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Abstract—This paper studies the co-design optimization 
approach to determine how to optimally adapt automatic 
control of an intelligent electric vehicle to driving styles. A 
cyber-physical system (CPS) based framework is proposed 
for co-design optimization of the plant and controller 
parameters for an automated electric vehicle, in view of 
vehicle’s dynamic performance, drivability, and energy 
along with different driving styles. System description, 
requirements, constraints, optimization objectives and 
methodology are investigated. Driving style recognition 
algorithm is developed using unsupervised machine 
learning and validated via vehicle experiments. Adaptive 
control algorithms are designed for three driving styles 
with different protocol selections. Performance exploration 
method is presented. Parameter optimizations are 
implemented based on the defined objective functions. Test 
results show that an automated vehicle with optimized 
plant and controller can perform its tasks well under 
aggressive, moderate, and conservative driving styles, 
further improving the overall performance. The results 
validate the feasibility and effectiveness of the proposed 
CPS-based co-design optimization approach.  

 
Index Terms— Co-design optimization, Automated 

electric vehicle, Driving style, Cyber-physical systems.  

I. INTRODUCTION 

UTOMATED vehicles have been gaining increasing   

attention from both academia and industrial sectors [1]. 

The field of intelligent vehicles exhibits a multidisciplinary 

nature, involving transportation, automotive engineering, 

information, energy and security [2]-[5]. Intelligent vehicles 

have increased their capabilities in highly and even fully 

automated driving. However, unresolved problems do exist due 

to strong uncertainties and complex driver-vehicle interactions. 

A. Driver-Vehicle Interactions 

Highly automated vehicles are likely to be on public roads 

within a few years. Before transitioning to fully autonomous 

driving, driver behavior should be better understood and 

integrated to enhance vehicle performance and traffic efficiency 

[6]-[9]. To address these challenges, researchers have explored 

advanced driver assistance systems (ADAS), and human-

machine interface (HMI) from a variety of points of view [10], 

[11]. However, since the dynamic relationships between driver 

and vehicle are highly complex, satisfactory driver-vehicle 

interactions should go beyond the present ADAS and HMI 

systems. Human-vehicle interactions have already being 

considered in a high-level closed loop, where driving style, 

driving feel and vehicle performance, are considered [12]. 

Driving style plays a very important role in vehicle energy 

efficiency and ride comfort, thus significantly impacting 

controller synthesis [12]-[14]. For instance, control objectives 

and control protocols should be adaptively adjusted according 

to different driving styles. Based on the findings reported in 

[13], a better understanding of driving styles could help 

improve ADAS performance and further reduce vehicle’s fuel 

consumption through driver feedback. In [14], an enhanced 

intelligent driver model was developed, and then it was used to 

investigate the impact of different driving strategies on traffic 

capacity. In [15], an adaptive cruise control strategy 

considering the characteristics of different driving styles was 

developed, and the proposed strategy could automatically adapt 

to different traffic situations. Nevertheless, advanced control 

and optimization of vehicle systems with characterized driving 

styles are still open challenges and worthwhile exploring. 

B. Automated Electrified Vehicles 

The ever-growing attention to the environment and energy 

conservation requires automobiles to be cleaner and more 

efficient [16]-[18]. In this study, an electric vehicle (EV) is 

chosen as the platform to conduct our research in automated 

driving. Based on existing studies, small changes in driving 

style can cause unnecessary energy waste and sub-optimal 

performance of an EV [19], [20]. Moreover, regenerative 

braking capability of EVs can be enhanced by prior knowledge 

Chen Lv, Member, IEEE, Xiaosong Hu, Senior Member, IEEE, Alberto Sangiovanni-
Vincentelli, Fellow, IEEE, Yutong Li, Clara Marina Martinez, and Dongpu Cao, Member, IEEE 

Driving-Style-Based Co-Design Optimization 
of an Automated Electric Vehicle: A Cyber-

Physical System Approach 

A 

Chen Lv is with the School of Mechanical and Aerospace Engineering and 

the School of Electrical and Electronic Engineering, Nanyang Technological 

University, Singapore (e-mail: henrylvchen@gmail.com). 

Xiaosong Hu is with the Department of Automotive Engineering and the 

State Key Lab of Mechanical Transmission, Chongqing University, Chongqing 

400044, China, and the Advanced Vehicle Engineering Centre, Cranfield 

University, Bedford MK43 0AL, UK (e-mail: xiaosonghu@ieee.org). 

Alberto Sangiovanni-Vincentelli is with the Department of Electrical 

Engineering and Computer Sciences, University of California, Berkeley, 

Berkeley, California 94720, USA (e-mail: alberto@berkeley.edu). 

Yutong Li is with the College of Transportation Engineering, Tongji 

University, Shanghai, China. (e-mail: wilson420813@gmail.com). 

Clara Marina Martinez is with Porsche Engineering R&D Center, Germany. 

(e-mail: c.m.marina@cranfield.ac.uk). 

Dongpu Cao is with Mechanical and Mechatronics Engineering, University 

of Waterloo, ON, N2L 3G1, Canada (e-mail: dongpu.ca@gmail.com) 

(Corresponding authors are Dongpu Cao and Xiaosong Hu) 

mailto:henrylvchen@gmail.com
mailto:xiaosonghu@ieee.org
mailto:alberto@berkeley.edu
mailto:wilson420813@gmail.com
mailto:c.m.marina@cranfield.ac.uk
mailto:dongpu.ca@gmail.com


IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS 2 

of driving style. Hence, an optimal energy management strategy 

can be obtained with knowledge about the entire driving cycle, 

environment, and driver behaviors. Therefore, the information 

of operating scenarios, driver behaviors and driver-vehicle 

interactions is crucial and should be integrated to enhance the 

energy efficiency of automated electric vehicles. 

C. Cyber-Physical Systems Approach 

A Cyber-Physical System (CPS) is a distributed, networked 

system that fuses computational processes (cyber world) with 

the physical world [21], [22].  An EV is a typical example of 

CPS. In details, an automated EV involves the following 

subsystems: the controller, representing the “Cyber” world, the 
physical plant, the “Human” driver, and the environment. These 

different elements, which are highly coupled, decide the 

vehicle’s behavior and overall performance, as Fig. 1 shows. 

 
Fig. 1.   CPS based human-vehicle interactions. 

The main issue of the existing approaches in vehicle design 

and control is the lack of global optimality in the selection of 

system architecture, physical parameters, and control variables 

[23]. In this context, the emerging co-design method provides 

the capability to extend system design space and further 

enhance the performance of CPS [24]-[28]. In [24], a platform-

based design method utilizing contracts to do the high-level 

abstraction of the components in a CPS was proposed, and it is 

able to offer support to the overall design process. In [26], co-

design optimization of a cyber physical vehicle system, which 

considers task time, actuator characteristics, energy 

consumption and processor workload, was investigated. In [27], 

a CPS-based control framework was developed for vehicle 

systems to minimize the car-following fuel consumption and 

ensure inter-vehicle safety. Besides the cyber and the physical 

worlds, we also need to take “Human” of an automated vehicle 

into consideration. Thus, the interactive impacts between the 

vehicle plant, control variables, multi-performance and driver 

styles, should be well understood. 

To further advance the existing CPS methods as well as their 

applications reported in [29-31], following contributions are 

made in this paper: 1) a CPS-based co-design optimization 

framework is proposed for an automated EV considering 

different driving styles; 2) a driving style recognition algorithm 

is developed using unsupervised learning method; 3) control 

algorithms are synthesized for typical driving styles with 

different protocol selections. 

The rest of the paper is organized as follows: The co-design 

optimization problem is formulated in Section II. System 

models with experimental validation are presented in Section 

III. Section IV presents the vehicle controller synthesis for three 

driving styles with different control protocol selections. Then, 

the performance exploration method is presented in Section V. 

Section VI reports test results of design optimization, followed 

by conclusions presented in Section VII. 

II. PROBLEM FORMULATION 

In this section, the co-design of an automated electric vehicle 

with different driving styles is formulated as a multi-objective 

optimization problem. The goal is to find optimal assignments 

for design variables to maximize performances while satisfying 

a number of constraints. To ensure the problem to be solved 

within a reasonable complexity, the following assumptions are 

made: 1) The vehicle operates in normal conditions, and vehicle 

stability could be guaranteed by stability control functions; 2) 

Only longitudinal motion control is considered in this study; 3) 

The sizing of the electric powertrain is fixed, i.e., the parameters 

of the battery and the electric motor are constant to bound the 

exploration space. 

A. Hierarchical Optimization Methodology 

The optimization problem is formulated as a constrained 

multi-objective one where both vehicle and controller 

parameters need to be chosen. In this paper, the Platform-Based 

Design (PBD) is adopted as the co-design methodology [21]. 

 

Fig. 2.   Platform-Based design optimization of the electric vehicle. 

As Fig. 2 shows, PBD is a meet-in-the-middle approach that 

favors re-usability. At the top layer, there are high-level 

requirements and constraints. The bottom layer is defined by a 

design platform, i.e., a library of components characterized by 

their behaviors and performance. In this paper, the bottom layer 

contains the models of the vehicle, electric powertrain, brakes, 

and driver-style-based controller. The models are parametrized 

to capture families of the system, components and controllers. 

The design problem is to select a set of components and their 

parameters so that the constraints are satisfied with the 

objective functions optimized. The selection process is called 

mapping, indicated as the middle-layer meeting point in the 

diagram, since the obligations captured in the requirements and 

constraints are discharged by particular components or 
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combinations thereof. Co-design of the physical parameters, 

controller protocols and variables, for the intelligent electric 

vehicle is then made possible. 

B. System Description 

1) Physical plant: For the structure of the studied automated 

electric vehicle, a central electric motor is installed at the front 

axle of the vehicle. During acceleration, the motor, which is 

powered by the battery, provides propulsion through the 

transmission system to the wheels. During deceleration, the 

regenerative braking torque generated by the motor is blended 

with the friction braking modulated by the hydraulic modulator. 

2) Control architecture: The high-level strategy for the 

longitudinal motion control of the automated EV is designed to 

track a reference acceleration, generated via the pre-defined 

acceleration profile, as shown in Fig. 3. The reference 

acceleration profile is a 3D look-up table defined by the 

reference vehicle speed vref, the ego-vehicle speed v, and the 

reference acceleration aref. 

 

Fig. 3.   Longitudinal motion control architecture of the intelligent vehicle. 

C. Driving Event 

A driving event is a driving maneuver, such as acceleration, 

deceleration, turning, and lane change, which can be used to 

identify driving styles [28]. As mentioned above, this paper 

mainly focuses on longitudinal motion control, hence the 

adopted driving events are defined as [29]: 

1) Event 1: 0-50km/h acceleration. In this event, the car is 

accelerated from 0 to 50 km/h. The vehicle acceleration, jerk, 

and the time taken in this process are typical performance 

indices. This event is used to optimize and evaluate the dynamic 

performance and ride comfort under different driving styles. 

2) Event 2: 50-0 km/h deceleration. In this event, the car is 

decelerated from 50 km/h to 0. The deceleration and the time 

taken in this process are typical performance indices. The 

energy recovered during the braking process can be used to 

evaluate energy efficiency. This event is used to optimize and 

check vehicle’s dynamic performance and energy efficiency 
under different driving styles. 

3) Event 3: driving cycle. Although the energy consumption 

of the vehicle can be evaluated in the above two events, the time 

duration of an acceleration or deceleration procedure is 

relatively short, making it difficult to evaluate energy 

consumption at the vehicle level. Thus, the ECE driving cycle 

is adopted for measuring energy efficiency under different 

driving styles. The ECE driving cycle, which is a series of data 

points representing the vehicle speed versus time, exhibits the 

typical driving conditions of a car in urban areas [17]. It is 

usually adopted to carry out road testing for studying the fuel 

economy of a passenger car.  

D. Driving Style Recognition 

To identify driving style for control synthesis and system 

optimization, a driving style recognition (DSR) algorithm is 

developed using unsupervised machine learning with partially 

labelled data. The data set is collected in the road tests with a 

Sedan-Type vehicle, and it is comprised of 9 real life cycles 

covering over 500 km. The data can be overall classified into 

three groups according to the driver feedback as aggressive, 

conservative and moderate. These three driving styles are firstly 

defined as [29]-[34]: 

1) Aggressive: Aggressive drivers exhibit frequent changes 

in throttle and brake pedal positions [32]. They drive with sharp 

and abrupt accelerations and decelerations, aiming at vehicle 

dynamic performance. This kind of behavior would result in 

higher fuel consumption and increased likelihood of accidents 

[29]. 

2) Conservative: Conservative drivers often exhibit mild 

operational behaviors with small amplitudes and low-frequency 

actions on steering wheel, accelerator and brake pedal [33]. 

They value energy efficiency and ride comfort, and avoid 

abrupt variations of vehicle state. 

3) Moderate: Moderate drivers are positioned between the 

above two. They would like to balance multiple performances, 

such as vehicle dynamic performance, ride comfort, and energy 

efficiency [29]. 

 
Fig. 4.   The real life route used for DSR experimental validation. 

The unlabelled data set is pre-processed for driving events 

detection and statistics extraction. A total amount of six signals 

is used: throttle pedal position, brake light switch, longitudinal 

and lateral accelerations, steering wheel angle and vehicle 

speed. Five statistics are extracted per event: maximum, 

minimum, mean, standard deviation and root mean square. The 

reduced set of signals is clustered using Gaussian Mixture 

Models (GMM), which generates the DSR classification 

algorithm to be implemented onboard. The performance of the 

DSR algorithm is validated against the subjective labels and 

further tested with a new set of data from a new real life route 

with changeable road type, as shown in Fig. 4. This new data 

set is collected by a SUV-type vehicle with a different driver. 

TABLE I.  DRIVING STYLE RECOGNITION RESULTS IN SUV CYCLES 

 Agg. Cycles Moderate Cycle Conserv. Cycle 

Acceleration 0.55 (149) 0.43 (113) 0.34 (106) 

Brake 0.58   (33) 0.56   (25) 0.36   (22) 

Cruise 0.83 (149) 0.69 (126) 0.70 (124) 

Turn 0.41     (6) 0.29     (7) 0.29     (7) 

Table I shows the results of the SUV driving data using the  

500 1000 1500 2000 2500 3000
0

50

100

150

Time [s]

V
e

h
ic

le
 S

p
e

e
d

 [
k

m
/h

]

Road Type

 

 

City

Rural

Highway



IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS 4 

 

Fig. 5.   Pre-defined 3D reference acceleration profiles. 

developed DSR algorithm. So as to quantitatively evaluate the 

performance of the algorithm, the driving cycles are classified 

per events using the aggressiveness index. The aggressiveness 

index is transformed from the classification into an equivalent 

index, assigning an increasing value from 0 to 1 to the different 

events based on the level of aggressiveness [34]. To provide 

further information about the robustness of each classification, 

the number of events identified is included in brackets and 

italics. According to the results, the conservative cycle is 

classified as the least aggressive one, particularly by 

acceleration and brake events analysis. The moderate cycle is 

situated between the aggressive and conservative ones. While 

the aggressive cycle is identified as the sportiest one, but it has 

a similar braking level with the moderate one, agreeing with 

driver’s feedback. Finally, the consistency and robustness of the 

algorithm are verified using the test data set. The test shows 

consistency in the identification and aligns with drivers’ 
perception. The above testing results validate the suitability of 

this approach for DSR, its onboard implement capability and 

robustness to vehicle and driver characteristics. More detailed 

algorithms with experimental results can be found in [34]. 

Based on the above recognition and classification algorithms, 

the features of aggressive, conservative and moderate driving 

styles can be extracted, and online recognition of a driver’s 
driving style can be realized using the well-trained model as 

well. Meanwhile, according to the above features obtained, the 

3 dimensional human-like acceleration profiles are developed 

for each driving style, as illustrated in Fig. 5. 

E. Requirements for Vehicle Design and Optimization 

The requirements for vehicle design and control involve 

dynamical performance, energy efficiency, and ride comfort. 

Driving style consideration implies the introduction of multiple 

trade-offs between performances that are set as the objective 

functions in our optimization problem, under different driving 

styles, operating conditions, and driving tasks.  

1) Dynamic performance: Dynamic performance is 

considered as the fundamental and the most important indicator 

of a car [29]. Maximum speed and acceleration time are proxies 

for dynamic performance. In this paper, we select the 0-50 km/h 

acceleration time tacc and the 50-0 km/h deceleration time tbrk as 

two indicators for the dynamic performance to capture driver’s 

behavior and select suitable value for the gear ratio ig. 

2) Ride comfort: The comfort level of a vehicle, also known 

as drivability, can be assessed by vehicle’s jerk j, which is the 

second derivative of the vehicle’s longitudinal velocity v [17]: 

  j v &&                                        (1) 

    During acceleration, torsional oscillations may occur in the 

drivetrain due to fast torque transitions, resulting in unexpected 

jerks at vehicle level and deteriorated drivability. To cope with 

this problem, an active damping controller is usually required 

[36]. Although aggressive drivers may enjoy fierce acceleration 

and jerk, for those who prefer conservative or moderate driving 

style, ride comfort is a very important performance. In this 

paper, jerk is used to capture the comfort level of the vehicle. 

3) Energy efficiency: The energy efficiency of a vehicle can 

be represented by the energy consumed during a certain trip. 

Typically, energy consumption can be reduced by optimizing 

the powertrain energy management [29]. For electrified 

vehicles, it can be further enhanced through regenerative 

braking. Thus, in this paper, the regenerated braking energy 

defined in equation (2) is set as one of the optimization goals in 

the trade-off problem [18]. 

,reg gen m reg m
E T dt                             (2) 

where Ereg is the regenerated braking energy, Tm,reg and ωm are 

the regenerative braking torque and the angular speed of the 

electric motor, respectively, and ηgen is the generation efficiency 

of the motor. 

F. Constraints for Vehicle Design and Optimization 

Constraints in the optimization problem involve indicators 

that are set to stay within specific bounds to limit the search 

space. 

1) Maximum vehicle speed: The constraint on vehicle speed 

is posed as:   

max max / (30 ) (100 / 3.6)
g

v r n i m s                       (3) 

where vmax is the maximum speed of the vehicle, nmax is the 

highest rotational speed of the electric motor, r is the nominal 

radius of tire, and ig is the gear ratio. 

2) Minimum gradeability: Gradeability is defined as the 

highest grade that a vehicle can achieve with a maintained 

speed. Once the motor parameters are given, this performance 

is determined by the gear ratio, as equation (4) shows [35].  

max max max( cos sin )
t g m,
i T mgr f                  (4) 

max maxtan 30%i                               (5) 

where Tm,max is motor’s peak torque, m is the total mass of the 

vehicle, ηt is the efficiency of the transmission system, f is the 

friction drag coefficient, and α is the grade angle. 

3) Minimum brake intensity: In order to guarantee stability 

during braking, a vehicle needs to have enough braking force, 

represented by the brake intensity z, as required by regulation 

ECE-R13 [36]: 

/ 0.1 0.85( 0.2)z v g    &                         (6) 
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where φ is the adhesion coefficient of the road. 

4) Powertrain limits: According to the assumption described 

above, the characteristics of the power source are given, then 

the limitation on motor torque can be described by: 

m m m,lim
T P                                     (7) 

where Tm is output torque of the electric motor, and Pm,lim is the 

peak power of the electric motor. 

III. SYSTEM MODELLING AND VALIDATION 

A. Electric Powertrain system 

The electric powertrain is comprised of an electric motor, a 

gearbox, a final drive, a differential, and half shafts. The motor 

torque is modelled as a first-order reaction, as shown in 

equation (8). The models for the drivetrain dynamics and half-

shaft torque can be given by equation (9) and (10) [25]. 

  ,m ref m m m
T T T  &                                 (8) 

2 /
m m m hs g

J T T i  &&                               (9) 

( / ) ( / )
hs hs m g w hs m g w

T k i c i      & &              (10) 

where τm is the small time constant, Tm,ref is the reference torque 

of the electric motor, Ths is the half-shaft torque, Jm is the motor 

inertia, and θm and θw are the angular positions of electric motor 

and load, respectively. khs and chs are the stiffness and damping 

coefficients of the half shaft, respectively. 

    In this paper, the battery is built as an open-circuit voltage-

resistance model. Look-up tables are compiled on the basis of 

the state of charge (SOC) and temperature data of the battery, 

modeling its charging-discharging internal resistance. The 

detailed model with parameters can be found in [17]. 

B. Blended brake system  

    The brake force distribution (BFD) should adhere to the ideal 

curve. To simplify the implementation and to avoid real-time 

modulation of brake pressure, the BFD is usually set as a fixed 

value, which is determined by the parameters of the installed 

brake devices, as shown in Fig. 6(a). The front and rear braking 

demands can be calculated as follows [17]: 

2 2
b b, fw b,rw

T T T                             (11) 

, / 2
b, fw b dmd

T T                               (12) 

,(1 ) / 2
b,rw b dmd

T T                            (13) 

where Tb is the actual braking torque provided by the blended 

brakes, Tb,dmd is the demanded braking torque of the vehicle, and 

Tb,fw and Tb,rw are the requested braking torque of one front 

wheel and one rear wheel, respectively. β is the BFD ratio. 

 
Fig. 6.   Brake force distribution strategy. 

    As shown in Fig. 6(b), during deceleration, the overall 

demanded braking torque of the vehicle is supplied by the 

regenerative and the friction blending braking. The overall 

braking torque is controlled to be consistent with driver’s 

deceleration intention. The reference values for the regenerative 

and frictional braking on front axle can be given by: 

, ,min(2 / , )
m reg b fw g m,reg,lim

T T i T                      (14)
 

,2 /
b, fw, fric b, fw m reg g

T T T i                          (15)
 

where Tm,reg and  Tm,reg,lim are reference torque and torque limit 

of the regenerative braking of the electric motor, respectively. 

Tb,fw,fric is the frictional braking torque of the front wheel. 

C. Dynamic model of the vehicle and tyre  

    A model of vehicle dynamics with seven degrees of freedom 

has been built. The tyre model, which is of great importance for 

research on acceleration and deceleration, should be able to 

simulate the real tyre in both adhesion and sliding. In this 

article, the well-known Pacejka magic formula tyre model is 

adopted [37]. The detailed models were described in [17]. 

D. Experimental validation 

The models of the electric vehicle with its subsystems were 

implemented in MATLAB/Simulink. Experimental data 

measured from vehicle test were used for model calibration. 

Key parameters of the systems are listed in Table II. The 

feasibility and effectiveness of the models have been previously 

validated via hardware-in-the-loop experiments and vehicle 

road testing [17, 25]. 

TABLE II.  KEY PARAMETERS OF THE ELECTRIC VEHICLE. 

Parameter Value Unit 

Vehicle mass 1360 kg 

Wheel base 2.50 m 

Frontal area 2.40 m2 

Gear ratio 7.881 — 

Nominal radius of tyre 0.295 m 

Coefficient of air resistance 0.32 — 

Motor peak power 45 kW 

Motor maximum torque 145 Nm 

Motor maximum speed 9000 rpm 

Battery voltage 336 V 

Battery capacity 66 Ah 

IV.  CONTROLLER DESIGN FOR DIFFERENT DRIVING 

STYLES 

A. High-Level Controller Architecture 

    The high-level supervisory controller adopts a scheduling 

protocol, asking the architecture and control objectives of the 

low-level controller, as well as the parameters of the physical 

plant, to dynamically adapt to different driving styles, as shown 

in Fig. 7. In this study, the driving style of the automated vehicle 

can be either obtained in the manual mode through the DSR 

algorithm developed in Section II, or actively selected by 

human operator during autonomous mode. To avoid 

unexpected discontinuities in controller output resulted by 

frequent and fast transitions between different driving styles, a 

simple and reliable approach for the application is to allow the 

driving style to be actively or passively switched only when the 

vehicle is stopped, i.e. the vehicle speed v=0. 
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Fig. 7.   Scheduling-protocol based hierarchical control for different driving styles. 
 

B. Low-Level Controller for different driving styles 

1) Controller for aggressive driving style: Based on the sporty 

feature of aggressive driving style, the vehicle longitudinal 

control under this condition can be seen as an acceleration 

tracking problem, realizing the sporty feel in automated driving 

for passengers. Because of its ability to address nonlinearity and 

achieve good performance with fast response [38], a sliding-

mode control (SMC) scheme is applied. 

In designing the sliding-mode controller, the error term is 

defined as: 

ref
e a a                                    (16) 

where ɑ and ɑref are the actual and reference values of vehicle 

acceleration, respectively. 

To guarantee zero steady error, an integral-type sliding 

surface S is chosen as: 

S edt                                      (17) 

    One method for designing a control law that derives the 

system trajectories to the sliding surface is the Lyapunov direct 

method. The following Lyapunov function is used: 

1

2
V SS                                     (18) 

    To ensure the stability of the system, the derivative of the 

Lyapunov function should satisfy the following condition: 

0V SS &&                                  (19) 

    Thus, if 0S & , the above stability condition can be satisfied.     

    For the purpose of controller design, a control-oriented 

longitudinal vehicle model without considering wheel slip is 

used [35]. 

21 1

2
g m D

a i T fg C A v
mr m

                        (20) 

where r is the nominal radius, CD is the coefficient of air 

resistance, A is the frontal area, and ρ is the air density, f is the 

friction drag coefficient, and g is the gravitational acceleration. 

    Then, substituting equations (16) and (20) into equation (17), 

when 0S & , the SMC control law can be derived as: 
2

, sgn( )
2

D

m ref ref SMC

g

C A vmr
T a fg k S

i m

 
    

 
         (21) 

where kSMC is the positive gain of the SMC controller, and sgn(S) 

is the sign function defined as: 

 

1, 0

sgn( ) 0, 0

1, 0

S

S S

S


 
 

                             (22) 

Remark 1. It is well known that in the standard SMC, the 

discontinuous sign function, sgn(S), may cause chattering when 

the state trajectories are approaching the sliding surfaces. To 

avoid this phenomenon, the discontinuous term in equation (21) 

could be replaced by a continuous function S, removing the 

chatter from the control input [39], as shown in equation (23). 

2

,
2

D

m ref ref SMC

g

C A vmr
T a fg k S

i m

 
    

 
           (23) 

2) Controller for moderate driving style: The moderate 

driving style features a balanced performance in vehicle 

dynamics and ride comfort. To this end, the low-level plant 

controller uses a combined feed-forward and feed-back 

structure, to actively damp powertrain torsional vibrations, thus 

mitigating the longitudinal jerk and enhancing drivability: 

,m ref ff fb
T T T                             (24) 

where Tff is the feed-forward input term required for tracking 

and Tfb is the feedback component designed to reduce the 

control error. 

    Based on the control objective, the feed-forward term can be 

determined by the target motor torque Tm,tgt, which is calculated 

using the reference acceleration: 

,ff m tgt
T T                                   (25) 

    For the feedback term, a linear proportional-integral (PI) 

controller is adopted to damp the torsional oscillation: 

'( )
fb P I

T K K dt e                            (26) 

'

, 02 /
m tgt hs g

e T T i i                             (27) 

where the feedback gains KP and KI are tuning parameters of 

the PI controller, and e’ is the tracking error. 

3) Controller for conservative driving style: Since the 

conservative drivers usually care more about energy efficiency 

and smooth driving feel by carefully operating the brake and 

acceleration pedals, the low-level plant controller adopts the 

same combined feed-forward and feed-back architecture as the 

moderate one to ensure vehicle drivability. 
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Fig. 8.   The proposed co-design optimization flow for the vehicle with three driving styles. 

 

V. DRIVING-STYLE-BASED PERFORMANCE EXPLORATION 

AND PARAMETER OPTIMIZATION 

A. Design Space Exploration 

Based on the system constrains formulated in Section II, 

namely the requirements for vehicle speed, grade-ability, and 

brake stability shown in equation (3)-(6), the boundaries of the 

related physical plant parameters can be calculated, and the 

design space is then achieved. 

B. Performance Exploration Methodology 

In order to carry out multi-objective optimization under 

different driving styles, the impacts of related parameters on the 

performance indicators should be explored. To do so, 

thefollowing exploration algorithm is proposed. 

TABLE III.  ALGORITHM FOR PERFORMANCE EXPLORATION. 

Algorithm 1: Performance Exploration 

Input: Parameter Library{P1, …, Pi, C1,…,Cj } ⊆ ξ, Event E 

Output: Best Performance Point K 
   function Global Exploration (ξ, E) 
   Performance ←{}; Paras ←{}; 
    while p1∈P1 do 

         while p2∈P2 do 
                        M 
             while pi∈Pi  do 

                  while c1∈C1 do 

                       while c2∈C2 do 
                                      M 
                              while cj∈Cj do 

                              Performance ← Simulation (E, P1,..,Pi,C1,..,Cj) 

                            end while 
                        Paras ← Performance (Cj); 
                                  M 
                      end while 
                  Paras ← Performance (C1,C2,…,Cj); 

                end while 
            Paras ← Performance (Pi, C1,C2,…,Cj); 
                       M 
        end while 
    Paras ← Performance(P1, P2,…,Pi, C1,C2,…,Cj); 

  K ← Best Performance Point (Paras); 
  Return K, Paras 
end function 

 

    As shown in Table III, assuming that, within the Parameter 

Library ξ, there are several parameters, namely P1, P2,…,Pi, 

C1, C2,…,Cj, deciding one Performance. P1, P2,…,Pi represent 

parameters of the physical plant, while C1, C2,…,Cj indicate 

controller variables. Under pre-defined driving event E with 

valid design space, the selected vehicle Performance is 

simulated in the Simulink environment stepping each 

parameter with a suitably small step. After simulation-based 

global exploration, the Best Performance K with its 

corresponding value selections of the parameters can be 

attained. 

C. Driving-Style-Oriented Multi-Objective Optimization 

    1) Aggressive-driving-style based optimization: This driving 

style requires to maximize vehicle dynamic performance first 

and foremost. However, a good performance in terms of energy 

efficiency is also expected to be guaranteed. Therefore, the 

trade-off between dynamic performance and energy efficiency 

is considered, with a much greater weight on the side of 

dynamic performance. 

 1 2 3 4{ , , } argmin
reg

g SMC acc brk reg
E

i k t t j E    


        (28) 

 

    2) Moderate-driving-style based optimization: In this case, 

the multi-objective optimization problem is set as a trade-off 

between dynamic performance and ride comfort: 

 1 2 3 4{ , , , } arg min
g P I acc brk reg

j
i K K t t j E             (29) 

3) Conservative-driving-style based optimization: As 

mentioned before, under the conservative driving style, the 

drivers’ behavior is usually mild with intentions of saving 
energy and ensuring comfort. Thus, in this mode, the trade-off 

elements are switched to ride comfort and energy efficiency: 

 1 2 3 4{ , , , } argmin
reg

g P I acc brk reg
E

i K K t t j E    


        (30) 

For weighting selection, a much greater value would be put 

on the side of each featured performance under different driving 

styles, and the weight on non-considered performance is set as 

zero. The difference of the weights between featured and sub-

featured performances are set to be an order of magnitude. The 

detailed set-up for the weightings under different driving styles 

is summarized in Table IV. The overall optimization flow and 

procedure are shown in Fig. 8. 

TABLE IV.  WEIGHT SELECTION FOR DIFFERENT STYLES 

Driving Style 
Weights 

ω1 ω2 ω3 ω4 

Aggressive 10 10 0 1 

Moderate 10 0 10 1 

Conservative 0 0 1 1 



IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS 8 

VI. OPTIMIZATION RESULTS AND ANALYSIS 

Based on the proposed co-design method, the performance 

exploration and system optimization are carried out in 

MATLAB/Simulink. The simulations are implemented 

iteratively with developed models under defined driving events 

at each operating point (i.e. each selected value of plant and 

control parameters) for the three driving styles, generating 

multiple performances. The detailed results with each driving 

style are reported as follows. 

A. Optimization results for the aggressive driving style 

Since the optimization problem under the aggressive driving 

style is formulated as a trade-off between vehicle dynamic 

performance and energy efficiency with a much greater weight 

on the side of dynamic performance, during optimization the 

interactive effects of the values of the SMC gain, the gear ratio, 

and BFD on the dynamic performance of 0-50km/h acceleration 

and regenerated braking energy are explored. 

According to the exploration results shown in the subplots (a) 

and (b) of Fig. 9, the positive gain K of the SMC controller tends 

to be small, while the gear ratio prefers a larger value in favor 

of a better acceleration performance. For the regenerative 

braking performance, the variation of the gear ratio barely 

affects the overall regenerated energy, although BFD needs to 

select a smaller value to reach a higher efficiency according to 

the exploration results. This is due to the fact that more braking 

torque demand will be distributed to the front axle, which is the 

driven axle, indicating a larger proportion taken up by the 

regenerative braking among the overall braking torque. 

  
Fig. 9.   Performance exploration results of the three driving style. 

B. Optimization results of the moderate driving style 

Based on the multiple optimization objectives under the 

moderate driving style, the trade-off between ride comfort and 

acceleration performance is considered. Taking the exploration 

scenario under a fixed value of the gear ratio at 8.3 as an 

example, and according to the results shown in the subplots (c) 

and (d) of Fig. 9, the selection of the gains in the linear PI 

controller for active damping has a great impact on the control 

performance of the vehicle jerk. With selection of KP and KI at 

1.5 and 3.0, respectively, the maximum vehicle jerk during a 

50-0 km/h deceleration process is over 10.0 m/s3. While setting 

the two parameters to 0.5 and 2.0, the maximum jerk can be 

reduced to about 8.0 m/s3, improving ride comfort effectively. 

However, the manipulation of the gains of the active damping 

controller has small influence on the acceleration performance, 

according to the exploration results. The detailed optimization 

results for parameter selection are summarized in Table V. 

C. Optimization results of the conservative driving style 

Since the controller structure of the conservative style is quite 

similar to the moderate one, the related parameters to be 

optimized (KP, KI, ig, and β) are the same. However, because the 

optimization objectives are different under these two styles, the 

values of the parameters at the end of the optimization process 

can be far different, as the subplots (e) and (f) of Fig. 9 show. 

D. Comparison and discussion 

A comparison of the above results is shown in Fig. 10. The 

aggressive style, which favors dynamic performance, 

dominates the acceleration and deceleration events among the 

three. The duration of the events of 0-50km/h acceleration and 

50-0km/h deceleration under aggressive driving are 5.36 s and 

4.16 s, respectively. The conservative style, which is in favor of 

ride comfort and energy efficiency, achieves the best 

performance in vibration reduction and regenerative braking. 

The maximum jerk under conservative driving is below 7 m/s3, 

which is around 1/3 of that in the aggressive driving. Finally, 

the moderate style, which sits in between the other two, 

achieves a good balance between dynamic performance, ride 

comfort, and energy efficiency. 

 
Fig. 10.   Optimized results for the vehicle under different driving styles. 

To compare the energy efficiency at the vehicle level with 

designed control protocols and parameter selections during 

different driving styles, the standard ECE driving cycle is used. 

According to the test data in Table VI, the energy consumption 

of the automated electric vehicle under the conservative style is 
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575.9 kJ, which improves the efficiency by over 10%, 

compared to the energy used in aggressive driving. 

TABLE V.  OPTIMIZED PERFORMANCE UNDER DIFFERENT DRIVING STYLES 

Driving Style 

Performance 

tacc 

/s 

tbrk 

/s 

jmax 

 /m/s3
 

Ereg  

/104 J 

EECE 

 /104 J 

Aggress 

CPS based 5.36 4.16 20.47 9.17 64.06 

wo CPS 5.71 4.35 19.21 9.42 63.21 

Moderate 
CPS based 7.88 6.04 11.52 10.04 60.19 

wo CPS 9.26 6.35 11.91 9.49 62.06 

Conserv 
CPS based 12.27 7.86 6.69 10.60 57.59 

wo CPS 13.56 8.28 10.13 9.35 59.21 

 

Additionally, a comparison of the results between the CPS 

based optimization and the baseline is performed. According to 

the data listed in Table VI, the vehicle with CPS based 

optimization achieves better comprehensive performances in 

vehicle dynamics, ride comfort, and energy efficiency, thanks 

to the co-design of the plant and controller parameters. This 

demonstrates the advantages of the newly proposed method 

over the conventional one. 

VII. CONCLUSIONS 

In this paper, a CPS-based framework for co-design 

optimization of an automated electric vehicle with different 

driving styles was proposed. The multi-objective optimization 

problem was formulated. The driving style recognition 

algorithm was developed using unsupervised machine learning 

and validated via vehicle testing. The system modelling and 

experimental verification were carried out. Vehicle control 

algorithms were synthesized for three typical driving styles 

with different protocol selections. The performance exploration 

methodology and algorithms were proposed. Test results show 

that the overall performances of the vehicle were significantly 

improved by the proposed co-design optimization approach. 

Future work will be focused on real vehicle application of the 

proposed methods and CPS design methodology improvement. 
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