theory of rigid body kinematics [14]. The
change rule reveals secret patterns that can be considered
the domain specific knowledge of driving data. The domain-
specific knowledge of driving data is discussed elaborately
in Section II. The negligence domain-specific knowledge
restricts further optimization and improvements. Therefore, it
is necessary to examine the impact of domain-specific knowl-
edge in the performance of driving maneuvers classification.

Moreover, most of the Machine Learning (ML) or Deep
Learning (DL) techniques were based on supervised learning
by utilizing the labeled driving dataset. The data that contains
maneuver class information is refereed to as labeled data.
On the other hand, if the data does not have maneuver class
information can be referred to as unlabeled data. However,
labeling is an expensive and time-consuming task. That is
why in most of cases, a small amount of data is being labeled
and a large amount of data remains unlabeled. Therefore, a
vast amount of unlabeled data which may contain potential
patterns, cannot participate in the classification task. There-
fore, a system needs to develop to utilized the complete
dataset (both labeled and unlabeled) for classification of
driving maneuvers.

Prior to classification, learning the data without label
i.e., unlabeled data is vital and challenging. A common
phenomenon demonstrated in several previous research is
the extraction of hand-engineered features prior to applying

any classification algorithm and believed that local, salient
patterns of time series data had been being detected and
being extracted [23]. But, unstable, irregular, and vigorously
emerging behavior of the sensor data demand ingenious
machine learning framework to apprehend temporal relation-
ships in the time series data. Hence, the performance of the
time series classification extremely reliant on the expertise
of domain variable selection of domain experts [23]. Certain
types of problems that require a classifier can be benefited by
the transformations of the features because the performance
and precision of the classifier model heavily dependent on the
quality of the learned features. Leading-edge advancements
of deep learning networks provide an advantage by integrat-
ing the latent representation within the classifiers as a form of
Autoencoder [24]. Autoencoder can be a possible solution to
many problems because of its structure as well as objective
function which can be modeled as a transformation of the
feature space [25]. The compressed representation of the
time-series data obtained from Autoencoder can contribute
as input to another supervised trained classifier.

Therefore, the research question addressing in this paper
is (1) “How to develop a neural network model to classify
driving maneuvers from sensor fusion time series labeled
data by training with domain-specific knowledge?” (2) “How
to develop a neural network model to classify the driving
maneuvers from sensor fusion time series unlabeled data?”
To address these research questions in this work, we develop
(i) an LSTM Network for classification of driving maneuvers
from sensor fusion time series labeled dataset incorporating
domain-specific knowledge of moving vehicle; (ii) an LSTM
Autoencoder for the latent representation of unlabeled dataset
and transfer learning to proposed supervised model for clas-
sification.

The contributions in this paper can be summarized as
follows:

• We develop few class functions from domain specific
knowledge and convert them into binary domain specific
feature vectors to train the proposed model.

• We propose an LSTM network for supervised classi-
fication of driving maneuvers with improved accuracy
compared to other related works. For this purpose, we
train the model with binary domain specific feature
vector along with other temporal features.

• We propose an LSTM autoencoder for the compressed
representation learning so that latent features learning
can be transfer to train the proposed supervised LSTM
model.

This paper states the importance of the classification of
driving maneuvers in Section I. II. Literature review are
discussed in Section II. The theoretical framework is ex-
plained in Section III. The methodology of the proposed deep
supervised and unsupervised learning techniques has been
discussed in Section IV including preparation of dataset and
feature set extraction. Section V exploits and analyzes the
results including hyperparameter optimization. Section VI

2 VOLUME 4, 2016

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2021.3089660, IEEE Access

concludes the paper with future work.

II. LITERATURE REVIEW
In this section, we will discuss the previous related works for
driving maneuvers recognition. From the literature review, it
is noticeable that several techniques have been proposed and
developed to recognize driving maneuvers. In the following
subsections, we discuss about the classical approaches, ma-
chine learning approaches, and deep learning approaches.

A. CLASSICAL APPROACHES
In this category, we discuss the approaches that included
fuzzy inference rules, dynamic time warping, motif discovery
techniques in time-series data. Saiprasert et al. [16] proposed
a profiling algorithm that categorized drivers’ behavior using
sensory data collected from smartphones in a bidirectional
vehicle-to-infrastructure environment. Drivers were catego-
rized according to four different driving events namely ac-
celeration, braking, turning, and lane changing with the most
risk to cause an accident during their journey. To measure
categories particular Safety Index (SI) was used for all events
comprised of sudden acceleration, weights of acceleration.
Driver’s profile aimed to create an individual profile of
each driver considering safe and aggressive driving style.
However, the safety index was generated by combining the
index of all the sudden events. Hence, it is unable to measure
the driving risk associated with a particular maneuver. The
profiling algorithm calculated complex road geometry (i.e.,
curves and turns) by the higher value of sudden turn, lane
change than sudden acceleration, braking while a machine
learning approach can do weighing more efficiently. More-
over, the categories were created based on accelerometer
data which is not completely able to determine the angular
change of moving vehicle. Johnson et al. [18] proposed a
system that used smartphone-based sensor-fusion data such
as accelerometer, gyroscope, magnetometer, GPS, and video
to classify the type of driving maneuver and style of driving
as aggressive or nonaggressive. The authors used x-axis of
gyroscope, y-axis of accelerometer, z-axis of device Euler
angle rotation for detecting turning and y-axis of gyroscope,
z-axis of acceleration for longitudinal movements with Dy-
namic Time Warping (DTW) [26]. However, non-aggressive
lane change has not been possible to detected by the system
during the experiment because of lack of force or rotation
on the device to differentiate from noise. Only normal and
turn events has been detected by the DTW [26] algorithm.
Castignani et al. [19] developed a Fuzzy Inference [27] based
web-based a mobile tool to evaluate and score the overall
driving behavior in terms of acceleration, over speed, and
steering/bearing rate when turning at the intersections by
utilizing accelerometer, magnetometer, gravity sensor, and
GPS data. All the sensor data stored in a remote database
and based on a few predefined threshold values of each
possible event the system provided a score of all the driving
events. The authors combined 12 input variables and the
profiling algorithm used 18 fuzzy rules and outputted fuzzy

sets consisting of normal, moderate, and aggressive driving
styles. However, they suspected that there might be other
rules those were not considered in the work. Schwarz et
al. [28] categorized driving patterns from time- series nat-
uralistic driving data using Symbolic Aggregate Approxima-
tion (SAX) [29] and Matrix profile method [30]. The data
included maneuvers like turning, stopping at intersections,
parking, and leaving parking spaces . The authors performed
a speed and rotational transformation of acceleration signal
rather than DTW and to discover motif in time-series accel-
eration was codded with six alphabets (a-f) where each letter
expressed aggregated mean across five meters. However, the
work has not mentioned that how different maneuvers were
differentiate among each other through motifs.

B. MACHINE LEARNING APPROACHES
In this category, we discuss the related machine learning
approaches that have been proposed for the classification
of driving maneuvers. Van Ly et al. [31] applied Support
Vector Machine [32] and K-mean clustering [33] to build
an individual driver profile providing proper feedback to
reduce the number of dangerous car driving maneuvers. The
work best recognized braking while acceleration is the less
distinctive feature between two drivers and the provided best
accuracy was 60% and 65% for K-means clustering and
SVM, respectively. Cervantes-Villanueva et al. [34] proposed
a speed-based breakout detection agent for detecting sudden
speed variation and maneuver detection agent for classifying
four driving states which are stopped, driving, parking, and
parked. They applied Random Forests (RF) [35], Support
Vector Machines (SVM) [32], and fuzzy rule-based clas-
sifiers as maneuver detection agent. For this purpose, the
authors utilized accelerometer data that was collected by
smartphone. They found that RF provided best results in the
two-level agents or classifiers. In addition, the detection of
change of speed to activate the classifier reduce the overall
accuracy of the classifier but improved the computational
cost. Besides, they did not consider the kinematic states
of vehicles which involves angular motion. Ferreira et al.
[20] evaluated the quantitative performance of Multi-Layer
Perceptron (MLP), Support Vector Machines, Random For-
rest, Bayesian Networks [36] in classification of driving
maneuvers from smartphone sensors. Also, the author did a
comparative analysis of multiple combinations of the super-
vised machine learning algorithms to classify seven driving
maneuvers class. The authors also analyzed the performance
using multiple combinations of sensors with various axis
such as x, y, and z-axis of accelerometer, gyroscope, and
magnetometer for varied size sliding window. The authors
found that bigger sliding window improved the accuracy. As
well as, accelerometer, gyroscope with most axes provided
better performance. Among machine learning algorithms,
RF provided best performance. However, access sensor axes
increases the computational cost of the classifiers [14]. Be-
sides, as the author applied supervised techniques, a small
amount of labeled dataset has been used for classification and

VOLUME 4, 2016 3

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2021.3089660, IEEE Access

potential unlabeled time-series datasets were left unused.
Wang et al. [37] proposed a semi-supervised support vec-

tor machine (S3VM) approach to classify aggressive and
normal longitudinal driving style using a small amount of
labeled data. In order to labeled few data points, they ap-
plied k-means clustering method and then few clusters were
labeled using rule based approach. To solve the optimization
problem, they introduced a specific differentiable surrogate
of a loss function and to assign label quasi-Newton algorithm
was used with semi-supervised SVM. For feature selection
they had considered vehicle speed, throttle opening with
certain threshold range. All the driving data was collected
from a driving simulator; hence, real traffic scenarios were
not considered. They provided a comparison of their semi-
supervised SVM with supervised SVM and found that pro-
posed semi supervised SVM showed 10% increase accuracy.

C. DEEP LEARNING APPROACHES
In this category, we discuss the related approaches that used
deep learning techniques for driving maneuvers classifica-
tion. Carvalho et al. [21] examined the performance of three
deep neural network which are Recurrent Neural Network
(RNN) [38], Long Short Term Memory (LSTM) [39], and
Gated Recurrent Unit (GRU) [40] to classify seven driving
maneuvers from accelerometer data collected by smartphone.
However, only accelerometer data cannot present all the
changes during vehicle movement [14], [20]. The perfor-
mance of the model for classifying each class was not men-
tioned in the work. Alvarez-Coello et al. [22] proposed and
split the supervised multi-class driving maneuver classifica-
tion problem into two parts. The authors developed a binary
classifier by applying RF in order to classify aggressive and
non-aggressive driving events and the result was transferred
to the RNN model to recognize the type of maneuver. Among
the variant of RNN, LSTM performed better than GRU for
most of the combination in their experiment. However, the
authors mentioned that the used dataset was labeled manually
and has a possibility of bias with the labelers’ perception.
Sarker et al. [41] established a few hypotheses based on
domain-specific knowledge of moving vehicles which de-
scribe the kinematic state change of moving vehicle [14] and
proposed an LSTM network for the multi-class classification
of driving maneuvers from sensor fusion time series data. In
their proposed deep learning model, the authors trained the
classifier model by extracting features and domain-specific
knowledge of vehicle kinematics which enhance the perfor-
mance, precision, and time efficiency. However, like other
previous work, they utilized labeled datasets for supervised
techniques. We consider this approach as our primary refer-
ence extend the work in semi-supervised manner.

Another Semi-Supervised deep learning approach adopted
by [42]. Mammeri et. al [42] proposed a deep semi-
supervised approach utilizing manually few labeled driving
data considering three CAN bus parameters i.e., velocity,
acceleration, and steering wheel angle. They proposed a
coarse thresholding strategy to label data from video, re-

fined the created labels to reduce error and trained a simple
Convolutional Neural Network (CNN) to classify ten driv-
ing maneuvers subclasses which were stop, move, accelera-
tion, deceleration, constant speed, left/right turning, left/right
curving and constant direction under three groups (motion,
velocity, turning). After manual refinement they computed
87.3%, 78.4% and 76.9% for motion, velocity, and turning.
After training CNN model with the complete dataset they
computed overall accuracy 93.48% with 165 out of 4705
samples for training where 66 sample was labeled. However,
they have not discussed subclass accuracy. However, they
have trained the network with all samples and have not
mention from where the test data has come. If they used a
fragment of the dataset which means that the network was
pre-trained with the test data also and its easy to predict the
maneuver class of the test set for the model. Hence, definitely
the accuracy will be high.

Prior researchers who implemented fuzzy rule based sys-
tem, measured threshold of various states of moving vehicle
and depending on these values, they proposed equations to
calculated index of drivers’ behavior. This index value clas-
sify the drivers’ behaviour as aggressive, moderate or non-
aggressive. The limitations of this system is building fuzzy
rule for every circumstances is quite difficult. Researcher
who applied machine learning and deep learning approaches,
generally focused on supervised techniques using labeled
sensor fusion data. Obtaining labels data for every driving
maneuvers is difficult and expensive. As the data is being
labeled by human manually, the perfection of the maneuver
class label is heavily depends on the maneuver perception of
a labeler. Hence, there are possibilities of bias [22]. Besides,
most cases, a small amount of labeled dataset can be found
which further participate to train models. In addition, none of
the earlier researcher noticed the relationships of kinematic
states and maneuvers except for [14]. In this research, we
focus on the relationship of particular maneuvers with sensor
data changing nature and extract these features in feature
extraction process. In order to learn the complete dataset
(both labeled and unlabeled) and train the deep model with
these, we try to develop a semi-supervised mechanism by
transferring the latent space representation of dataset to our
proposed supervised deep model.

III. THEORETICAL BACKGROUND
In this section we discuss the theoretical background of mov-
ing vehicle and fundamentals of deep learning framework.
Besides, the significance of domain knowledge in machine
learning approaches is also illustrated. The Table 1 interprets
all the important symbols used throughout the paper.

A. DOMAIN SPECIFIC KNOWLEDGE OF MOVING
VEHICLE
It is very important to understand the data within the context
of the problem that we are trying to solve before modeling.
Domain knowledge can often guide us to understand the pre-
processing, finding significant features and hence, improve

4 VOLUME 4, 2016

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2021.3089660, IEEE Access

TABLE 1. Interpretation of symbols

Symbol Interpretation
−→a acceleration in a direction
−→w angular velocity in a direction
−→vt velocity in time t

ax, ay , az accelerometer data in x, y, z
axis, respectively

wx, wy , wz gyroscope data in x, y, z
axis, respectively

axslp , ayslp slope of accelerometer in x, y
axis, respectively

wzslp slope of gyroscope in z axis
axeng , ayeng energy of accelerometer in x, y

axis, respectively
wzeng energy of z axis of gyroscope

f(tacc), f(tbr), f(tllc) Class function of aggressive acceleration,
f(trlc), f(tlt), f(trt) braking, LLC, RLC, LT, RT and

f(tnon) non-aggressive maneuvers, respectively
fS , fD Statistical, Domain-Specific feature set,

respectively
ht, mt hidden vector, memory vector, respectively

ig , fg , cg , og input, forget, update, output
gate of LSTM network, respectively

xt, x̃t Input, reconstructed data of
Autoencoder, respectively

l1, l2, l3 Input Layer of Autoencoder
l5, l6, l7 Reconstructon layer of Autoencoder
u, v, z Output unit of Autoencoder layer
l4, l8 RepeatVector, TimeDistributed layer

of Autoencoder, respectively

the precision and accuracy of the model. Domain knowledge
is also essential to deal with a specific problem and the
modeling and evaluation process can be vary depending on
it. Instead of labeling, neural networks can be trained to
capture mathematical and logical relationships [43]. Stewart
and Ermon in [43] supervised a neural network model by the
physics of free-falling objects rather than training directly on
labels and compared the model trained on labels and domain
knowledge-based physical laws. Therefore, before building
a classification model we need to understand the domain-
specific knowledge of the real traffic scenarios.

In our target domain of moving vehicle, there are some
changes in kinematic states such as acceleration, deceler-
ation, angular velocity, etc. of the subject vehicle while
performing particular movements that is maneuvers. These
change of states follows a few specific rules that can be
described by the theory of rigid body kinematics and have
been discussed by Wu et al. in [14]. When a vehicle move
forward it produces some longitudinal displacement that is
acceleration and deceleration which can be defined by the
first kinematic formula. In t, the acceleration, −→a can be
defined by (1). While performing a lateral movement, the
vehicle produces lateral displacement and angular velocity.
During turning around a radius, r, the angular velocity, −→w of
a vehicle can be defined by (2).

−→a =
−→vt −−→v0

t
(1)

−→w =
−→vt
t

(2)

In (1), −→v0 is the velocity in 0 second and −→vt is the velocity
in t second. When −→vt>−→v0 , then −→a >0; hence, at the begin-
ning of acceleration, the time series data increases from zero
to a greater value and at the end, it decreases to a lower value.
The pattern during acceleration is shown in the Fig. 1. On
the contrary, while −→vt<−→v0 then −→a <0. So, the time series
data shows opposite pattern in the negative x axis, referred as
braking and shown in the Fig. 1. From (2), −→w proportional
to −→vt in time t, therefore, change of angular velocity is
persistent to acceleration, particularly in this context, lateral
acceleration.

This change of states can be captured as continuous time-
series data through various sensors such as accelerometer,
gyroscope, magnetometer, etc. Each of these sensors has
three axes in x, y, and z-direction. In this paper, we denote
accelerometer data by ax, ay , az and gyroscope data by wx,
wy , wz in x, y, z dimension, respectively. Since ax, ay and
wz data can recognize the common driving maneuvers [14],
we consider these data only. It is illustrated in the Fig. 1
that when vehicle moves in longitudinal distance that is, at
the time of acceleration and braking ax shows meaningful
change in pattern. Similarly, because of lateral displacement
and angular velocity in similar direction ay and wz shows
significant change in pattern during left, right turn and left,
right lane change.

By plotting driving data, Wu et al. [14] and Sarker et al.
[41] found that sensor fusion time-series driving data follows
some threshold values for a particular axis during a particular
maneuver. The threshold for each axis is illustrated in Fig. 1.
During non-aggressive acceleration and braking, ax data
ranges from zero to 2 and -2, respectively. ax data is not much
meaningful for recognizing Left Lane Change (LLC) and
Right Lane Change (RLC). During Left Turn (LT) and Right
Turn (RT) ay rise from 0 to 1.5 and reaches to negative axis
in the same amount. Besides,wz follows the same pattern but
ranges 0 to 2 for LT and 0 to −2 for RT. Along with sensor
fusion data, statistical features such as mean, local maxima,
minima, variance, standard deviation, slope, energy follow a
specific threshold for a particular maneuver. We found that
among the statistical features, slope, and energy capable of
making some important differences in decision making of
machine learning model. So, we convert few domain specific
binary features from class functions. The class functions are
discussed in Section III-B.

B. CLASS FUNCTIONS FROM DOMAIN SPECIFIC
KNOWLEDGE
Sarker et al. [41] investigated and found that these changing
pattern and their corresponding threshold has significance
during feature set extraction of driving maneuver classifica-
tion. They developed seven class hypotheses based on obser-
vation of labeled data patterns and provided some threshold
for each maneuver class which can be considered as class

VOLUME 4, 2016 5

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2021.3089660, IEEE Access

FIGURE 1. Illustration of time series data pattern of ax, ay and wz during
acceleration, braking, left lane change, right lane change, left turn and right
turn in time t. The vertical axis shows the safe threshold value of ax, ay and
wz , particularly.

functions of corresponding maneuver class. The functions are
as follows:

• Class 1: Aggressive Acceleration

f(tacc) =
{
(ax > 2) ∨ (axslp

> 5); (3)

• Class 2: Aggressive Brake

f(tbr) =
{
(ax < −2) ∨ (axslp

< −5); (4)

• Class 3: Aggressive Left Lane Change

f(tllc) =

{
(ay > 2) ∨ (ayslp

> 5);

(wz < −0.2) ∨ (wzslp
< −0.6);

(5)

• Class 4: Aggressive Right Lane Change

f(trlc) =

{
(ay < −2) ∨ (ayslp

< −5);
(wz > 0.2) ∨ (wzslp

> 0.6);
(6)

• Class 5: Aggressive Left Turn

f(tlt) =

(ay > 1.5) ∨ (ayslp

> 5)
∨(ayeng

> 0.3);

(wz > 0.2) ∨ (wzslp
> 0.6)

∨(wzeng
> 0.3);

(7)

• Class 6: Aggressive Right Turn

f(trt) =

(ay < −1.5) ∨ (ayslp

< −5)
∨(ayeng

> 0.3);

(wz < −0.2) ∨ (wzslp
< −0.6)

∨(ayeng
> 0.3);

(8)

• Class 7: Non Aggressive

f(tnon) = ti /∈
{
f(tacc), f(tbr), f(tllc), f(trlc),

f(tlt), f(trt)} (9)

Here, the hypotheses are being considered as function of
time, t defined by (3) to (9), respectively, where f(tacc),
f(tbr), f(tllc), f(trlc), f(tlt), f(trt) and f(tnon) is function
of time series that represent event of aggressive acceleration,
braking, left lane change, right lane change, left turn, right
turn, and non-aggressive maneuver, respectively. axslp

, ayslp

and wzslp
represents slope of ax, ay , wz , respectively and

axeng
, ayeng

and wzeng
represents energy of ax, ay , wz ,

respectively. Eq. (3) implies that if ax data is greater than
2 or slope of ax data is greater than 5 the data belongs to
f(tacc) i.e., Aggressive Acceleration class. Similarly, (4)
implies that if ax data is less than −2 or slope of ax data
is less than −5 the data belongs to f(tbr) i.e., Aggressive
Brake class. If ay data is greater than 1.5 or ayslp

greater than
5, then the data belong to Aggressive Left Lane Change class
function, f(tllc). Besides, if wz is less than −0.2 or wzslp

is less than −0.6 the data belong to f(tllc). Eq. (6) denotes
that if ay data is less than 1.5 or ayslp

less than 5, then the
data belong to Aggressive Right Lane Change class function,
f(trlc). Also, if wz is greater than 0.2 or wzslp

is greater than
0.6 the data belong to f(trlc). ay data which is greater than
2 or ayslp

is greater than 5 or ayeng
is greater than 0.3 then

data belong to Aggressive Left Turn class function, f(tlt).
Moreover, if wz data greater than 0.2 or wzslp

is greater than
0.6 or wzeng is greater than 0.3 the data belong to f(tlt). ay
data which is less than −2 or ayslp

is less than −5 or ayeng

is greater than 0.3 then data belong to Aggressive Right Turn
class function, f(trt). Also, if wz data is less than −0.2 or
wzslp

is greater than−0.6 orwzeng is greater than 0.3 the data
belong to f(trt). Time series data that do not fall into class
1 to 6 will be non-aggressive and belong to Non Aggressive
class function, f(tnon).

Since the above functions contain domain-specific knowl-
edge of moving vehicle maneuvers we convert these class
functions into binary features vector. A fragment of the
domain-specific knowledge vector is illustrated in Table. 2
and is discussed in the Section IV-B.

C. DEEP LEARNING FRAMEWORK
Deep learning is a sub-field of broader machine learning
family involved with algorithms inspired by artificial neural
networks. A neural network with at least two-layer referred
to as a deep neural network. It creates a map of neurons and
assigns weights for connections. Each connection provides
output by multiplying weights to input and adjust weight
vectors until the model able to accurately determine a pattern.
The computation of a deep neural model involves complex
data processing with convoluted mathematical modeling.
Deep architecture has many variants suitable for a specific
domain. In our work, we develop an LSTM model for driving
maneuvers classification from time-series data.

D. DEEP UNSUPERVISED REPRESENTATION
LEARNING FRAMEWORK
Neural Networks have the idiosyncrasy of being organized
as required for solving a problem. A different form of the
neural network is AutoEncoder (AE) which can be used as
a standalone feature learner [25]. The fundamental principle
of AE is achieving a low dimensional latent representation
by optimizing a local unsupervised criterion defined by the
loss function, each layer is being trained at once to produce
a meaningful higher-level compressed representation of orig-
inal input, eventually to enhance the generalized represen-
tation [44]. In particular, AE is a neural network designed

6 VOLUME 4, 2016

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2021.3089660, IEEE Access

in such a way that a bottleneck is imposed in the network
which compels a compressed knowledge representation of
the original input.

A simple AE consists of three components: Encoder, Code
or Latent Space Representation, and Decoder. The encoder
compresses the input into a latent space representation in a
reduced dimension. Code is the part of the network that repre-
sents the compressed input that is fed to the decoder. The de-
coder layer decodes the encoded input from the latent space
representation. The process of training of AE is analogous to
a feedforward neural network through backpropagation [45].

Since the training process of AE does not require explicit
labels to train on in order to generate a model for the data,
it can be utilized to learn unlabeled data. AE is only able to
compress meaningful data similar to what it has been trained
on. It is lossy by its nature which means the output of the
AE will not be exactly the same as the input. It will be close
but degraded reconstruction. The target of training of an AE
is to minimize the reconstruction error by optimizing the
hyperparameters of the network [45].

In this work, we develop an LSTM Autoencoder to learn
unlabeled time-series datasets and build a compressed feature
vector which in turn fed into our supervised model for
classification of driving maneuvers.

IV. METHODOLOGY
The main objectives of our work are two-fold. First of all,
we develop a supervised classifier in order to solve the
multiclass driving maneuver classification problem using a
deep learning approach (i.e., LSTM). This classifier is being
trained with labels i.e., class information of time series sensor
fusion data. Afterward, we develop an unsupervised LSTM
AE model to learn latent space representation of the com-
plete dataset without the class information. Finally, the latent
space representation of input data is transferred through the
supervised LSTM classifier model to predict the classes of
the maneuver.

A. PREPARATION OF DATASET
Let, the set of time series data from the x-axis of
the accelerometer sensor is Sax

= {ax1
, ax2

, . . . ,axn
},

the set of time series data from the y-axis of the ac-
celerometer sensor is Say

= {ay1
, ay2

, . . . ,ayn
} and the

set of time series data from the z-axis of the gyro-
scope sensor is Swz= {wz1 , wz2 , . . . ,wzn}, where n
is the number of time series. The set of class, C =
{Cacc,Cbr,Cllc,Crlc,Clt,Crt,Cnon} where Cacc, Cbr, Cllc,
Crlc, Clt, Crt and Cnon represent class of aggressive ac-
celeration, braking, LLC, RLC, LT, RT and non-aggressive
maneuver, respectively. Statistical feature set, fS =
{mean(ax, ay, wz), var(ax, ay, wz), std(ax, ay, wz), slp(ax, ay, wz),
eng(ax, ay, wz),max(ax, ay, wz),min(ax, ay, wz) be the set of sta-
tistical features extracted from time series data. Domain
specific feature set, fD ={f(tacc), f(tbr), f(tllc), f(trlc),
f(tlt), f(trt), f(tnon)} be a set of domain-specific knowl-

edge based features which contains the functions of aggres-
sive and non-aggressive maneuvers.

Driving Maneuvers Classification System classifies a time
series data, t ∈ (Sax

, Say
, Swz

) from a set of time series
driving data, T = {t1, t2,. . . tm} into a class Ci ∈ C
wherem = number of test data. Therefore, the task of Driving
Maneuvers Classification System is to accordingly assign ti
to Ci: <ti, Ci>

B. FEATURE SET EXTRACTION
The performance of any deep learning algorithm heavily re-
lies on the features applied during the training process. Since
sensor fusion time series data contains meaningful patterns
of driving maneuvers we consider 3 set of sensor fusion
data which are Sax

, Say
and Swz

as our foremost features.
Besides, statistical features set, fS containing 7 statistical
features of ax, ay and wz i.e., total 21 statistical features.
These features exhibit substantial changes in their patterns
during specific maneuvers, especially, sharp slope and energy
of ax, ay and wz is observed during aggressive maneuvers
[41]. The slope of each axis data can be defined by (10) and
energy is defined by (11) [14]. Time of a particular event
is another important feature. In our proposed unsupervised
model, we do not consider categorical class information but
in supervised model we consider categorical information i.e.,
class set, C as a feature. In addition, there are 7 domain-
specific features for maneuver classes included in fD.

Slope, S =
axslp(i)

− axslp(i − 1)

ti − t(i − 1)
(10)

Energy,E =
axi

2 + ax(i − 1)

2 + · · ·+ axi − (k + 1)

2

k
(11)

where, slope of ax of ith and (i − 1)th point in a window
is represented by axslp(i)

, axi
is ax data of ith point in the

window, size of sliding window is represented by k.
We take account of these statistical features. The amount of

change of sensor data during each maneuver has illustrated in
Fig. 1. and based on these thresholds and data pattern change
we transform the hypotheses of Section III into domain-
specific binary feature vector space. Table. 2 illustrates a
small fragment of domain-specific feature space.

In Table. 2, the column represents the class of maneuvers
where Acc, Brake, LLC, RLC, LT, RT, and Non_agg indicate
aggressive acceleration, braking, left lane change, right lane
change, left turn, right turn, and non-aggressive maneuvers,
respectively. If functions of an event defined by (3)– (9) is

TABLE 2. Domain-Specific Binary Feature Vector Space

TS Acc Brake LLC RLC LT RT Non_agg
t1 1 0 0 0 1 1 0
t2 1 0 1 0 1 0 0
t3 0 0 0 0 0 0 1
. .
tn 1 0 1 0 1 0 0

VOLUME 4, 2016 7

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2021.3089660, IEEE Access

FIGURE 2. Abstract view of the proposed supervised LSTM Classifier. Driving
Maneuvers Classification System automatically assigns labeled time series ti
to class Ci.

true for any time series, ti then the column value for this event
is 1, otherwise 0 where i = 1, 2, . . . ,N .

C. DEEP LEARNING MODEL ARCHITECTURE
Time Series classification needs to capture the long term
functional dependencies between the sequences of time se-
ries and the class information by training the model with
a set of known classes [46]. Among various deep learning
models RNN, LSTM, GRU are suitable for the classification
of sequential data. We prefer to use the LSTM model to
capture the historical information between the sequence of
present and past time series of driving maneuvers.

1) Supervised Model Architecture
LSTM is a variant of RNN which was proposed as a solution
to the exploding and vanishing gradient problem. The model
architecture comprises three major blocks: An input layer,
LSTM hidden layer, and a Classification layer. An abstract
view of the proposed supervised framework is depicted in
Fig. 2.

• Input Layer: The developed LSTM model is a sequen-
tial model with multiple layers. We add the input layer
to the sequential model followed by the later LSTM
layers and dense layers using Keras add method. The
input layer passes a few arguments which are units,
activation function, input shape, and return sequences.
Through the input layer, we pass 128 units or nodes
which is the dimensionality of the output space and will
be the input of the next layer. The input layer accepts
input of shape (t × f) where t = no. of timesteps,
f = no of feature, output shape is (t × 128). We
consider batch size = (1

10)× the training data size [47].
In order to handle the non-linearity, we use Rectified
Linear Unit (ReLu) because it has the advantage of
removing the problem of vanishing gradient faced by

sigmoid and tanh activation function. Return sequences
determine whether to return the last output in the output
sequence or the full sequence and it has a Boolean value.
We consider it as True because we want to return full
sequence.

• LSTM Hidden Layer: We add two LSTM hidden lay-
ers to our model. Each LSTM consists of hidden units
of size h. LSTM by structure has four gates which are
Forget gate, Input gate, Update gate, Output gate. LSTM
process an input sequence of the input vector as a pair
(xi, yi). For each pair of (xi, yi) and each timestep, t
a hidden vector ht, memory vector, mt conserved in
each LSTM block. Through these vectors, the LSTM
block regulates the updates and output states of blocks
and eventually produce target output yi based on past
input state of input xi. Upon receiving the output of a
previous state, ht − 1, to keep the relevant information
forget gate determines which information should be
removed from previous memory vector, mi − 1. If we
consider (13) we can see it is surrounded by a sigmoid
function to express the input between 0 and 1. Input gate
(ig) determines how much new information to add from
the present input to the present cell stated by (12) and
through sigmoid function decides which value needs to
be updated. In (14) tanh function build a new candidate
vector need to added in the present cell. Update gate
(cg) use input gate, (ig) and memory vector of previous
state, mi-1 to determine how much to write a cell which
is shown by (16). Output gate (og) determines which
information will move from the new memory vector, mi
to hidden vector hi shown by (15). The processing is
shown by (12)- (17).

ig = σ(W i ∗ [h(t − 1), xt] + bi) (12)

fg = σ(W f ∗ [h(t − 1), xt] + bf) (13)

cg = tanh(W c ∗ [h(t − 1), xt] + bc) (14)

og = σ(W o ∗ [h(t − 1), xt] + bo) (15)

mt = fg �m(t − 1) + ig � cg (16)

ht = og � tanh(mt) (17)

Here σ represents the sigmoid activation function, ig ,
fg , cg , og represent input gate, forget gate, update gate,
output gate, respectively. W i, W f , W g , W o represent
weight vector of input gate, forget gate, update gate and
output gate, respectively. bi, bf , bg , bo represent bias
vector of input gate, forget gate, update gate, output
gate, respectively.
We used a rectified linear unit (Relu) activation function.
To avoid over-fitting a dropout layer is being introduced
after each hidden layer with a dropout ratio of 20% [48].
Dropout is a phenomenon of a machine learning model
that performs better on the training data compared to
the test data. At every iteration, 80% of neurons are

8 VOLUME 4, 2016

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2021.3089660, IEEE Access

randomly selected by the model to pass their output
from the first hidden layer to the second hidden layer
which further generates a new vector [48].

• Dense Classification Layer: We add a dense layer at
the end of the model to make our model more robust.
The number of neurons in the dense layer is equal to
the number of classes. For our model, the number of
neurons in the dense layer is seven since we want to
predict seven classes of maneuvers.
Eq. (18) corresponds to the cross-entropy loss function
[48] that we used to train the model. We use categorical
cross-entropy as we are dealing with a multi-class cate-
gorical classification problem. Here i subscript indicates
ith time series input, T is size of output time series and
ti represents actual driving class of ith time series.

Loss(y, ypred) = −
1

T

T∑
i=1

(ti · log(ypred)) (18)

This module determines the class of driving maneuvers
from new time series data. For classification, new unlabeled
data is feed to the developed LSTM classifier. From the
feature vector of the unlabeled test data the trained classifier
predicts the probability of unlabeled data to belong to a
particular class. In Section IV-A2 we discuss the training of
an autoencoder model to learn the compressed feature vector
of unlabeled data and transfer the learning to Driving Ma-
neuvers Classifier Model to predict the class of the unlabeled
data.

2) Unsupervised Model Architecture
An LSTM Autoencoder is an application of an autoencoder
for sequence data that uses an Encoder-Decoder LSTM archi-
tecture. A very well-known unsupervised implementation of
LSTM autoencoder is that once fit in the model, the encoder
part can be used to encode and compressed the sequence
data. In turn, the encoded or compressed data can be used in
data visualization or as a feature vector input to another su-
pervised learning model. Considering its training mechanism
which is based on supervised learning, it is also referred to
as a self-supervised learning model. Since the entire process
comprises of unsupervised and supervised learning model,
it is sometimes called semi-supervised learning. Alike other
typical autoencoders, our developed encoder is a part of a
broader LSTM autoencoder model that endeavors to regener-
ate the input.

The proposed unsupervised LSTM autoencoder model ar-
chitecture comprises three major blocks: Encoder, Code or
Latent Space Representation, and Decoder. The structure of
the proposed stacked autoencoder is depicted in Fig. 3.

• Encoder Layer: In the encoding phase, the model
learns a compressed latent representation of the input
by mapping the input to the hidden layer. Given an
unlabeled time series input xt, where t = 1, 2, . . .
N . The encoder function takes input xt and provides
encoded vector, h1 by (19) and shown in Fig. 3. h1

FIGURE 3. Architecture of the proposed Autoencoder

becomes the input of the next layer to produce encoded
vector h2 shown in (20). The number of cells in the input
layer of the LSTM autoencoder is equal to the timesteps,
t. Through the input layer of the LSTM autoencoder,
we pass few arguments such as the number of units
or dimension of output space in the subsequent layer,
activation function, input shape, return sequences. Re-
turn sequences as true will make each cell per timestep
emit a signal. Signal emitted from a timestep cell of the
previous layer, l1 is transferred to the cell of the same
timestep in the following layer. The flow diagram of the
proposed LSTM autoencoder is illustrated in Fig. 4. The
first encoding layer takes input data of shape (t × f)
where t = number of timesteps and f = number of
features and t number of timesteps each will outputs
u number of units or output dimension space as we
consider return sequence as True. The second encoding
layer, l2 receives t × u input from l1 and reduces the
feature size v as our goal is to compressed the input
dimension. In l2 we consider return sequence is also
True, so the output shape is t × v. We use activation
function Exponential Linear Unit (ELU). ELU has a
similar function as ReLU except negative input. It tends
to converge the cost to zero faster than other activation
functions. It becomes smooth slowly while ReLU be-
comes smooth sharply. ELU provides better result for
our model.

h1 = σ(W 1xt + b1) (19)

h2 = σ(W 2h1 + b2) (20)

Here, W 1, b1 is the weight vector and bias vector of l1
and W 2, b2 represents the weight vector and bias vector
of l2, respectively.

• Latent Space Representation: Layer l3 outputs a re-
duced dimension of size z and return sequence is False.
Hence, this layer will output an encoded feature vector
of size 1 × z of the input data. We extract the encoded
feature vector, h3 and transfer the learning in our super-
vised LSTM network. We add a RepeatVector method

VOLUME 4, 2016 9

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2021.3089660, IEEE Access

which creates an interconnection between encoder and
decoder. The argument of RepeatVector method is t and
it imitates the feature vector t times. In (21), h3 is the
encoded vector or latent space, W 3 and b3 is the weight
vector and bias vector of code layer l3, respectively.

h3 = σ(W 3h2 + b3) (21)

• Decoder: In the decoding phase, the model recreates the
target from the compressed latent representation during
the encoding phase. Decoder layers unfold the encoding
layers and stacked in reverse order of encoding layers.
The layers of decoder l5, l6, l7 are mirror image of
encoder layer l3, l2 and l1, respectively. f(x̃t) is the
reconstruction function of xt.

h̃2 = σ(W̃ 2h3 + b̃2) (22)

f(x̃t) = h̃1 = σ(W̃ 1h̃2 + b̃1) (23)

In (22) h̃2, W̃ 2, b̃2 represents the decoded vector, weight
vector and bias vector of l5 layer, respectively. Similarly,
in (23) h̃1, W̃ 1, b̃1 represents the decoded vector, weight
vector and bias vector of l6 layer, respectively.
We added a TimeDistributed wrapper with dense layer
which takes an argument equal to the number of fea-
tures, f . This layer, l8 outputs a vector of length equal to
the number of features outputted from the l7 layer. Layer
l7 outputs u features alike encoding layer l1. Hence,
TimeDistributed layer, l8 takes a u long vector and
duplicates it f times. A dropout layer is being introduced
after each hidden layer with a dropout ratio of 30% [48].
At every iteration, 70% of neurons are randomly chosen
by the autoencoder model to pass their output from the
one hidden layer to the next hidden layer.
Eq. 24 presents the mean squared error loss function
[48] that we use to train the model with the encoded
feature vector. The loss is the mean of the squared
differences between the target variable and the predicted
value.

Loss(y, ypred) = −
1

N

N∑
i=1

(y − ypred) (24)

In (24), i subscript indicates ith input, N is number of
input time series, y, ypred represents target variables and
predicted values, respectively.

3) Semi-Supervised Driving Maneuvers Classifier Model
The goal of the semi-supervised driving maneuvers classifier
model module is to determine the class of driving maneuvers
from sensor fusion data that has never seen by the model.
Initially, new test data is fed to the unsupervised LSTM
autoencoder model for latent representation learning where it
passes through the encoding and decoding process. In order
to train the supervised LSTM classifier with unsupervised
learning, this encoded feature vector is transferred to the
supervised LSTM classifier as input and in turn, the classifier
can predict the classes of the test data.

V. RESULT AND ANALYSIS
In this section, we describe the used dataset, experimental
environment setup, hyperparameters settings for both super-
vised and semi-supervised model. Finally, we explain the
experimental results for both models.

A. DATASET DESCRIPTION
The dataset [49] used in this experiment contains 156512
time-series data from 4 trips conducted by two drivers who
have an expertise of 15 years in driving and the roads were
smooth. Time series was recorded by a smartphone applica-
tion where accelerometer and gyroscope sensors were pre-
installed and the smartphone was placed on the windshield
in a continuous stable position. During the event, the front
view of the subject vehicle was also recorded by a camera
which further helped to do manual labeling of the driving
maneuvers. The drivers were told to do a specific maneuver
and no pre-training was provided.

B. EXPERIMENTAL ENVIRONMENT SET UP
The aim of this experiment is to identify a suitable hyperpa-
rameter combination to optimize the developed deep learning
model and analysis the efficiency of the model over other
related developed classifiers. We use jupyter notebook to
conduct the experiments. The architectures are being imple-
mented using Keras == 2.3.0 framework with Tensorflow ==
2.0 (CPU) backend in Python == 3.8.3. For statistical analysis
and visualization Matplotlib 3.3.3 and Seaborn 0.11.1 are
used. Numpy 1.19.4 and Scikit-learn 0.24.0 are used for sci-
entific computation. The model is trained on CPU instances
with RAM 8 GB and a core i-5 processor.

C. HYPERPARAMETER OPTIMIZATION
Hyperparameter has a significant impact on the performance
of the model. Network architecture (the number of neurons,
the number of layers) and the process of training (batch size,
learning rate, optimizer) is being determined by hyperpa-
rameter. In our work, we used two different settings for the
supervised and unsupervised model.

1) Hyperparameter of Supervised Model
Two LSTM hidden layers have been used with 128 units for
each. The hyperparameter setting such as batch size, dropout
rate, optimizer, learning rate, and the number of epochs
of the proposed supervised model is listed in Table. 3. To
discover the optimal hyperparameter we iterate through the
following hyperparameter space. The proposed supervised
LSTM model is being trained with an optimized combination
of hyperparameters.

2) Hyperparameter of Unsupervised Model
The output dimension of the input layer is 31 and in two
hidden layers 20 and 10 hidden units, respectively are used.
The hyperparameter setting for the unsupervised model such
as batch size, dropout rate, epochs, learning rate has been

10 VOLUME 4, 2016

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2021.3089660, IEEE Access

FIGURE 4. Flow diagram of proposed Encoder-Decoder LSTM architecture

TABLE 3. Hyperparameter settings for Supervised Model

Hyperparameters Hyperparameter space Optimal value
Batch Size 10, 20, 50, 100, 500, 886

800, 1000, 12521
Dropout 0.1, 0.2, 0.25, 0.3, 0.35, 0.2

0.4, 0.45, 0.5, 0.55,
0.6, 0.65, 0.7, 0.75

Optimizer SGD, RMSprop, Adam
Adam, Adadelta

Learning Rate 0.9, 0.6, 0.1, 0.09, 0.06, 0.01, 0.001
0.009, 0.006, 0.001, 0.0009,

0.0006, 0.0001, 0.00001
Number of Epochs 10, 50, 100, 150, 500

(for stand alone 300, 500, 1000,
Supervised Model) 1800, 2000, 3000
Number of Epochs 10, 50, 100, 1000

(for Semi- 150, 300, 500,
Supervised Model) 1000, 15000

TABLE 4. Hyperparameters Setting for Unsupervised Model

Hyperparameters Hyperparameter space Optimal value
Batch Size 10, 50, 100, 200, 14086

500, 874, 1000
Dropout 0.1, 0.15, 0.2, 0.25, 0.3, 0.3

0.35, 0.4, 0.45, 0.5, 0.55,
0.6, 0.65, 0.7, 0.75

Optimizer SGD, RMSprop, Adam, Adam
Nadam

Learning Rate 0.9, 0.6, 0.3, 0.1, 0.001
0.09, 0.06, 0.03, 0.01,

0.009, 0.006, 0.003, 0.001,
0.0009, 0.0006, 0.0003,

0.0001, 0.00001, 0.000001
Number of Epochs 10, 50, 100,120, 300

150, 300, 500

specified in Table 4. To find the optimized hyperparameter
combination we iteratively train the model through the hyper-
parameter setting. The proposed unsupervised autoencoder
model is being trained with the optimal hyperparameters and
provides lower loss and the best performance after transfer
the encoded vector to the supervised model.

D. RESULTS AND DISCUSSIONS
The results of the proposed work is discussed in two fold.
At first, we discuss the results of the proposed supervised
model. Then we analyse the result of semi-supervised model.
Besides, we compare the proposed work with other related
works. A 10-fold Cross-Validation is applied to evaluate the
skill of both stand alone Supervised, Unsupervised and Semi-
Supervised model. For each fold the models are trained with
9 fold of the dataset and are validated on remaining fold of
the dataset.

1) Results of Supervised Model
The performance of the standalone Supervised model has
been evaluated by accuracy, loss, precision, recall, F1-score
and ROC curve on test dataset and performance for all the
folds are listed in Table 5. The best supervised model is
achieved in the 10th fold shown in bold. The best performance
of the model on test data is computed accuracy, loss, preci-
sion, recall and F1-score is 0.9810, 0.1609, 0.9767, 0.9822
and 0.9794, respectively.

A 7×7 confusion matrix of the best standalone Supervised
model is shown in Table. 6 where the rows and columns
represent actual class and predicted class, respectively when
7 is the number of target classes. This matrix compares the
actual target values with that of predicted by the supervised
model.

The comparison of evaluation scores of the proposed best
Supervised model trained with and without fD are listed in
Table 7.

The variation of accuracy and loss over the number of
epochs for the training and validation dataset of the best su-
pervised model is demonstrated by Fig. 5 and Fig. 6, respec-
tively. Initially, the training and validation accuracy increases
simultaneously, but after 100 epochs increasing rate becomes
slower. On the other hand, training and validation loss de-
creases to 100 epochs, after that the increment rate becomes
slower. At 500 epochs, the model provides the best training
and validation accuracy which is 99.98% and 98.10%, and
training and validation loss is 06.84% and 16.09%. Fig. 7

VOLUME 4, 2016 11

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2021.3089660, IEEE Access

TABLE 5. Evaluation Metrics of 10 fold Cross-Validation of standalone Supervised Model trained with fS and fD

Metrics Fold 1 Fold 2 Fold 3 Fold 4 Fold 5 Fold 6 Fold 7 Fold 8 Fold 9 Fold 10
Train Accuracy 0.9990 0.9613 0.6693 0.9075 0.7154 0.9570 0.9988 0.9963 0.9724 0.9998

Train Loss 0.0039 0.1049 0.8818 0.2541 0.7886 0.1197 0.0042 0.0106 0.0788 0.0684
Test Accuracy 0.9666 0.9404 0.6832 0.9025 0.6877 0.9404 0.9602 0.9557 0.9250 0.9810

Test Loss 0.1619 0.2117 0.8849 0.2920 0.8302 0.1717 0.1871 0.2114 0.2280 0.1609
Precision 0.9599 0.9309 0.7437 0.9129 0.6723 0.9327 0.9584 0.9500 0.9161 0.9768

Recall 0.9591 0.9261 0.5796 0.8387 0.5850 0.9405 0.9503 0.9490 0.9212 0.9822
F1-Score 0.9594 0.9267 0.5988 0.8653 0.5969 0.9354 0.9541 0.9491 0.9184 0.9794

TABLE 6. Confusion Matrix of Proposed best Supervised Model trained with
fS and fD

Actual Predicted Class
Class ACC Brake LLC LT RLC RT Non

_Agg
ACC 214 3 0 0 0 0 3
Brake 0 145 0 1 0 0 0
LLC 0 0 43 0 0 0 0
LT 1 0 0 192 0 0 2

RLC 1 0 0 0 54 0 1
RT 1 1 0 0 0 192 1

Non_Agg 2 0 2 0 2 0 247

TABLE 7. Evaluation score of proposed best Supervised Model trained with
and without fD

Evaluation Metric Score
Proposed Model Proposed Model

trained with trained without
fD fD

Train Accuracy 0.9998 0.9980
Test Accuracy 0.9810 0.9620

Train Loss 0.0684 0.4824
Test Loss 0.1609 0.3047
Precision 0.9768 0.9645

Recall 0.9822 0.9588
F1-score 0.9794 0.9615

depicted the Receiver Operating Characteristic (ROC) curve
of Supervised Driving Maneuvers Classification.

To analyze the performance of the model over other clas-
sical or machine learning classifier models we compare its
performance with other related works which is listed in Table
8. From Table. 8 it is clearly observed that deep learning
methods perform better than other methods. Among deep
learning models, LSTM and GRU perform better than the
SimpleRNN. In comparison to Paper [21], our proposed su-
pervised model outperforms. We tested our model by training
with only statistical features and also along with domain-
specific features. The model provides the best performance
while training with statistical features along with domain-
specific features. It takes 500 epochs and two hours to train
with statistical features along with domain-specific features
for best performance while 2000 epochs and eight hours
for training without domain-specific features. For training
with an unsupervised encoded feature vector, the proposed
supervised model needs to train 1000 epochs to get the best
performance.

TABLE 8. Comparison of the proposed work with other Supervised
techniques

Paper Classifier/Model Accuracy
Proposed Supervised Method LSTM 98.10%

Proposed Semi-Supervised Method AE-LSTM 88.35%
Alvarez-Coello et al. [22] RNN 78.59%

Carvalho et al. [21] LSTM and GRU >95%
SimpleRNN 70%

As we train the best supervised model with best un-
supervised latent space representation of driving data the
performance of the Semi-Supervised model equally depends
on the performance of unsupervised latent space learning of
unlabeled data and the supervised classifier model. The re-
sults of unsupervised cross-validation is listed in Table 9. Au-
toencoder model provides by nature a lossy reconstruction of
data. When the proposed LSTM autoencoder learns the unsu-
pervised latent representation there is a small amount of loss
involves discussed in Section V-B2 which further degrades
the performance of the supervised model. The proposed
semi-supervised model provides accuracy, precision, recall,
F1 score of 88.35%, 85.99%, 86.37%, 86.15%, respectively
on test data which is less than that of the proposed supervised
model. However, as the Semi-Supervised approach can be
used for the classification of unlabeled data it is more useful
than supervised techniques. We also proposed a few future
approach to improve the performance of the proposed semi-
supervised approach.

2) Results of Semi-Supervised Model
We apply 10-fold Cross-Validation to build the best un-
supervised encoded latent space feature vector for various
LSTM autoencoders architectures. The architectures and cor-
responding evaluation scores are listed in Table 13. The
Mean-Squared-Error (MSE) and Root-Mean-Squared-Error
(RMSE) loss with the best LSTM-AE architecture model
for each fold is presented in Table 9 and the best developed
unsupervised model is found in 6th fold. This encoded feature
vector found from the 6th fold is transferred to the supervised
model as input. This supervised model is trained applying
stratified 10-fold cross-validation. The evaluation score of
Semi-Supervised model are presented in Table 10 and it is
clear from Table 10 fold 1 provides the best semi-supervised
Model.

Fig. 8 illustrates the train and validation loss during the

12 VOLUME 4, 2016

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2021.3089660, IEEE Access

FIGURE 5. Accuracy vs number of epochs applying fS and fD FIGURE 6. Loss vs number of epochs applying fS and fD

FIGURE 7. Receiver Operating Characteristic curve of Supervised Driving
Maneuvers Classification.

training process of the LSTM Autoencoder model over the
number of epochs for the training and validation dataset.
Initially, the training and validation loss decreases simultane-
ously, but after 50 epochs decreasing rate becomes slower. At
300 epochs, the AE model provides the MSE and RMSE loss
is 82.51% and 9.08%, respectively. The encoded feature vec-
tor of the autoencoder is transferred to and trained the super-
vised LSTM model and after that train and validation accu-
racy and loss during the training process of the LSTM model
over the number of epochs for the training and validation
dataset is depicted by Fig. 9 and 10, respectively. In Fig. 9,
the training and validation accuracy increases smoothly until
600 epochs and then increases slowly until 1000 epochs. On
the other hand, in Fig. 10, the training and validation loss de-
creases smoothly until 600 epochs and then decreases slowly
until 1000 epochs. Fig. 11 depicts the Receiver Operating
Characteristic (ROC) curve of Semi-Supervised Driving Ma-
neuvers Classification. The ROC curve depicted that for LT
the curve area is 1 and for Acceleration, brake, LLC, RLC,
RT and Non Aggressive the curve area is 0.99, 0.98, 0.97,
0.97, 0.97 and 0.98, respectively. A 7 × 7 confusion matrix
of the best Semi-Supervised model is shown in Table 11.

Another evaluation metric of time series multiclass classi-
fication Mean Per Class Error (MPCE) has been proposed by
Wang et al. in [47]. Mean Per Class Error is the calculated
average of error occurred in the prediction of each class
by the classifier model. The Per Class Error can be defined
by (25).

Per − Class− Error(PCE) =
1− accuracy

NumberofClasses
(25)

The Per Class Error (PCE) of the best supervised model
after training with and without domain specific features and
Semi-Supervised model are listed in Table 12. The Mean
Per Class Error (PCE) of the proposed standalone Super-
vised model is 0.005415 and Semi-Supervised model is
0.033135 applying domain-specific features with statistical
features. For all the class accuracy are above 99% and for
non-aggressive class accuracy is above 98%. On the other
hand, the Mean Per Class Error (MPCE) of the proposed
Supervised model is 0.049465 without applying domain-
specific features with statistical features. Besides, all of the
class accuracy are significantly lower than the class accuracy
of our proposed supervised and semi-supervised method
trained with domain features. Therefore, it indicates that
using domain-specific knowledge helps to train the model
and improves the performance.

The architecture of various LSTM autoencoders and cor-
responding metrics is presented in Table 13. We find that
increasing the number of layers in the autoencoder structure
increases the training time. Also, a higher number of units in
the layers increases the training time. On the contrary, a too
small number of units restrict the autoencoder to learn all the
significant hidden features. Hence, we investigate a structure
of stacked autoencoder that has a minimum number of layers
and a minimum number of units in each layer to learn
the hidden representation. We add 10 units in the encoded
layer so that it will be the size of the feature vector of the
supervised model and need less time during the supervised

VOLUME 4, 2016 13

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2021.3089660, IEEE Access

TABLE 9. MSE and RMSE of 10 fold Cross-Validation of Unsupervised Model

Metrics Fold 1 Fold 2 Fold 3 Fold 4 Fold 5 Fold 6 Fold 7 Fold 8 Fold 9 Fold 10
MSE 111.65 101.15 150.73 110.33 137.94 82.51 144.40 157.22 122.46 246.79

RMSE 10.56 10.06 12.27 10.50 11.74 9.08 12.01 12.53 11.06 15.70

TABLE 10. Evaluation Metrics of 10-fold Cross-Validation of Semi-Supervised Model

Metrics Fold 1 Fold 2 Fold 3 Fold 4 Fold 5 Fold 6 Fold 7 Fold 8 Fold 9 Fold 10
Train Accuracy 0.9134 0.8867 0.9190 0.8797 0.8859 0.9171 0.8898 0.9004 0.9185 0.8844

Train Loss 0.2262 0.2931 0.2122 0.3099 0.2967 0.2130 0.2796 0.2508 0.2089 0.2946
Test Accuracy 0.8835 0.8547 0.8637 0.8330 0.8213 0.8628 0.8529 0.8609 0.8735 0.8536

Test Loss 0.4779 0.5682 0.5768 0.4652 0.5407 0.5894 0.6373 0.4771 0.4339 0.4447
Precision 0.8599 0.8630 0.8358 0.8125 0.8029 0.8420 0.8324 0.8382 0.8625 0.8281

Recall 0.8638 0.8179 0.8181 0.7947 0.7857 0.8353 0.8343 0.8321 0.8465 0.8333
F1-Score 0.8616 0.8359 0.8253 0.8017 0.7898 0.8383 0.8327 0.8344 0.8531 0.8291

FIGURE 8. Loss variation of LSTM Autoencoder during the training/validation process

TABLE 11. Confusion Matrix of Proposed Semi-supervised Model trained
with encoded feature vectors

Actual Predicted Class
Class ACC Brake LLC LT RLC RT Non

_Agg
ACC 199 13 0 1 0 4 3
Brake 12 124 0 2 1 6 1
LLC 3 1 33 1 0 0 5
LT 0 1 3 181 3 4 3

RLC 1 1 0 2 47 4 1
RT 3 0 4 10 3 167 8

Non_Agg 5 5 7 3 0 5 228

training process. Besides, increasing the dropout rate of the
autoencoder model increases training accuracy and testing
loss of a supervised model. Hence, we chose a dropout rate
of 30% for optimal training and testing performance.

Though there are a few work done by adopting semi-
supervised approach, if we do a comparative analysis of
[37] and [42] with the performance of our proposed Semi-
Supervised method none of them have provided accuracy
and error of each class. Hence, we can not do any direct
comparison. Moreover, [37] also considered only two classes

which are normal and aggressive. They found 86% accuracy
using semi-supervised SVM which is a little lower than that
of our semi-supervised model. However, classifying multi-
class driving maneuvers increases the number of classifiers
and computational complexity as well [42]. In [42], accu-
racy has been computed for motion, velocity, turning were
87.3%, 78.4% and 76.9%, respectively. In motion category,
sub classes were move and stop which were very easy to
find out. In velocity category, sub classes were acceleration,
deceleration, constant speed and in turning category, sub
classes were left/right turning, left/right curving which was
most difficult to classify. By our proposed semi-supervised
approach all of the classes provide accuracy greater that 95%.

E. DISCUSSION

We implement an unsupervised LSTM Autoencoder to learn
encoded vector and a supervised LSTM classifier model
to classify the driving maneuvers of the labeled encoded
feature vector. We also evaluate the performance of our
proposed standalone supervised LSTM network for classify-
ing maneuvers class from labeled data. Our semi-supervised
model provides lower performance than supervised model.

14 VOLUME 4, 2016

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2021.3089660, IEEE Access

FIGURE 9. Accuracy variation of Supervised LSTM Model during the
training/validation with encoded vector

FIGURE 10. Loss variation of Supervised LSTM Model during the
training/validation with encoded vector

TABLE 12. Per Class Accuracy and Error of Proposed Supervised Model trained with and without fD and Semi-Supervised Model

Class Supervised Model trained Supervised Model trained Semi-Supervised Model trained
with fD without fD with fD

Per Class Per Class Per Class Per Class Per Class Per Class
Accuracy Error Accuracy Error Accuracy Error

Aggressive Acceleration 0.9901 0.0099 0.9340 0.0659 0.9594 0.0406
Aggressive Braking 0.9955 0.0045 0.9673 0.0326 0.9612 0.0388

Aggressive LLC 0.9982 0.0018 0.8955 0.1044 0.9784 0.0216
Aggressive RLC 0.9963 0.0036 0.9292 0.0707 0.9856 0.0144
Aggressive LT 0.9963 0.0036 0.9811 0.0188 0.9702 0.0297
Aggressive RT 0.9973 0.0027 0.9926 0.0073 0.9540 0.0460

Non Aggressive 0.9883 0.0117 0.9538 0.0461 0.9594 0.0406

FIGURE 11. Receiver Operating Characteristic curve of Semi-Supervised
Driving Maneuvers Classification

A high number of training data causes data redundancy
[42]. Besides, autoencoder provides a lossy output by nature;
therefore the encoded vector is not the same as the feature
vector of Supervised model. Consequently, the performance
of semi-supervised model degrades than supervised model.
We also observe by plotting few ground truth of data was
mislabeled by data analysts whose pattern does not match
with data change rule according to their labels. We did not
manually update the ground truth label of the data as done in
[42] to reduce error occurred by algorithm. The mislabeling

TABLE 13. Architecture of Autoencoder and corresponding metrics of
Semi-Supervised Model

AE Unsup- Supervised Model
Structure ervised

Model
RMSE Train Ac- Test Ac- Train Test

curacy curacy Loss Loss
31-20-10 9.08 0.9134 0.8835 0.2262 0.4779

-20-31
40-16-40 12.46 0.8357 0.8043 0.4525 0.6438

31-24-16-8 12.42 0.8522 0.8163 0.3902 0.5509
-16-24-31
55-16-55 12.64 0.8118 0.8023 0.5161 0.5929
50-16-50 13.51 0.7920 0.7725 0.5617 0.6692
64-18-64 13.99 0.7546 0.7473 0.6757 0.7443
64-16-64 15.68 0.7179 0.7089 0.5452 0.7001
64-31-64 15.70 0.6758 0.6677 0.8535 0.9021
31-16-31 16.31 0.6771 0.6651 0.8473 0.8871

does not affect supervised model’s accuracy because super-
vised model is being trained with label information and its
performance is tested only on labeled data. On the other hand,
unsupervised model learns from all the data disregarding the
label information. This learning is free from human bias.
Unsupervised encoded learning of labeled data trains the
supervised model. This training is different from the training
of standalone supervised model. After training performance

VOLUME 4, 2016 15

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2021.3089660, IEEE Access

of supervised model is tested on test data labeled by human.

VI. CONCLUSION
In this work, we present a Semi-supervised transfer learning
approach for the classification of driving maneuvers from
sensor fusion data. To learn the unlabeled time series data,
we develop an LSTM autoencoder and transfer the encoded
feature vector to train the supervised LSTM model. We train
our model with both statistical features as well as domain-
specific features and found that training the model in this way
improves the precision and performance of the model and
reduces time complexity. The proposed supervised model
outperforms the other existing machine learning and deep
learning classifier. The results of the experiments exhibit a
semi-supervised technique for the classification of unlabeled
time-series driving data. In this work, we have separate
losses in both the unsupervised and supervised models. In
the future, we will try to combine and so that reduce the loss
of both neural network models. Besides, we have a plan to
add a neural attention mechanism with the proposed model
to focus on a subset of features of the time series dataset.

REFERENCES
[1] N. Kattukkaran, A. George, and T. M. Haridas, “Intelligent ac-

cident detection and alert system for emergency medical assis-
tance,” in Proc. ICCCI, Coimbatore, India, 2017, pp. 1–6. Available:
https://doi.org/10.1109/ICCCI.2017.8117791

[2] R. K. Kodali, and S. Sahu, “MQTT based vehicle accident detection
and alert system,” in Proc. iCATccT, Tumkur, India, 2017, pp. 186–189.
Available: https://doi.org/10.1109/ICATCCT.2017.8389130

[3] P. Nath, and A. Malepati, “IMU based Accident Detection and Intimation
System,” in Proc. IEMENTech, Kolkata, India, 2018, pp. 1–4. Available:
https://doi.org/10.1109/IEMENTECH.2018.8465309

[4] S. Sarker, M. S. Rahman, and M. N. Sakib, “An Approach Towards
Intelligent Accident Detection, Location Tracking and Notification Sys-
tem,” in Proc. ICTP, Dhaka, Bangladesh, 2019, pp. 1–4. Available:
https://doi.org/10.1109/ICTP48844.2019.9041759

[5] E. Ohn-Bar, A. Tawari, S. Martin, and M. M. Trivedi, “Predicting driver
maneuvers by learning holistic features,” in Proc. IEEE Intelligent Vehicles
Symposium, Dearborn, MI, USA, June, 2014, pp. 719-724.

[6] B. Morris, A. Doshi, and M. Trivedi. Lane change intent prediction for
driver assistance: On-road design and evaluation. In IEEE International
Vehicle Symposium Proceedings, 2011.

[7] A. Jain, H. S. Koppula, S. Soh, B. Raghavan, A. Singh, and A. Saxena,
“Brain4cars: Car that knows before you do via sensory-fusion deep learn-
ing architecture,” 2016. Available: arXiv preprint arXiv:1601.00740.

[8] M. G. Ortiz, J. Schmüdderich, F. Kummert, and A. Gepperth, “Situation-
specific learning for ego-vehicle behavior prediction systems,” in Proc.
ITSC Washington, DC, USA, October, 2011, pp. 1237-1242.

[9] P. Angkititrakul, R. Terashima, and T. Wakita, “On the use of stochastic
driver behavior model in lane departure warning,” in IEEE Transactions
on intelligent transportation systems, vol. 12, no. 1, 2010, pp. 174-183.

[10] G. Xu, L. Liu, Y. Ou, and Z. Song, “Dynamic modeling of driver control
strategy of lane-change behavior and trajectory planning for collision
prediction,” in IEEE Transactions on Intelligent Transportation Systems,
vol. 13, no. 3, 2012 pp. 1138-1155.

[11] M. Liebner, M. Baumann, F. Klanner, and C. Stiller, “Driver intent infer-
ence at urban intersections using the intelligent driver model,” in Proc.
2012 IEEE Intelligent Vehicles Symposium, Alcala de Henares, Spain,
June, 2012, pp. 1162-1167.

[12] CAN Bus. Available: https://en.wikipedia.org/wiki/CAN_bus
[13] Micro Electro Mechanical System. Available:

https://en.wikipedia.org/wiki/Microelectromechanical_systems
[14] M. Wu, S. Zhang, and Y. Dong, “A novel model-based driving behavior

recognition system using motion sensors,” in Sensors, vol. 16, no. 10,
2016, pp. 1746.

[15] A. Sathyanarayana, S.O. Sadjadi, J.H.L. Hansen, “Leveraging Sensor
Information from Portable Devices towards Automatic Driving Maneuver
Recognition,” in Proc. ITSC, Anchorage, AK, USA, September, 2012, pp.
660–665.

[16] C. Saiprasert, S. Thajchayapong, T. Pholprasit, and C. Tanprasert, 2014,
November, “Driver behaviour profiling using smartphone sensory data in
a V2I environment,” in Proc. ICCVE, Vienna, Austria, 2014, pp. 552-557.
Available: https://doi.org/10.1109/ICCVE.2014.7297609

[17] A. Jain, A. Singh, H. S. Koppula, S. Soh, and A. Saxena, “Recurrent neural
networks for driver activity anticipation via sensory-fusion architecture,”
in Proc. ICRA, Stockholm, Sweden, May, 2016, pp. 3118-3125.

[18] D. A. Johnson, and M. M. Trivedi, “Driving style recognition
using a smartphone as a sensor platform,” in Proc. ITSC,
Washington, DC, USA, 2011, pp. 1609-1615. Available:
https://doi.org/10.1109/ITSC.2011.6083078

[19] G. Castignani, R. Frank, and T. Engel, “Driver behavior profiling using
smartphones,” in Proc. ITSC, The Hague, Netherlands, 2013, pp. 552-557.
Available: https://doi.org/10.1109/ITSC.2013.6728289

[20] J. Ferreira, E. Carvalho, B. V. Ferreira, C. de Souza, Y. Suhara, A.
Pentland, and G. Pessin, “Driver behavior profiling: An investigation with
different smartphone sensors and machine learning,” in PLoS one, vol. 12,
no. 4, 2017, pp. e0174959.

[21] E. Carvalho, B. V. Ferreira, J. Ferreira, C. De Souza, H. V. Carvalho, Y.
Suhara, G. Pessin,et al., “Exploiting the use of recurrent neural networks
for driver behavior profiling,” in Proc. IJCNN, Anchorage, AK, USA,
2017, pp. 3016-3021.

[22] D. Alvarez-Coello, B. Klotz, D. Wilms, S. Fejji, J. M. Gómez, and R.
Troncy, “Modeling dangerous driving events based on in-vehicle data
using Random Forest and Recurrent Neural Network,” in Proc. IV, Paris,
France, France, June, 2019, pp. 165-170.

[23] N. Mehdiyev, J. Lahann, A. Emrich, D. Enke, P. Fettke, and P. Loos, “Time
series classification using deep learning for process planning: A case from
the process industry,”Procedia Computer Science, vol. 114, pp. 242-249,
2017.

[24] D. E. Rumelhart, R. J. Williams, G. E. Hinton, “Learning internal repre-
sentations by error propagation,” California Univ San Diego La Jolla Inst
for Cognitive Science, 1985.

[25] D. Charte, F. Charte, M. J. del Jesus, and F. Herrera, “An analysis on the
use of autoencoders for representation learning: Fundamentals, learning
task case studies, explainability and challenges,”Neurocomputing, 2020.

[26] R. Bellman, and R. Kalaba, “On adaptive control processes,”IRE Transac-
tions on Automatic Control, vol. 4, no. 2, pp. 1-9, 1959.

[27] L. A. Zadeh, G. J. Klir, and B. Yuan, “Fuzzy sets, fuzzy logic, and fuzzy
systems: selected papers,” in World Scientific, Vol. 6, 1996.

[28] C. Schwarz, “Time Series Categorization of Driving Maneuvers Using
Acceleration Signals,” in Driving Assessment Conference,, Iowa Research
Online, USA, 2017.

[29] P. Patel, E. Keogh, J. Lin, and S. Lonardi, “Mining motifs in massive time
series databases,” in Proc. IEEE International Conference on Data Mining,
Maebashi City, Japan, 2002, pp. 370-377.

[30] C. C. M. Yeh, Y. Zhu, L. Ulanova, and N. Begum, Y. Ding, H. A. Dua, et.
al“Matrix profile I: all pairs similarity joins for time series: a unifying view
that includes motifs, discords and shapelets,” in Proc. ICDM, Barcelona,
Spain, 2016, pp. 1317-1322.

[31] M. Van Ly, S. Martin, and M. M. Trivedi, “Driver classifica-
tion and driving style recognition using inertial sensors,” in Proc.
IV, Gold Coast, QLD, Australia, 2013, pp. 1040-1045. Available:
https://doi.org/10.1109/IVS.2013.6629603

[32] C. Cortes, and V. Vapnik, “Support-vector networks,” in Machine learning,
vol. 20, no. 3, September, 1995, pp. 273-297.

[33] J. MacQueen, “Some methods for classification and analysis of multivari-
ate observations,”in Proc. Berkeley symposium on mathematical statistics
and probability,, vol. 1, no. 14, University of California Press, 1967, pp.
281-297.

[34] J. Cervantes-Villanueva, D. Carrillo-Zapata, F. Terroso-Saenz, M.
Valdes-Vela, and A. F. Skarmeta, “Vehicle maneuver detection with
accelerometer-based classification,” in Sensors, vol. 16, no. 10, 2016, pp.
1618.

[35] H. T. Kam, “Random decision forest,”in Proc. International Conference
on Document Analysis and Recognition, vol. 1416, Montreal, Canada,
August, 1995, pp. 278282.

[36] J. Pearl, “Bayesian netwcrks: A model cf self-activated memory for evi-
dential reasoning,” in Proc. Conference of the Cognitive Science Society,
University of California, Irvine, CA, USA, August, 1985, pp. 15-17.

16 VOLUME 4, 2016

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2021.3089660, IEEE Access

[37] W. Wang, J. Xi, A. Chong, and L. Li, “Driving style classification using a
semisupervised support vector machine,” in IEEE Transactions on Human-
Machine Systems, vol. 47, no. 5, 2017, pp. 650-660.

[38] D. E. Rumelhart, G. E. Hinton, and R. J. Williams, “Learning representa-
tions by back-propagating errors,” in nature, vol. 323, no. 6088, 1986, pp.
533-536.

[39] S. Hochreiter, and J. Schmidhuber, “Long short-term memory,”in Neural
computation, vol. 9, no. 8, 1997 pp. 1735-1780.

[40] K. Cho, B. Van Merriënboer, C. Gulcehre, D. Bahdanau, F. Bougares, H.
Schwenk, and Y. Bengio, “Learning phrase representations using RNN
encoder-decoder for statistical machine translation,” 2014. Available:
https://arxiv.org/abs/1406.1078

[41] S. Sarker, and M. M. Haque, “An approach towards domain knowledge
based classification of driving maneuvers with LSTM network,” presented
at the 4th Int. Conf. IJCACI, Dhaka, Bangladesh, November, 2020.

[42] A. Mammeri, Y. Zhao, A. Boukerche, A. Siddiqui, and B. Pekilis, “Design
of a semi-supervised learning strategy based on convolutional neural
network for vehicle maneuver classification,” in Proc. WiSEE, Ottawa, ON,
Canada, 16-18 Oct. 2019, pp. 65-70.

[43] R. Stewart, and S. Ermon, “Label-free supervision of neural networks with
physics and domain knowledge,” in Proc. IV, vol. 31, no. 1, February, 2017.

[44] V. Kazak, “Unsupervised feature extraction with autoencoder: for the
representation of parkinson´ s disease patients", Ph.D. dissertation, NOVA
Information Management School, Universidade Nova de Lisboa, Lisbon,
Portugal, 2019.

[45] I. Goodfellow, Y. Bengio, A. Courville, and Y. Bengio, “Deep learning,”
vol. 1, no. 2, Cambridge MIT press, 2016.

[46] D. Smirnov, E. M. Nguifo, “Time series classification with recurrent neural
networks,” Advanced Analytics and Learning on Temporal Data, vol. 8,
2018.

[47] Z. Wang, W. Yan, T. Oates, “Time series classification from scratch with
deep neural networks: A strong baseline,” in Proc. IJCNN, USA, 2017, pp.
1578-1585.

[48] A. Gulli, and S. Pal, “Deep learning with Keras,” in Packt Publishing Ltd,
2017.

[49] Driver Behavior Dataset. [Online] Available:
https://github.com/jair-jr/driverBehaviorDataset

VOLUME 4, 2016 17

