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Summary. Harmonic distortion in the stress-time function applied to  rock 
specimens affects the measurement of rock internal friction in the seismic 
wave periods by the stress-strain hysteresis loop method. If neglected, the 
harmonic distortion can cause measurements of rock internal friction to be in 
error by 30 per cent in the linear range. The stress-time function therefore 
must be recorded and Fourier analysed for correct interpretation of the 
experimental data. Such a procedure would also yield a value for internal 
friction at the higher harmonic frequencies. 

Direct measurement of rock internal friction by stress-strain hysteresis loops is the most 
important method in the seismic frequency range. A periodic stress variation is applied to a 
rock specimen, and the resulting stress-strain hysteresis loop in the steady state gives a 
measure of rock internal friction. Harmonic distortion in the stress-time function, however, 
can affect the determination of rock internal friction by as much as 30 per cent in the linear 
range, so that the stress-time function applied to the rock specimen must be recorded for 
correct interpretation of the experimental data. 

The various measures of linear anelasticity are related by (e.g. O’Connell & Budiansky 
1978) 

$ = Q-’ = Aln = SW/2nW aX/n (1 1 
for small dissipations ( $ 5  lo-’), where @J is the phase lag between the applied sinusoidal 
stress and the resulting strain, Q-’ is determined by the half-width of a mechanical resonance 
curve, A is the logarithmic decrement for free vibration, SW is the amount of strain energy 
W dissipated in a cycle and (Y is the amplitude attenuation per unit length. One necessary 
condition for equation (1) to hold is that the various measures are defined with respect to 
sinusoidal time variations of stress and strain. When harmonic components are present in the 
stress-time variation, additional analysis is needed to determine the internal friction from 
the measure of SW/2nW. 

Consider a linear anelastic solid with an internal friction of 0.01 constant to k 1.25 per 
cent over a frequency range from 3 x to 10 Hz. One model (model A5) of such a linear 
anelastic solid, constructed from a superposition of 12 relaxation mechanisms, is given by 
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Liu et al. (1976). The strain e ( t )  is related to the stress u( t )  in the steady-state sinusoidal 
loading by 

i 
where 

o(r) = Re uo + u1 exp ( iot) , i i 
M, is the relaxed modulus, w is the angular frequency, uo and u1 are constant stress para- 
meters, and 

where the relaxation times 7 ,k1  7 g k  are given by Liu et al. (1976). Rewriting equation (Z), 

u(t) = (I0 -t u1 cos at 

and 

0 0  0 1  
e ( t )  = -+- [A(w) cos wt +B(w)  sin wtl. 

Mr Mr 
The amount of strain energy dissipated in one period T is given by 

where the subscript S means single-frequency component. When the steady-state periodic 
stress time function has several harmonic components, e .g. 

u(t)= C un cosnwt,  

the strain is given by 
S N  

e(r )  =- 1 un [A(nw) cos nu t  + B ( n u )  sin n u t ] ,  

and the amount of strain energy dissipated in one period T is given by 

N 

n = O  

Mr n = O  

N 1 N  
x C [-- unA(no)nu  sin (no t )  + unB(nu)nu  cos (nut )]  dt  = - (5) 

where the subscript M means multiple-frequency components. The two measures GWs/27rWs 
= @ and 8WM/2nWM can differ by as much as 30 per cent depending on the harmonic com- 
ponents. 

uinnB(nw), 
n = l  Mr n = l  
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Determination of rock internal friction 569 

Consider first the case of triangular loading function. Gordon & Davis (1968) have 
measured internal friction 4 in a variety of crystalline rocks. Their procedure was to measure 
the internal friction at high frequency (90 kHz) over the strain amplitude range lo-'' < 

by the driven-resonance method, and at low frequency (14mHz) in the range 
by direct determination of the stress-strain curve. The loading sequence 

in the determination of the stress-strain curve is described by them (Gordon & Davis 1968, 
p. 3925) as follows: 'The platens are advanced at a constant speed, reversed, and returned to 
the starting position at  the same speed to complete the strain cycle. To hold alignment, a 
small compressive load is always held on the sample,. . . . Measurements of 4 are made only 
after a steady state is attained'. Such a loading sequence can be approximated by a triangular 
time function. The truncated Fourier series 

u( t )  = 1.5 + (8/n2) cos (2.8 x 10-2nt) -t (8/9n2) cos (8.4 x 1 0 - 2 ~ t )  + (8/25n2) 

< eo < 

x cos (1 .4~10- 'nt)  +(8/49n2)cos(1.96x10-'rt)+(8/81n2)cos ( 2 . 5 2 ~  10-'rt) 

+(8/121n2) c o s ( 3 . 0 8 ~  10-'nt) ( 6 )  
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Figure 1. A steady-state stress-time function that approximates a triangular time function and its strain 
response. The linear anelastic rheology is described by equation (3).  

approximates a steady-state triangular stress time function with an amplitude of 0.9663 
(arbitrary stress units) and a period of 71.429 s; the steady-state strain response is shown in 
Fig. 1. The frequency content of equation (5) consists of the fundamental frequency fo = 
14 mHz and its odd harmonics up to 11 f o =  154 mHz. The internal friction 4 at these 
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Table 1. Internal friction 0 calcu- 
lated by the linear anelastic model 
A5 at the component frequencies 
of the steady-state stress-time 
function shown in Figs 1 and 3. 

Frequency Internal friction 
(mHz) 

I 

14 1.0065 X lo- '  
28 1.0089 X lo-' 
42 1.0193 X lo-' 
70 1.0237 X lo-' 
98 1.0156 X lo-' 

126 1.0099 x lo-' 
154 1.0077 X lo-' 

- GRANITE (3) 

7 I I I I 1 

I 
IO+ lo-a 10-7 lo-e lo-' lo-' lo-' 

Strain Amplitude 

Figure 2. Discontinuity in the internal friction values between the driven resonance method (at 90 kHz) 
and the stress-strain curve method (at 14  mHz) (after Gordon & Davis 1968, Figs 5 and 8). 
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frequencies, calculated by the linear superposition model AS, are listed in Table 1. The strain 
energy dissipation per cycle when 

u( t )  = 1.5 + 0.9663 cos (2.8 x nt), (7) 
calculated by model A5 and equation (4), is SWs = 2.8168 x 10-2(Mr = 1). The strain energy 
dissipation per cycle when u(t)  is given by equation (6) and calculated by model A5 and 
equation (5) is SW#= 2.0817 x Since the u(t)  given by equations (6) and (7) have the 
same amplitude, the corresponding strain energies agree to within - 1 per cent when 
@ = 0.01. The value of SW$)/W calculated by equations (5) and (6) is seen to be less by 30 
per cent than SWs/W calculated by equations (4) and (7). This result and the results in Table 
1 demonstrate that determination of internal friction according to equation (5) can under- 
estimate @ by as much as 30 per cent, a consequence of using a stress-time function with 
harmonic-frequency content, even though the internal friction is the same at these 
frequencies as at  the fundamental frequency. 

Examination of the experimental results presented by Gordon & Davis (1968) shows 
a discontinuity between the internal friction values determined by the driven-resonance 
method at 90  kHz and by the stress-strain curve method at 14 mHz (Fig. 2). The frequency 
dependence of internal friction and the large strains (10-3-10-4) in the stress-strain de- 
termination could contribute to this discontinuity. However, correction of the effect on @ 
due to the triangular time function would decrease the discontinuous jump in values of 
@ between the driven-resonance method and the stress-strain curve method. 

Consider next the case when the force output at seismic frequencies of an electro- 
magnetic force transducer without a permanent magnet is proportional to the square of the 

m 

0 

N 
9. 

TIME ( S )  

Figure 3. A steady-state stress-time function o ( t )  = 1 . 5 ~ '  + 2aZ cos wt + 0 . 5 2  cos 2wt (a = 0.6951) and 
its strain response. The linear anelastic rheology is described by equation (3). 
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input current. Such a force transducer was employed by Peselnick et al. (1979) in their 
determination of rock internal friction. The steady-state stress-time function is given by 

b2 b2 

2 2 
o(t) = (a t b cos at)' = a' t - + 2ab cos wt t- cos 2wt, a > b > 0. 

The maximum harmonic distortion occurs when a = b. The time function (a = b = 0.6951) 

c(t) =0.7247 + 0.9663 cos (2.8 x 10-'rt) + 0.2416 cos (5.6 x 10-2rt) (9) 

also has an amplitude of 0.9663 (arbitrary stress units) and a period of 71.429 s (Fig. 3) .  
The steady-state strain response is shown in Fig. 3. The values of internal friction qf~ at the 
fundamental frequency fo= 14 mHz and at 2 f , =  28mHz are listed in Table 1. The strain 
energy dissipation per cycle calculated by model AS and equations ( 5 )  and (9), is SW#)= 
3.1682 x lo-'. This value is higher than SWs= 2.8168 x lO-'by 12 per cent, in contrast with 
the  previous example, where SW$ is less than SW, by 30 per cent. Here, the internal friction 
q5 can be overestimated by as much as 12 per cent if calculated according to equation ( 5 ) .  

In summary, the stress-strain function applied to the rock specimen in the determination 
of rock internal friction by the stress-strain curve method must be recorded and Fourier 
analysed for correct interpretation of the experimental data. Such a procedure would also 
yield the internal friction at  the higher harmonic frequencies, The present research note 
points out the correct procedure for the determination of rock internal friction in the linear 
range. However, the reinterpretation of experimental data of the rocks tested by Gordon & 
Davis (1968) and by  Peselnick et al. (1979) does not prove or disprove the linearity of 
internal friction of these rock specimens. 
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