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In the 	eld of intelligent transportation system (ITS), automatic interpretation of a driver’s behavior is an urgent and challenging
topic. �is paper studies vision-based driving posture recognition in the human action recognition framework. A driving action
dataset was prepared by a side-mounted camera looking at a driver’s le
 pro	le. �e driving actions, including operating the shi

lever, talking on a cell phone, eating, and smoking, are 	rst decomposed into a number of prede	ned action primitives, that is,
interaction with shi
 lever, operating the shi
 lever, interaction with head, and interaction with dashboard. A global grid-based
representation for the action primitives was emphasized, which 	rst generate the silhouette shape from motion history image,
followed by application of the pyramid histogram of oriented gradients (PHOG) for more discriminating characterization. �e
random forest (RF) classi	erwas then exploited to classify the action primitives togetherwith comparisons to someother commonly
applied classi	ers such as �NN, multiple layer perceptron, and support vector machine. Classi	cation accuracy is over 94% for the
RF classi	er in holdout and cross-validation experiments on the four manually decomposed driving actions.

1. Introduction

In China, the number of personal-use automobiles has con-
tinued to grow at a rapid rate, reaching the number
120,890,000 in 2012. According to the World Health Orga-
nization (WHO), there is an estimated number of 250,000
deaths due to road accidents every year, making it the leading
cause of death for people aged 14 to 44. Unsafe and dangerous
driving accounts for the death of more than one million
lives and over 50 million serious injuries worldwide each
year [1]. �e WHO also estimates that trac accidents cost
the Chinese economy over $21 billion each year. One of key
contributing factors is reckless driving [1]. It is a proven fact
that drivers who are reaching for an object such as a cell-
phone are three times more likely to be involved in a motor
vehicle accident, while actually using a cell-phone increases
the risks to six times as likely.

In order to reduce unsafe driving behaviors, one of the
proposed solutions is to develop a camera-based system to
monitor the activities of drivers. �is is particularly relevant

for long-distance truck and bus drivers. For example, in
many countries, including China, it is illegal for drivers to be
using their cell-phone whilst driving. Drivers who violate the
restriction face civil penalties. However, how to automatically
distinguish between safe and unsafe driving actions is not a
trivial technical issue. Since most commercial drivers operate
alone, most of their driving behaviors are not directly observ-
able by others. Such barriers will disappear when in-vehicle
technologies become available to observe driver behaviors.
An emerging technology that has attracted wide attention
is the development of driver alertness monitoring systems
which aims at measuring driver status and performance to
provide in-vehicle warnings and feedback to drivers. Truck
and bus �eet managers are particularly interested in such
systems to acquire sound safety management. �ey can
regularly track their driver outcomes and provide prevention
of crashes, incidents, and violations.

Vision-based driving activitymonitoring is closely related
to human action recognition (HAR), which is an important
area of computer vision research and applications. �e goal
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of the action recognition is to classify image sequences to
a human action based on the temporality of video images.
Much progress has been made on how to distinguish actions
in daily life using cameras and machine learning algorithms.
HAR has no unique de	nition; it changes depending on the
di�erent levels of abstraction. Moeslund et al. [2] proposed
di�erent taxonomies, that is, action primitive, action, and
activity. An action primitive is a very basic movement that
can be described at the decomposed level. An action is com-
posed of action primitives that describes a cyclic or whole-
body movement. Activities consist of a sequence of actions
participated by one ormore participates. In the recognition of
drivers’ action, the context is usually not taken into account,
for example, the background environment variation outside
the window and interactions with another person or moving
object. Accordingly, this paper only focuses on partial body
movements of the driver.

�ere exists some works on driver activity monitoring.
To monitor a driver’s behavior, some of the works focused
on the detection of driver alertness through monitoring the
eyes, face, head, or facial expressions [3–7]. In one study, the
driver’s facewas tracked and yaworientation angleswere used
to estimate the driver’s face pose [8].�e Fisherface approach
was applied by Watta et al. to represent and recognise the
driver’s seven poses, including looking over the le
 shoulder
in the le
 rear-view mirror, at the road ahead, down at
the instrument panel, at the centre rear-view mirror, at the
right rear-view mirror, or over the right shoulder [9]. In
order to minimize the in�uence of various illumination and
background, Kato et al. used a far infrared camera to detect
the driver face direction such as le
ward, frontward, and
rightward [10]. Cheng et al. presented a combination of
thermal infrared and color images with multiple cameras
to track important driver body parts and to analyze driver
activities such as steering the car forward, turning le
, and
turning right [11]. Veeraraghavan et al. used the driver’s
skin-region information to group two actions; grasping the
steering wheel and talking on a cell phone [12, 13]. Zhao et al.
extended and improved Veeraraghavan’s work to recognise
four driving postures, that is, grasping the steering wheel,
operating the shi
 lever, eating, and talking on a cell phone
[14, 15]. Tran et al. studied driver’s behaviors by foot gesture
analysis [16]. Other works focused on capturing the driver’s
attention by combining di�erent vision-based features and
physical status of the vehicle [17–22].

�e task of driver activity monitoring can be generally
studied in the human action recognition framework, the
emphasis of which is o
en on 	nding good feature repre-
sentations that should be able to tolerate variations in view-
point, human subject, background, illumination, and so on.
�ere are two main categories of feature descriptions: global
descriptions and local descriptions. �e former consider
the visual observation as a whole while the latter describe
the observation as a collection of independent patches or
local descriptors. Generally, global representation is derived
from silhouettes, edges, or optical �ow. One of the earli-
est global representation approaches, called motion history
image (MHI), was proposed by Bobick and Davis [23],
which extract silhouettes by using background subtraction

and aggregate di�erence between subsequence in an action
sequence. Other global description methods include the R
transform [24], contour-based approach [25, 26], and optical
�ow [27–30]. �e weakness of global representation includes
the sensitivity to noise, partial occlusions, and variations in
viewpoint. Instead of global representation, local represen-
tation describes the observation as a collection of space-
time interesting points [31] or local descriptors, which usu-
ally does not require accurate localisation and background
subtraction. Local representation has the advantage of being
invariant to di�erent of viewpoint, appearance of person, and
partial occlusions. �e representative local descriptor is the
space-time interest point detectors proposed by Laptev and
Lindeberg [31], which however has the shortcoming of only
having a small number of stable interest points available in
practice. Some of their derivations have been proposed, for
example, extracted space-time cuboids [32].

In this paper, we studied drivers’ activity recognition
by comprehensively considering action detection, represen-
tation, and classi	cation. Our contributions include three
parts. �e 	rst part is our deviation from many published
works on drivers’ posture based on static images from
drivers’ action sequence, which has the potential problem of
confusion caused by similar postures. It is very possible that
two frames of vision-similar posture are extracted from two
completely di�erent action image sequences. For example,
the moment/frame that a driver moves the cell phone across
his or her mouth can be confused as eating. Following the
action de	nition in [2] which is based on the combination
of basic movements, we regard driving activity as space-
time action instead of static space-limited posture. �e main
driving activity we considered are hand-conducted actions
such as eating and using a cell phone.

�e second contribution of this paper is our proposal
of the driving action decomposition. Generally, the driving
actions that take place in the drivers seat are mainly per-
formed by hand, which include but are not limited to eating,
smoking, talking on the cell phone, and operating the shi

lever. �ese actions or activities are usually performed by
shi
ing the hand position, which is con	ned to the drivers
seat. Following the train of thought in [2], we regard the
actions or activities as a combination of a number of basic
movements or action primitives. We created a driving action
dataset similar to the SEU dataset [14], with four di�erent
types of action sequences, including operating the shi
 lever,
responding to a cell phone call, eating and smoking. �e
actions are then decomposed into four action primitives, that
is, hand interaction with shi
 lever, hand operating the shi

lever, hand interaction with head, and hand interaction with
dashboard. Upon the classi	cation of these action primitives,
the driving actions involving eating, smoking, and other
abnormal behaviors can be accordingly recognised as a
combination of action primitives [33].

�e last contribution of this paper is the proposal of
a global grid-based representation for the driving actions,
which is a combination of the motion history image (MHI)
[23] and pyramid histogram of oriented gradients (POHG)
[34], and the application of random forest classi	er (RF)
for the driving actions recognition. Encoding the region
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of interest in the drivers seat is a natural choice as there
are few noises and no partial occlusions in the video. �e
action silhouettes were 	rst extracted to represent action
primitives by applying MHI to aggregate the di�erence
between subsequent frames. To have better discrimination
than MHI alone, the pyramid histogram of oriented gradient
of the MHI was calculated as the features for further training
and classi	cation. PHOG is a spatial pyramid extension of
the histogram of gradients (HOG) [35] descriptors, which
has been used extensively in computer vision. A
er the
comparison of several di�erent classi	cation algorithms,
the random forest (RF) classi	er was chosen for the driving
action recognition, which o�ers satisfactory performance.

�e rest of the paper is organized as follows. Section 2
gives a brief introduction on our driving posture dataset
creation and the necessary preprocessing. Section 3 and
Section 4 review the motion history image and the pyramid
histogram of oriented gradients, with explanation of how
they are applied in driving posture description, respectively.
Section 5 introduces the random forest classi	er and other
three commonly used classi	cationmethods for comparison.
Section 6 reports the experiment results, followed by conclu-
sion in Section 7.

2. Driving Action Dataset
Creation and Preprocessing

A driving action dataset was prepared which contains 20
video clips in 640×424@24 fps.�e video was recorded using
a Nikon D90 camera at a car park in the Xi’an Jiaotong-
Liverpool University. Tenmale drivers and ten female drivers
participated in the experiment by pretending to drive in the
car and conducting several actions that simulated real driving
situations. Five prede	ned driving actions were imitated, that
is, turning the steering wheel, operating the shi
 lever, eating,
smoking, and using a cell phone.

�ere are 	ve steps involved in simulating the driving
activities by each participant.

Step 1. A driver 	rst grasps the steering wheel and slightly
turns the steering wheel.

Step 2. �e driver’s right hand moves to shi
 the lever and
operates it for several times before moving back to the
steering wheel.

Step 3. �e driver takes a cell phone from the dashboard and
responds to a phone call and then puts it back by his or her
right hand.

Step 4. �edriver takes a cookie from the dashboard and eats
it using his or her right hand.

Step 5. For male drivers, he takes a cigarette from the
dashboard, and puts it into his mouth and then uses a lighter
to light the cigarette and then puts it back on the dashboard.

�is experiment extracted twenty consecutive picture
sequences from the video of the dataset for further experi-
mentation.
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Figure 1: �e vertical axis stands for area of di�erence point com-
pared to previous frame by applying Otsu’s thresholding method
[26]; the horizontal axis stands for the frame number.

2.1. Action Detection and Segmentation. Being similar to
many intelligent video analysis systems, action recognition
should start with motion detection in a continuous video
stream for which many approaches are available. Among the
popular approaches, frame di�erencing is the simplest and
most ecient method which involves taking the di�erence
between two frames to detect the object. Frame di�erencing
is widely appliedwith proven performance, particularly when
a 	xed camera is used to observe dynamic events in a scene.

With each driving action sequence, the frame di�er-
ences between two adjacent image frames are 	rst calcu-
lated, followed by thresholding operation to identify moving
objects. Otsu’s thresholding method [26] was chosen, which
minimizes the intraclass variance of the black and white
pixels. �e existence of moving objects will be determined
by evaluating whether there exist connected regions in the
binary image. And the location of the moving objects can be
further calculated based on the total areas and coordinate of
connected regions. �e details can be illustrated by Figure 1.

In the following section, the segmented actions images
are further manually labelled into four di�erent categories of
action primitives based on the trajectory of driver’s right hand
as shown in Figure 2. �e 	rst category of action is moving
to shi
 lever with the right hand from the steering wheel or
moving back to the steering wheel from the shi
 lever. �e
second category of action is operating the shi
 lever with
the right hand. �e third category of action is moving to the
dashboard from the steering wheel with the right hand or
moving back to the steering wheel from the dashboard with
the right hand.�e fourth category of action is moving to the
head from the steering wheel or moving back to the steering
wheel from the head with the right hand.

3. Motion History Image (MHI)

Motion history image (MHI) approach is a view-based
temporal template approach, developed by Bobick and Davis
[23], which is simple but robust in the representation of
movements and is widely employed in action recognition,
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motion analysis, and other related applications [36–38]. �e
motion history image (MHI) can describe how the motion is
moving in the image sequence. Another representation called
motion energy image (MEI) can demonstrate the presence of
any motion or a spatial pattern in the image sequence. Both
MHI and MEI templates comprise the motion history image
(MHI) template-matching method.

Figure 3 shows a movement in driving. �e 	rst row is
some key frames in a driving action. �e second and third
rows are the frame di�erences and the corresponding binary
images from applying Otsu’s thresholding. �e fourth and
	
h rows are cumulative MEI and MHI images, respectively.
MHI’s pixel intensity is a function of the recency of motion in
a sequence where brighter values correspond to more recent
motion. We currently use a simple replacement and linear
decay operator using the binary image di�erence frames.�e
formal de	nitions are brie�y explained below:

di� (�, �, �) = {zeros (�, �, 1) , if � = 1,				
 (�, �, � − 1) − 
 (�, �, �)				 , otherwise,
(1)

where di� (�, �, �) is a di�erence image sequence indicating
the di�erence compared to previous frame. Let

�(�, �, �) = {0, if di� (�, �, �) < threshold,
1, otherwise, (2)

where �(�, �, �) is binary images sequence indicating region
of motion. �en the motion energy image is de	ned as

MEI (�, �, �) = � = action end frame⋃
� = action start frame

�(�, �, �) . (3)

Both motion history images and motion energy images
were introduced to capture motion information in images
[23]. While MEI only indicates where the motion is, motion
history image MHI (�, �, �) represents the way the object
moving, which can be de	ned as

MHI =
{{{{{{{{{{{{{{{

255, if �(�, �, �) = 1,
max {0,MHI (�, �, � − 1) − 1} , if �(�, �, �) ̸= 1, 255

picseqlength
≤ 1,

max{0,MHI (�, �, � − 1) − �oor ( 255
pic seq length

)} , if �(�, �, �) ̸= 1, 255
picseqlength

> 1.
(4)

�e result is a scalar-valued image where latest moving
pixels are the brightest. MHI can represent the location, the
shape, and the movement direction of an action in a picture
sequence. As MEI can be obtained by thresholding the MHI
above zero, we will only consider features derived fromMHI
in the following.

A
er the driving actions were detected and segmented
from the raw video dataset, motion history images were
extracted for each of the four decomposed action sets.
Figure 4 demonstrates how the motion history image is
calculated to represent movements for each decomposed
action sequence. In the 	gure, the le
 column and themiddle
column are the start and end frames of a decomposed action
snippet, respectively. �e right column is the MHI calculated
for the corresponding action snippet.

4. Pyramid Histogram of Oriented
Gradients (PHOG)

Motion history image MHI is not appropriate to be directly
exploited as features for the purpose of comparison or
classi	cation in practical applications. In the basic MHI
method [23], a
er calculating the MHI and MEI, feature
vectors are calculated employing the seven high-order Hu
moments.�en these feature vectors are used for recognition.
However, Hu’s moment invariants have some drawbacks,

particularly limited recognition power [39]. In this paper, the
histogram of oriented gradients feature is extracted from the
MHI as the suitable features for classi	cation.

In many image processing tasks, the local geometrical
shapes within an image can be characterized by the dis-
tribution of edge directions, called histograms of oriented
gradients (HOG) [35]. HOG can be calculated by evaluating a
dense grid of well-normalized local histograms of image gra-
dient orientations over the image windows. HOG has some
important advantages over other local shape descriptors; for
example, it is invariant to small deformations and robust in
terms of outliers and noise.

�e HOG feature encodes the gradient orientation of
one image patch without considering where this orientation
originates from in this patch. �erefore, it is not discrimi-
native enough when the spatial property of the underlying
structure of the image patch is important. �e objective of
a newly proposed improved descriptor pyramid histogram
of oriented gradients (PHOG) [34] is to take the spatial
property of the local shape into account while representing
an image by HOG. �e spatial information is represented by
tiling the image into regions at multiple resolutions, based on
spatial pyramid matching [40]. Each image is divided into
a sequence of increasingly 	ner spatial grids by repeatedly
doubling the number of divisions in each axis direction.
�e number of points in each grid cell is then recorded.
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Hand interaction with shi� lever

Frame 640 650 660

Frame 1150 1159 1170

(a)

Hand operating the shi� lever

Frame 794 830815

Frame 701 705 709

(b)

Hand interaction with head

Frame 3318 3327 3340

Frame 2792 2801 2811

(c)

Hand interaction with dashboard

Frame 4617 4631 4638

Frame 4109 4118 4134

(d)

Figure 2: Four manually decomposed action primitives.

�e number of points in a cell at one level is simply the sum
over those contained in the four cells it is divided into at the
next level, thus forming a pyramid representation. �e cell
counts at each level of resolution are the bin counts for the
histogram representing that level. �e so
 correspondence
between the two point sets can then be computed as a
weighted sum over the histogram intersections at each level.

�e resolution of an MHI image is 640 × 480. An MHI
is divided into small spatial cells based on di�erent pyramid
levels. We follow the practice in [34] by limiting the number
of levels to � = 3 to prevent over	tting. Figure 5 shows that
the pyramid at level � has 2� × 2� cells.

�e magnitude �(�, �) and orientation �(�, �) of the
gradient on a pixel (�, �) are calculated as follows:

(�, �) = √��(�, �)2 + ��(�, �)2,
� (�, �) = arctan

�� (�, �)�� (�, �) ,
(5)

where ��(�, �) and ��(�, �) are image gradients along the �
and � directions. Each gradient orientation is quantized into� bins. In each cell of every level, gradients over all the pixels
are concatenated to form a local� bins histogram. As a result,

a ROI at level � is represented as a �2�2� dimension vector.

All the cells at di�erent pyramid levels are combined to form

a 	nal PHOG vector with dimension of  = �∑��=0 4� to
represent the whole ROI.

�e dimension of the PHOG feature (e.g.,  = 680 when� = 8; � = 3) is relatively high. Many dimension reduction
methods can be applied to alleviate the problem. We employ
the widely used principal component analysis (PCA) [41] due
to its simplicity and e�ectiveness.

5. Random Forest (RF) and Other
Classification Algorithms

Random forest (RF) [42] is an ensemble classi	er usingmany
decision tree models, which can be used for classi	cation or
regression. A special advantage of RF is that the accuracy and
variable importance information is provided with the results.
Random forests create a number of classi	cation trees. When
an vector representing a new object is input for classi	cation,
it was sent to every tree in the forest. A di�erent subset of the
training data are selected (≈2/3), with replacement, to train
each tree, and remaining training data are used to estimate
error and variable importance. Class assignment is made by
the number of votes from all of the trees.

RF has only two hyperparameters, the number of vari-
ables# in the random subset at each node and the number
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Frame 640 644 648 652 656

I(x, y, t)

di�(x, y, t)

D(x, y, t)

MEI(x, y, t)

MHI(x, y, t)

Figure 3: Example of the driver’s right hand moving to shi
 lever from steering wheel. �e 	rst row is some key frames in a driving action.
�e second row is the corresponding frame di�erence images. �e third row is binary images resulted from thresholding. �e forth row is
cumulative motion energy images. �e 	
h row is cumulative motion history images.

of trees $ in the forest [42]. Breima’s RF error rate depends
on two parameters: the correlation between any pair of
trees and the strength of each individual tree in the forest.
Increasing the correlation increases the forest error rate while
increasing the strength of the individual trees decreases
this misclassi	cation rate. Reducing # reduces both the
correlation and the strength# is o
en set to the square root
of the number of inputs.

When the training set for a particular tree is drawn by
sampling with replacement, about one-third of the cases are
le
 out of the sample set.

�e RF algorithm can be summarised as follows.

(1) Choose parameter $, which is the number of trees to
grow.

(2) Choose parameter�, which is used to split each node,
and� = #, where# is the number of input variables
and� is held constant while growing the forest.

(3) Grow $ trees. When growing each tree do the follow-
ing.

(i) Construct a bootstrap sample of size % sampled
from &� = ('�, ��) (* = 1)� with replacement
and grow a tree from this bootstrap sample.

(ii) When growing a tree at each node, select �
variables at random and use them to 	nd the
best split.

(iii) Grow the tree to a maximal extent. �ere is no
pruning.

(4) To classify point' collect votes from every tree in the
forest and then use majority voting to decide on the
class label.

In this paper, we also compared the accuracy of RF and
several popular classi	cation methods, including �-nearest
neighbor (�NN) classi	er, multilayer perceptron (MLP), and
Support Vector Machines (SVM) on the driving action
datasets.

5.1. Other Classi
cation Methods

5.1.1. �−Nearest Neighbor Classi
er. �-nearest neighbour
(�NN) classi	er, one of themost classic and simplest classi	er
in machine learning, classi	es object based on the minimal
distance to training examples in feature space by a majority
vote of its neighbours [41]. As a type of lazy learning,�NN classi	er does not do any distance computation or
comparison until the test data is given. Speci	cally, the object
is assigned to the most common class among its � nearest
neighbours. For example, the object is classi	ed as the class
of its nearest neighbour if � equals 1. �eoretically, the error
rate of �NN algorithm is in	nitely close to Bayes error
while the training set size is in	nity. However, a satisfactory
performance of �NN algorithm prefers a large number of
training data set which results in expensive computation in
practical.

5.1.2. Multilayer Perceptron Classi
er. In neural network,
multilayer perceptron (MLP) is an extension of the single



International Journal of Vehicular Technology 7

650Frame 640

· · ·

(a)

1170Frame 1150

· · ·

(b)

709Frame 701

· · ·

(c)

830Frame 794

· · ·

(d)

3340Frame 3318

· · ·

(e)

2811Frame 2792

· · ·

(f)

4134Frame 4109

· · ·

(g)

4638Frame 4617

· · ·

(h)

Figure 4: MHIs for di�erent driving actions. (a) Right hand moving to shi
 lever. (b) Right hand moving back to steering wheel from shi

lever. (c) Right hand operating the shi
 lever. (d) Operating the shi
 lever. (e) Right handmoving to head from steering wheel. (f) Right hand
moving back to steering wheel. (g) Right moving back to steering wheel from dashboard. (h) Right hand moving to dashboard from steering
wheel.

Level = 0

(a)

Level = 1

(b)

Level = 2

(c)

Figure 5: A schematic illustration of PHOG. At each resolution level, PHOG consists of a histogram of orientation gradients over each image
subregion.

layer linear perceptron by adding hidden layers in between
[41]. AnMLP is a feedforward arti	cial neural networkmodel
that maps sets of input data onto a set of appropriate outputs.
AnMLP consists of multiple layers of nodes, that is, the input
layer, single or multiple hidden layer, and an output layer. An
MLP classi	er is usually trained by the error backpropagation
algorithm.

5.1.3. Support Vector Machine. Support vector machine
(SVM) is one of the most commonly applied supervised
learning algorithms. A SVM is formally de	ned by a sepa-
rating hyperplane which is in a high or in	nite dimensional

space. Given labeled training data, SVM will generate an
optimal hyperplane to categorize new examples. Intuitively,
the operation of the SVM algorithm is based on 	nding the
hyperplane that gives the largest minimum distance to the
training examples. And the optimal separating hyperplane
maximizes the margin of the training data.

6. Experiments

6.1. Holdout Experiment. We choose the two standard exper-
imental procedures, namely, holdout approach and the cross-
validation approach, to verify the driving action recognition
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Figure 6: Bar plots of classi	cation rates from holdout experiment
with 80% of data are used for training and the remaining for testing.

performance using RF classi	er and the PHOG feature
extracted from MHI. Other three classi	ers, �NN, MLP, and
SVM, will be compared.

In the holdout experiment, 20% of the PHOG features
are randomly selected as testing dataset, while the remaining
80% of the features are used as training dataset. �e holdout
experiment is usually repeated 100 times and the classi	cation
results are recorded. In each holdout experiment cycle, the
same training and testing dataset are applied to the four
di�erent classi	ers simultaneously to compare their perfor-
mance.

Generally, classi	cation accuracy is one of the most
common indicators used to evaluate the performance of the
classi	cation. Figures 6 and 7 are the bar plots and box plots of
the classi	cation accuracies from the four classi	ers with the
same decomposed driving actions.�e results are the average
from 100 runs. �e average classi	cation accuracies of �NN
classi	er, RF classi	er, SVM classi	er, and MLP classi	er
are 88.01%, 96.56%, 94.43%, and 90.93%, respectively. It is
obvious that the RF classi	er performs the best among the
four classi	ers compared.

To further evaluate the performance of RF classi	er,
confusionmatrix is used to visualize the discrepancy between
the actual class labels and predicted results from the clas-
si	cation. Confusion matrix gives the full picture at the
errors made by a classi	cation model. �e confusion matrix
shows how the predictions are made by the model. �e rows
correspond to the known class of the data, that is, the labels
in the data.�e columns correspond to the predictions made
by themodel.�e value of each of element in thematrix is the
number of predictions made with the class corresponding to
the column, for example, with the correct value as represented
by the row. �us, the diagonal elements show the number
of correct classi	cations made for each class, and the o�-
diagonal elements show the errors made. Figure 8 shows
the confusion matrix from the above experiment for the RF
classi	er.
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Figure 7: Box plots of classi	cation rates from holdout experiment
with 80% of data are used for training and the remaining for testing.

Action 1

Action 2

Action 3

Action 4

Action 1 Action 2 Action 3 Action 4

0.9570 0.0200 0.0100 0.0130

0.0287 0.9713 0 0

0.00038 0 0.9462 0.0500

0 0 0.0123 0.9877

Figure 8: Confusion matrix of RF classi	cation result from the
holdout experiment.

In the 	gure, classes labelled as one, two, three, and four
correspond to hand interaction with shi
 lever, operating
the shi
 lever, interaction with head, and interaction with
dashboard, respectively. In the confusionmatrix, the columns
are the predicted classes while the rows are the true ones.
For the RF classi	er, the average classi	cation rate of the
four driving actions is 96.56%. �e respective classi	cation
accuracies for the four driving actions are 95.7%, 97.13%,
94.62% and 98.77% in holdout experiment, respectively. It
shows that the classes one and two tend to be easily confused
with each other, with error rate of about 2% and 2.87%,
respectively. On the other hand, the error rates from the
confusion between classes three and four lie between 1.2%
and 5%.

6.2. �-Ford Cross-Validation. �e second part of our experi-
ment is to use �-ford cross-validation to further con	rm the
classi	cation performance of the driving actions. In �-fold
cross-validation, the original sets of data will be portioned
into � subsets randomly. One subset is retained as the
validation data for testing while the remaining � − 1 subsets
are used as training data. �e cross-validation process will
then be repeated � times, which means that each of the �
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Figure 9: Bar plots of classi	cation rates from 10-fold cross-
validation.
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Figure 10: Box plots of classi	cation rates from 10-fold cross-
validation.

subsamples will be used exactly once as the validation data.
�e estimation can be the average of the � results. �e key
property of this method is that all observations are used for
both training and validation, and each observation is used for
validation exactly once. We chose 10-fold cross-validation in
the experiment, whichmeans that nine of the ten splitted sets
are used for training and the remaining one is reserved for
testing.

�e evaluation procedure is similar to the holdout exper-
iment. �e cross-validation experiment was also conducted
100 times for each of the classi	cationmethods. Each time the
PHOG feature extracted from the driving action dataset was
randomly divided into 10 folders. �e average classi	cation
accuracies of the 100 repetitions are shown in the bar plots of
Figure 9 and box plots of Figure 10.�e average classi	cation
accuracies of �-NN classi	er, RF classi	er, SVM classi	er,
and MLP classi	er are 94.64%, 98.30%, 97.39%, and 95.91%,
respectively. From the bar plots, box plots and confusion
matrix in Figures 9, 10, and 11, the RF classi	er clearly
outperforms other three classi	ers compared.

Action 1

Action 2

Action 3

Action 4

Action 1 Action 2 Action 3 Action 4

0.9657 0.0237 0.0004 0.0102

0.0292 0.9708 0 0

0.0041 0 0.9483 0.0476

0 0 0.0147 0.9853

Figure 11: Confusion matrix of RF classi	cation from 10-fold cross-
validation experiment.

7. Conclusion

In this paper, we proposed an ecient approach to recognise
driving action primitives by joint application of motion his-
tory image and pyramid histogram of oriented gradients.�e
proposed driving action primitives lead to the hierarchical
representation of driver activities. �e manually labelled
action primitives are jointly represented by motion history
image and pyramid histogram of oriented gradient (PHOG).
�e random forest classi	er was exploited to evaluate the
classi	cation performance, which gives an accuracy of over
94% from the holdout and cross-validation experiments.
�is compares favorably over some other commonly used
classi	cations methods.
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