
 
Abstract—Driver driving style plays an important role in 

vehicle energy management as well as driving safety. 

Furthermore, it is key for Advance Driver Assistance Systems 

development, towards increasing levels of vehicle automation. 

This fact has motivated numerous research and development 

efforts on driving style identification and classification. This 

article provides a survey on driving style characterization and 

recognition revising a variety of algorithms, with particular 

emphasis on machine learning approaches based on current and 

future trends. Applications of driving style recognition to 

intelligent vehicle controls are also briefly discussed, including 

experts’ predictions of future development. 
 

Index Terms— Driving style; driving conditions; driver 

behavior; driving style recognition; machine learning; intelligent 

vehicle control; energy efficiency; driving safety. 

 

I. INTRODUCTION 

ONNECTED autonomous vehicles and artificial 

transportation systems require enhanced understanding of 

the human driver behavior. This is not only necessary to 

guarantee safe and adequate performance, but also to adjust to 
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the drivers’ needs, potentiate their acceptability and ultimately 

meet drivers’ preferences in a safe environment. Therefore, it 
is essential the recognition of driving style (DS) and driver 

intention inference for the integration and development of 

these systems [1] – [7]. This statement is supported by the 

recently proposed parallel driving framework based on cyber-

physical-social systems, where driver behavior and cognition 

was one of the key elements [8] – [10]. Furthermore, the 

society is becoming more aware of environmental concerns, 

which influences decisions made by industry and end users 

[11] [12]. Particularly, in 2004 27% of the global CO2 

emissions were caused by the transport sector, being 83% 

responsibility of road vehicles [13]. Eco-friendliness, fuel 

supply security and CO2 regulations are driving research 

towards more efficient powertrains including: conventional, 

battery electrical vehicles (BEVs), hybrid electric vehicles 

(HEVs), plug-in hybrid electric vehicles (PHEVs) between 

others [12]. 

Besides, industry has taken a further step to influence driver 

driving style through active and passive corrective feedback 

[14] towards safer and eco-friendly practises. The firsts can 

intervene into the driving task directly by generating haptic 

inputs [2] [3] [7] [9], whilst the second is only advisory and 

targets to improve drivers’ awareness through visual or audio 

advice [15] [16]. These systems that provide only feedback to 

the driver, either haptic or passive, are classified as passive, 

whilst active systems can interfere directly in the vehicle 

operation by modifying driver’s power demand and 
recalibrating the components response to compensate for 

deficient driving habits [13] [16]. Although the feedback 

suitability and effectiveness can be argued, it has been 

observed that the simple fact of being monitored already 

encourages drivers to correct their style [17] [18]. 

Nevertheless, better understanding of driving style is required 

to ensure appropriate and consistent recognition and to 

effectively promote safety and eco-driving. 

A. Motivation 

Fuel efficiency is mainly influenced, although not 

exclusively by: vehicle characteristics, road type, traffic 

conditions and driving pattern [13] [19 – 21]. Albeit it is well-

known that DS strongly affects fuel efficiency, there is still 

limited knowledge of the direct relationship [11]. Furthermore 
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fuel consumption could be used to simplify the relationship 

between DS and vehicle efficiency [12] [22], and aid to 

characterize drivers [23]. Among the scarce publications that 

strive towards this direction, Bolovinou et al. developed an 

algorithm able to calculate the remaining range in a BEV. The 

authors used route speed and gradient profiles which 

inherently included information about traffic and DS [24]. 

Recent publications highlighted a margin of potential benefit 

of fuel consumption of 20-40% [15] [25], which agrees with 

the 5-40% margin claimed in [26] in simulation environment. 

However this gain is strongly related to the road type. Mudgal 

et al. registered 33% improvement on fuel consumption when 

correcting aggressive driving on highway, but only 5% on 

urban roads [27].  

In addition to fuel consumption reduction, road safety has 

also motivated progress in safety systems. These, according to 

the degree of automation applied, may also be of intrusive 

nature: components calibration and vehicle response 

modification or even pedals and steering control takeover. The 

complex interaction between these features and drivers has 

encouraged investigations on human factors involved in car 

accidents [28]. Some of these factors are: demographics, 

distraction, experience, fatigue, alcohol, stress, risky 

behaviour tendency and decision making [29]. Aggressive 

drivers tend to operate the vehicle in an unsafe manner, 

including excessive speed, improper car-following, erratic 

lane changing and imprudent turning manoeuvres [14]. 

Currently, advanced driver assistance systems (ADAS) are a 

promising field of research that contributes to safety and 

powertrain efficiency improvement [30] [31]. Those features 

assist drivers during specific events [16] [23], but are usually 

designed based on the average driver characteristics. Although 

the calibration includes a wide majority, it cannot adapt to 

specific driver singularities [32]. Hence, the next generation of 

ADAS features target driver style recognition to individualize 

the systems performance [30] [31] [33] [34] and potentially 

improve fuel consumption and safety along with awareness of 

external driving conditions [21] [35]. 

Motivated by the previous review, a survey of driving style 

recognition state-of-the-art and future trends is urged to set the 

basis for progress in this direction. This paper gathers a review 

to algorithms and applications of driving style recognition into 

the current ADAS framework towards increasing levels of 

automation and vehicle electrification. 

B. Driving Style Related Terms 

Driving style is a complex concept influenced by a 

burdensome number of factors which complicates its 

description. This has caused the emergence of numerous 

terms, which usually lack an agreed definition. It is therefore 

required a concise description to avoid the reader confusion 

when referencing different authors. The relationships between 

the terms defined as understood by the authors are illustrated 

in Fig. 1 to situate the context of driving style and facilitate the 

comprehension of the terms used in the following. 

Driving event is generally understood as manoeuvres 

occurring during the driving task, such as: acceleration, 

deceleration, turning and lane change, which can be used to 

identify DS [14]. Henceforth driving pattern is defined in the 

remaining as the speed profile. This simplified description 

includes all additional information that can be obtained from 

the vehicle speed analysis. The previous definition aligns with 

the literature which designates it as: trip duration and average 

speed [20], speed profile and calculated power demand [13], 

both speed and acceleration profile [19], or even consider a 

detailed scrutiny of the vehicle speed including average 

number of accelerations and time at constant speed [25].  

The driving pattern is strongly related to road type, weather 

conditions, also referred as driving conditions, and driving 

style [36], but does not include that information specifically. 

In contrast, driving behaviour solely focuses on driver’ 
decisions and ignores external factors [20] [25] [26]. These 

concepts should not be confused with driving skill, which is 

usually defined as the driver’s ability to maintain the vehicle 
control and is generally used to differentiate between 

experienced and average ordinary drivers [5]. 

In contrast to the previous terminology, there is no agreed 

definition of driver driving style in the literature. This is 

mainly caused by subjective factors associated to it such as: 

driver attitude, mood, tiredness, etc. Ishibashi et al. defined it 

as the attitude and way of thinking towards the driving task 

[37]. Dörr et al. proposed a pragmatic description, defining it 

as the way the driving task is accomplished [38]. The concept 

can be then understood as the manner the driver operates the 

vehicle: steering wheel, throttle and brake pedal, etc., but with 

connotations over the driver, as a differentiating factor against 

driving pattern [38]. Some other definitions concentrate on 

driver aggression rather than driving style, which is the driver 

aggressiveness potential. Aggressive drivers usually develop 

abrupt and unpredictable manoeuvring, which generally 

results in higher fuel consumption and tends to provoke 

dangerous situations [28]. Nonetheless, it can be agreed that 

DS is strongly influenced by the driving external conditions, 

which cannot be separated from DS evaluation [38] [39]. 

Hereby driver driving style is understood as the way the driver 

operates the vehicle controls in the context of the driving 

scene and external conditions such as time in the day, day of 

the week, weather and mood, between other factors. This 

definition agrees with previous descriptions and contemplates 

 
Fig. 1: Driving style-related terminology and connections. 



detecting more than one style for the same driver. That is to 

say that the same driver could exhibit disparate styles under 

different conditions, such as: a commuting rote to the work 

place and a family trip during the weekend. 

II. INPUTS FOR DRIVING STYLE CHARACTERIZATION 

The plurality of definitions of driver driving style is caused 

by the large number of influencing factors and possible 

interpretations of the driver response. Some of these variables 

are listed in Fig. 2. It is unreasonable to expect the control of 

all factors given the burdensome number and the difficulty to 

measure most of them. Hereby we differentiate between 

influencing factors and the actual input signals implemented. 

These inputs are understood as influencing factors that can be 

controlled and are chosen to characterize driving style.  

A. Driving Style Influencing Factors 

Ericsson conducted a comparative examination of the 

relationship between driving patterns and external conditions 

such as traffic, street type and other drivers [19]. The author 

highlighted the strong influence between these factors and 

their interactions, necessary to determine DS in the context of 

the vehicle performance [19]. In contrast, Taubman et al. 

transferred DS research into a completely different field by 

analysing human factors: conscious decision making, 

demographic background and character [28]. The study 

revealed that new parameters such as driving experience, 

training and familiarity with the vehicle and the environment 

can also condition DS. The authors specifically addressed the 

influence of: gender, age, education and personality by 

analysing self-esteem, patience, recklessness, anger and 

extraversion [28]. Likewise, driver state was found to be 

notably influenced by drugs, fatigue, distraction, etc. in [29]. 

These previous factors are inner to the driver, but can also be 

triggered by the external stressing situations such as road state 

and high congestion level. These, combined with time in the 

day and day of the week, may affect differently to drivers [19]. 

The previous analysis opens a debate about DS assignment to 

each driver. Whilst some researchers allocate a unique style, 

the previous influences consider the possibility to detect 

changes in driving style as a response to changes in the 

external conditions. These results are important from a 

research perspective, but the implementation of this 

information for DS recognition might not be feasible. Socio-

demographic factors require large amount of data that is not 

generally available to the recognition algorithm. 

A simplified approach for practical DS identification focuses 

on its influence over single figures, such as: fuel consumption 

[12] [22], average speed or range. Nevertheless, these 

indicators might be excessively simplistic to evaluate 

scenarios with different levels of traffic congestion and fail to 

represent the complete driving scenario. Besides, the 

influencing factors may differ depending on the road type. 

Speed profiles in city routes could become very complex due 

to turning manoeuvres and multiple braking events, but they 

could be fully defined by speed and acceleration events in 

highway roads. The aforementioned highlights the importance 

of road type recognition to ensure correct driving style 

identification [20]. McCall et al. defined road type and driving 

conditions recognition as context awareness, information 

required to properly judge drivers’ performance and generate 
useful feedback. The study was motivated by the fact that 

drivers classified as “excessively calm” should not be 

encouraged to drive faster in slippery roads or classified as 

aggressive in roads where “aggressive” manoeuvres might be 

required [40]. Murphey et al. suggested more complete road 

classifications into: freeway, freeway with gradient, arterial 

and local roads, with incremental congestion level [21]. Xia et 

al. worked on similar ideas, by proposing fuel economic 

driving in road segments provided by traffic control 

infrastructure with vehicle communication of real-time 

congestion and traffic lights. This approach produced a 10-

15% potential benefit in fuel consumption [41].  

B. Role of Sensors 

Although the most suitable factors affecting DS recognition 

can be argued, they are eventually constraint by the 

information available. This is limited by the standalone 

devices that are currently installed in the majority of vehicles 

in production. A commonly used source of information is the 

inertial measurement unit [21] [26] [31] [38] [42], which 

includes: vehicle speed, throttle pedal position, acceleration, 

etc. Furthermore, low-cost accelerometers can be installed to 

capture additional information [43]. Vehicle localization can 

be provided by the Global Position System (GPS), which is 

simultaneously an indirect measurement of speed and 

acceleration [17] [27]. More advanced vehicles include 

devices to detect the driver behaviour under specific 

manoeuvres, such as Geographical Information System (GIS) 

used for location of roundabouts [27]. In addition, the use of 

parameters related to car-following would require the 

installation of radar or LiDAR sensors, already available in 

vehicles featured with adaptive cruise control [34] [38] [44]. 

When the desired signals are not available, smartphones can 

be used instead [13] [14] [16] [18]. Due to the increasing 

popularity of these devices, it is reasonable to assume their 

 
Fig. 2: Influencing factors on driving style. 



presence and availability. Smartphones can contain: 

accelerometers, gyroscopes and geomagnetic field sensors 

[18], GPS and cameras [14].  

Table I summarizes the vehicle sensors introduced. These 

approaches for signals capturing and sensor installation 

respond to discrepancies in terms of electronics installed in 

vehicles currently produced. Given the tendency of further 

electrification, it can be presumed that future vehicles will be 

provided of an integrated sensor system able to provide all 

required information. 

C. Driving Style Recognition Input Signals 

 The initial step for driving style identification consists of 

determining the variables necessary to monitor so as to 

provide a robust classification. Choosing the correct signals is 

crucial since any further processing and results depend 

entirely on it. Nevertheless, there is no general agreement of a 

recommended set of parameters in the literature [19] [28]. 

This disagreement responds to the plurality of applications of 

DS for: driver correction, fuel consumption reduction, safety 

enhancement, etc. A summary of the solutions proposed by the 

reviewed authors is included in Table II. 

Ericsson explored a holistic study of independent measures 

on DS with respect to emissions and fuel consumption. The 

initial set of 62 signals is simplified by discarding unnecessary 

information into 26 including: speed mean and standard 

deviation, acceleration, deceleration, speed jerkiness in curves 

and proportion of time at different speed. This set is further 

reduced to 16 independent factors, where only 9 where 

directly relevant to fuel consumption. The analysis highlighted 

the importance of determining road type and traffic conditions 

prior to DS recognition, due to the strong relation between the 

parameters and the level of congestion [20]. 

Although the previous author performed a significant 

reduction of the initial set of parameters, DS algorithms 

implementable in-vehicle real applications require further 

simplifications to comply with cost and running time limits. 

More simplistic approaches take advantage of the relationship 

between aggressive drivers and high acceleration [18], speed 

profiles and fuel/energy/power consumption [13] [26] [33]. 

Acceleration is generally complemented with other variables 

such as braking or velocity statistics [18] [45] [46], being the 

most common combination the measures of speed, 

acceleration and deceleration or similar. In contrast, other 

variables such as jerk [21], braking pressure and usage of the 

throttle and brake pedals were also widely employed and even 

understood as better indicators by many authors [21] [23]. The 

combination of both longitudinal and lateral dynamics has 

been also highlighted for being able to capture the majority of 

the vehicle motions [34]. Nevertheless, these approaches only 

provided complete information when the driving situation was 

also known, named weather conditions, traffic and road type 

[21]. Furthermore, although DS is apparent for conventional 

and BEV, it is particularly critical for HEV and PHEV due to 

the combination of at least two power sources [47]. Small 

changes over the torque request can trigger the transition into 

different hybrid modes and affect the amount of energy 

recovered during braking [48]. These studies target fuel 

oriented identification implement power, energy or fuel 

consumption measures [48]. 

Signals selection can be guided by the identification of 

specific events [14], which are tightly related to the vehicle 

dynamics and contain information about the driver intention. 

The key driving events identified are usually extracted from 

the data [42] and include: braking, car-following, distance 

keeping [23] [32], roundabouts [27], handling, including lane 

change and cornering [16] [31] [49] and the reaction delay to 

events [50]. This information can be combined with additional 

signals and statistics to enhance the classification [31]. The 

former encompasses different interpretation of speed and 

acceleration profiles according to events or even adjusting the 

signal set to specific manoeuvres. 

III. DRIVING STYLE CLASSIFICATION 

Signal selection for DS is strongly linked to the 

classification criteria and recognition algorithms used as 

illustrated in Fig. 3. Due to the large number of signal 

candidates and applications, there are numerous approaches 

for DS classification with different labelling. A survey of the 

main criteria and classification options included in the 

following is summarized in Table III. 

TABLE I 

COMMON SENSORS REQUIRE FOR DRIVING STYLE SIGNALS CAPTURING 

Sensor Ref. 

Inertial Measurement Unit [21][31][38][42] 

Low-cost accelerometers [43] 
Smartphone [13][14][16][18] 

GPS [17][27] 

GPS and Inertial [26] 
GIS [27] 

Radar or LiDAR [34][38][44] 

TABLE II 

INPUT LIST FOR DRIVING STYLE RECOGNITION 

Inputs Ref. 

Power/fuel demand/consumption [13][33][46][47]  

Speed, acceleration, jerk, congestion, (off-)peak etc. [19][20] 
Acceleration, deceleration and sharp turn [18] 

Jerk  [21] 

Smartphone accelerometers (plus GPS) [14] ([16]) 
Speed, long. and lat. acceleration (over-consumption) [26] 

Fuel, vehicle speed, acceleration and throttle  [15] 

Speed, acceleration and kinetic energy [48] 

Lat. /long. jerk/acceleration, time gap lead vehicle [34] 

Angular velocity and long. acceleration [42] 

Distance-keeping, speed, plus throttle and brake [23] 
Throttle, brake, car-following, handling and power  [31] 

Brake pressure and throttle position [45] 

Personality traits  [28] 
Review paper [25][32] 

Event Related  

Curve-handling and traffic conditions [49] 

Speed at Roundabouts [27] 

Brake, acceleration and turn [42] 
Driver reaction delay (braking, steering, acceleration) [50] 

Left/right turn/lane change, acceleration, braking [16] 

(Aggressive) turn/acceleration/braking/U-turn, swerve 
Right/left and excessive speed 

[14] 

Braking, car-following, throttling and handling [31] 

Car-following [23] 

 

 



A. Driving Style Classification into Discrete Classes 

The general tendency is to group driving styles into classes 

based on the distribution of the selected driving parameters 

and extracted features [25]. These classes need to be defined 

prior to the classification algorithm design and should account 

for all influencing parameters in a multifactor cognition task. 

They need to account for the trade-off between classification 

finesse and complexity to guarantee the algorithm robustness 

and have to be understandable by the end user [34]. Classes 

labelling can be inspired from either safety or fuel economy 

perspectives. Whilst safety related applications refer to the 

level of aggressiveness, fuel oriented classification generally 

uses terminology related to efficiency or sportiness. The 

plurality of classes labelling further increases when combining 

the previous with increasing number of DS groups.  

The revision to the literature reveals a prevalence of simple 

classification bases using either two or three categories. This 

solution provides easily understandable feedback and 

facilitates the algorithm calibration. The distinction between 

aggressive and nonaggressive was use in [14] [16] [30] [34] 

[43], fuel economic vs. performance [15]. Aggressive drivers 

often show careless handling behaviour and may result in 

higher fuel consumption [45]. They exhibit frequent changes 

in the throttle pedal position of large magnitude, whilst calm 

drivers only show small amplitudes and low frequency. The 

division into three classes includes aggressive, mild and 

moderate styles, as defined by Xu et al. [45], soft, normal and 

aggressive by Syed et al. [15] or comfortable, normal and 

sporty as described by Dörr et al. [38]. Moderate drivers are 

described as an intermediate group that shows properties from 

both aggressive and calm, but without conclusive membership 

to any of those. 

In contrast to the previous, Taubman et al. presented a study 

on multidimensional driving style which examined human 

factors involved in car accidents and inspired a safety related 

classification: reckless and careless driving, anxious driving, 

angry and hostile driving and patient and careful driving [28]. 

Other authors opted for a more precise classification using 

higher amount of grades by identifying the no speed category 

[21], whilst Constantinescu et al. proposed a five to seven 

classes, covering the range from non-aggressive to aggressive 

style [17]. Larger number of clusters improves the 

classification finesse, but complicates the algorithm 

development and the interpretation of the classes themselves. 

DS identification is of no use unless the information provided 

is clear, statement supported by Table III that situates the 

recommended number of cluster below 5.  

B. Driving Style Classification through continuous Indexing 

The ultimate classification case into a larger number of 

clusters consists of considering a continuous index, which 

eventually could be used in a threshold-based algorithm to 

transform it into finite classes [21] [51]. Augustynowicz 

classify DS in a range within (-1,1), being -1, 0 and 1 mild, 

normal and aggressive respectively [51]. This index is 

generally calculated from the relative fuel consumption or 

overall efficiency, instead of driver level of aggressiveness. 

Manzoni et al. used an estimation of the fuel consumed along 

the trip and compared it to a benchmarked value to calculate 

an over-consumption percentage indicative of extra cost [26]. 

Fuel consumption was also used by Neubauer et al. to obtain 

the vehicle efficiency as indicative of DS [48]. Similarly Corti 

et al. assessed driver driving style with an energy-oriented 

cost function that estimated the power over-consumption [13]. 

IV. DRIVING STYLE RECOGNITION ALGORITHMS 

Driving style recognition algorithms are developed on the 

basis of the selected classification method and signals 

employed. DS recognition algorithms are usually implemented 

through a set of rules, via models or using machine learning as 

summarized in Fig. 4. Although implemented through a 

specific strategy, these algorithms can be developed 

combining some of the previous. For instance, rules can be 

inspired on data processed through unsupervised machine 

learning. Table IV presents a concise summary of the main 

algorithms reviewed in this section and respective references. 

A. Implemented through Rules 

Rule-based (RB), also referred as threshold-based 

algorithms, are the simplest approach for DS recognition. 

Rules are defined based on prefixed thresholds over the 

monitored variables that allocate DS into groups. These rules 

are usually defined for specific events, as introduced by 

 
Fig. 3: Driving Style Recognition Algorithm Design Process. 

TABLE III 

IDENTIFICATION BASIS AND CLASSIFICATION DETAILS FOR DRIVING STYLE 

Ref. 
No. Class 

or Rank 
Classification Details 

[11][12][14][15] 

[16][30][34][43] 
2  Aggressive/calm (unsafe/safe) 

[15][19][25][38][45] 3  Aggressive/moderate/calm 

[21] 3+1  
Aggressive/moderate/calm + no 

speed 

[18][39] 4 Very bad / bad / good / very good 
[17]   5-7  Calm - aggressive / steady - dynamic 

[13][20][26][48] Rank (Over) fuel / power consumption 

[28] 4 Reckless/anxious/angry/patient 
[51] Rank (-1,1) From most-aggressive to most-mild 

 



Radoslav who implemented a RB algorithm particularized to 

six driving events: acceleration, deceleration, left/right turn 

and left/right lane change. DS was obtained through a final 

score that counts the relative number of aggressive 

manoeuvres [18]. Murphey et al. presented a similar approach 

based on aggressive manoeuvres counting. The final score was 

obtained in percentage basis, distinguishing within: calm 

below 50%, aggressive above 100% and normal otherwise 

[21]. Alternatively to driving events classification, DS can be 

grouped according to fuel or overall energy consumption as 

already included [13] [26]. The use of RB algorithms unifies 

simplicity, easy interpretation and implementation, but limits 

the amount of parameters that can be managed. The previous 

examples are generally based on a single parameter, and 

therefore the robustness and accuracy of the results are 

considerably limited.  

Larger sets of variables generate rules unnecessarily 

complex that can be replaced by fuzzy logic (FL) maps. These 

are also based on prefixed thresholds but are able to include 

more parameters whilst keeping its simplicity, robustness, 

easy understanding and low computational order. Dörr et al. 

developed a real-time algorithm that also considered other 

variables such as road type and gap between vehicles by 

implementing FL. This system was verified in simulation 

environment in urban and rural road without traffic 

disturbances achieving 68% of correct classification rate and 

2% of incorrect classification rate [38]. Gilman et al. also 

employed a RB and FL based on a total of 17 factors 

evaluated through a performance indicator [39]. Syed et al. 

proposed a FL algorithm to evaluate optimal pedals operation 

in a HEV. This algorithm monitored both throttle and braking 

pedals operation and was able to calculate an appropriate 

correction and generate haptic feedback to the driver. The 

authors claimed a minimum of 3.5% improvement in fuel 

consumption for mildest driving in simulation environment, 

without compromising the vehicle performance [47]. Won 

also used FL to improve HEV fuel consumption using road 

type and events detection: start-up, acceleration, cruise, 

deceleration and stationary [52]. A similar approach was taken 

by Kim et al., who used a FL control with driving mode, 

driving style and driving conditions recognition capability. 

This was utilized to adapt the control of a HEV and BEV 

given pedals operation and external temperature and tune the 

state of charge window, battery recharge/depletion and engine 

on/off state thresholds. The state of charge membership 

functions were hereby adaptive to the driving conditions [53].  

Although RB and FL algorithms unify acceptable results 

with implementation simplicity, the quality of the 

classification is strongly related with the selection of the 

thresholds. These can be based on the expertise of the 

designer, although more strictly should be inspired on real 

data. Maximum number of drivers should be involved in the 

data collection to gather maximum data variability and 

generalizing capacity. These algorithms are also limited in 

terms of the amount of variables and data that can process, 

reason why they might be compensated with data-driven 

algorithms at least at the development stage. The next 

generation of algorithms require the capability to account for 

larger data sets and influencing factors, characteristics that 

escape from RB limits and point to their combination with 

machine learning approaches, between others. 

B. Implemented through Models 

Model-based algorithms consist of the description of driving 

style through a set of equations of pre-defined characteristics. 

The models selected are adjusted to each DS by tuning their 

parameters to fit the data used to inspire them, usually using 

data-driven methods. The models complexity is given by the 

application requirements and influences the fidelity of driving 

style representation. Driving style models respond to the 

necessity to reduce data collection and testing, which is time 

consuming and involves high costs. Driver models can be used 

to reproduce DS in simulation environment, test ADAS 

features in more realistic environments [38] and adapt ADAS 

performance in real-life applications (driver-in-the-loop). 

Furthermore, advanced driver models can replace 

classification algorithms allocating real world driving 

scenarios simulated into previously established classes. 

Nevertheless, driver modelling has as main drawback in the 

difficulty to prove the accuracy of the results. Model 

validation requires their comparison with real drivers, which 

again necessitates extensive data collection [32]. 

 
Fig. 4: Driving style recognition algorithms review in the literature. 

TABLE IV 

ALGORITHM AND DATA SOURCES/INPUTS FOR DRIVING STYLE RECOGNITION 

Reference(s) Algorithm 

[11][13][18][21][26][28] RB 
[17][37] RB (Clustering Analysis) 

[31][38][47][52][53] FL 

[39] RB and FL 
[15] Adaptive- FL 

[45] NN 

[51] Elman-NN 
[30] kNN, NN, Decision Tree, Random Forest 

[14] kNN Dyn. time wrapping 

[43] kNN 
[27] Hierarchical Bayesian Regr. 

[40] Bayes Learning 

[42] K-means and SVM 
[55][56] Markov Chain 

[35] GMM, k-means, SVM, etc. 

[23][25] GMM 
[33] Monte Carlo Markov Model 

[32] Review Paper 

 



C. Implemented through Learning Algorithms 

Threshold definition in RB algorithms conditions the results 

robustness and requires extensive data analysis. Data-driven 

algorithms are suitable to process large amount of data and 

consistently derived the thresholds value or even fully develop 

improved algorithms. Furthermore, these have adaptive 

capability that can be applied to particularize to specific 

drivers. These beneficial characteristics have promoted 

research into data-driven approaches and is conditioning 

future trend in DS recognition. Proof of that is found in the 

extensive literature available and represented in the following 

with a predominant coverage with respect to RB and model-

based approaches.  

1) Unsupervised Machine Learning Algorithms 

Unsupervised algorithms do not require understanding of 

the underlying process. The classification is achieved through 

statistical analysis of the input signals inherent to the 

algorithms. This allows increasing the number of classes and 

therefore the finesse of the classification. Constantinescu et al. 

proposed two alternative algorithms based on hierarchical 

cluster analysis and principal components analysis. The first 

one identifies groups of drivers based on similarities in the 

driving statistics, whilst the second option studies the 

correlation between variables to transform the original data set 

into a smaller one, whilst keeping the useful information. Each 

algorithm returned a different number of classes, 5 and 7 in 

principal components and hierarchical clustering respectively 

[17]. The use of principal components with extensive analysis 

of the driving-related extracted features is included in [37].  

Miyajima et al. implemented a Gaussian Mixture Model 

(GMM) based on car-following behaviour and pedals 

operation spectral analysis. The model achieved an 

identification rate of 69% car-following, whilst the pedal 

spectral analysis provided a classification rate of 89.6% in 

simulation environment and 76.8% in field tests [23]. A 

similar application of GMM for pedal operation modelling 

was also reviewed by Wang and Lukic in [25]. Johnson and 

Trivedi applied dynamic time wrapping to detect aggressive 

events with a 97% success in simulation environment [14].  

Driving style statistical characteristics also encourages the 

use of Bayesian methods. Mudgal et al. implemented a 

hierarchical Bayesian regression model to characterize DS in 

roundabouts [27]. Similarly, McCall and Trivedi employed 

Bayesian learning to assess critical situations related to 

braking assistance. The model was used to assess when a 

braking would be required and the probability of the driver 

performing this manoeuvre [40].  

Unsupervised algorithms have proved their applicability 

and suitability for DS recognition. Nevertheless, the output 

needs to be directed in terms of interpretation and number of 

clusters. Besides, the classification performance can be worse 

compared to supervised algorithms.  

2) Supervised Machine Learning Algorithms 

Supervised algorithms imply knowledge of the driving style 

of the data used for training. One of the simplest supervised 

algorithms is k-nearest neighbour (kNN), which is based on 

similarity measures rated by the “votes” of the predefined k-

neighbours. This method was exploited by Vaitkus et al. using 

a total of five features extracted from the data, which provided 

a 100% classification success using experimental data from 

110 routes. Furthermore, the authors claimed 98% 

classification success using only 3 features based on central 

statistics. Nevertheless, these results needed to be evaluated 

based on the characteristics of the training and testing data 

which proceeded from the same route, season and analogous 

traffic conditions [43].  

An Elman-type neural network (NN) was applied by 

Augustynowicz to identify DS using speed and throttle pedal 

position [51]. Another application of NN was proposed by Xu 

et al. who developed a distal learning control framework with 

two feedforward networks. NN1 concerned the plant inverse 

model and NN2 simulated the plant forward model, which was 

run in parallel for error detection and self-learning [45]. A 

comparison between various supervised learning algorithms 

was performed by Karginova et al. who implemented: kNN, 

NN, decision tree and random forest. DS recognition using 

kNN achieved its best performance within nearest neighbour 

inherent limits when clustering for k = 4 or 5. NN optimal 

number of hidden nodes was obtained as 20 with two 

approaches. The first network was trained with unmodified 

data, whilst the second was trained twice with normal training 

data to encourage the preference for this style. As expected, 

the second NN showed less incorrect classification of normal 

DS. Random forest implementation was performed to improve 

the poor performance of a single decision tree. The tests 

revealed an optimal number of 40 trees, which achieved the 

best results in simulation environment. Again the algorithm 

performance in normal style classification was high, but 

returned unsatisfactory results in aggressive style 

classification. The algorithms assessment showed applicability 

in real-time classification in all cases, but preference for NN 

candidates based on the classification performance [30]. 

Markov models have also been successfully implemented 

for DS recognition. In Markov chains, future states only 

depend on the current states, whose transition is generally 

described by the so-called transition probability matrix [54]. 

The stochastic and random characteristics of driver behaviour 

can be captured using Markov models as claimed by 

Guardiola et al., who defended the benefits of Markov Models 

combined with Monte Carlo application to generate random 

patterns based on past data in representation of DS [33]. 

Pentland and Liu defended Dynamical Markov Model 

suitability to capture DS, supported by the fact that human 

actions are best captured as a sequence of control steps [55]. 

Similarly, a Hidden Markov Model was used by Nechyba and 

Xu to learn human control and validate the results [56].  

3) Combined Unsupervised and Supervised Algorithms 

Although supervised and unsupervised learning could be 

interpreted as alternative methods, these can be combined in 

two-part algorithms to benefit from their advantages and 

improve the overall performance. Unsupervised learning 

contributes to identify the relevant input signals and the most 

efficient classification strategy, whilst supervised learning 

generally returns better classification results. Bolovinou et al. 

provided a survey of data-driven algorithms combining 

supervised and unsupervised methods based on Bayesian 

inference, GMM, Support Vector Machine (SVM), K-mean 

clustering, Bayesian Network and Markov models. However 

no concluding comparison was delivered due to the 



incompatibility caused by differences in the input data and DS 

definition [35]. Van et al. explored the application of K-means 

along with SVM. K-means unsupervised algorithm was used 

to explore the relevance of specific manoeuvres and their 

combination along with the driver pedals operation, whilst 

SVM was used for implementation [42]. 

V. INTELLIGENT VEHICLES AND CONTROL APPLICATIONS 

DS recognition has several applications such as: driving 

style feedback and correction, driver-in-the-loop, ADASs 

performance enhancement and energy management in HEV, 

PHEV and BEV. These can be gathered in two main groups, 

safety or fuel efficiency aware. These alternative 

classifications can correlate at times given the fact that 

aggressive driving is generally associated to inefficiency, but 

do not coincide in all cases. That is, calm drivers do not 

necessarily drive efficiently.  

A. Driver Advisory Feedback 

One of the main applications of DS recognition targets 

driver style correction through either online or offline 

feedback, which can be passive, active or a combination of 

both. Corrective systems can be directly installed in the 

vehicle or included in smartphones to make use of the device 

sensors and processing capability [13] [14] [18]. An example 

of DS recognition and correction using smartphones was 

presented by Stoichkov. The application was designed to 

display visual feedback to promote DS improvement for both 

fuel consumption and risks of accidents reduction [18]. An 

alternative approach was proposed by Fazeen et al. who 

generated instead audio feedback to encourage DS correction 

[11], as is similarly used in [14]. Corti et al. designed an 

algorithm with three alternative levels of visual information 

tested against the no-feedback scenario. All approaches 

showed improvement in the vehicle consumption up to 20-

30%, although best results were achieved when providing 

enough information in a clearest and most understandable 

manner [13]. Doshi and Trivedi went a step further and 

analysed the response of drivers to the feedback to adapt the 

information facilitated and obtain individual evaluation [34].  

Although passive feedback strategies are easy to implement 

and can return satisfactory results, it always exists the 

possibility that the driver chooses to ignore the guidance. In 

contrast, active feedback systems generate a response that 

affects the normal vehicle operation, which cannot be as easily 

neglected. Syed et al. provided both visual and haptic 

feedback registering up to 3.5% improvement in fuel economy 

without reducing the expectations of vehicle performance as 

claimed by the authors. Haptic feedback was generated 

through the throttle pedal [45] [57]. Nevertheless, haptic 

guidance can easily cause the driver annoyance, which could 

lead to the system manual deactivation. This issue was 

palliated by Syed et al. in [15] and [58], who analysed drivers’ 
response acceptance to the feedback and adjusted it to reduce 

its intrusiveness to less receptive users. Reichart et al. 

described a similar approach, by increasing gradually the 

resistance over the throttle pedal when the vehicle operation 

diverges from optimal use adaptive to the driver response to 

the feedback [59].  

Alternative approaches are especially designed to improve 

safety and efficiency in larger vehicles such as busses and 

fleet management [17] [26] [43] and even passengers comfort 

in public transport [17]. Drivers of these means of transport 

could benefit from a personalized driving assistance, “Driving 
coach”, as described by Gilma et al., system provided by 

context awareness to adapt to specific routes [39]. Rossetti et 

al. proposed the use of serious game in transportation as 

educational technique to improve driving skills in simulators 

by analysing behaviour assimilation, elicitation and persuasion 

[60]. Future trends of driver feedback will probably lean to a 

personalized assistance, where the system will be able to 

detect the driver preferences and generate consistent feedback 

to both encourage style correction and avoid driver annoyance. 

Ideally, this guidance should combine haptic and passive 

feedback with appropriate amount of information easily to 

interpret and follow, based on the driver cognitive capacity 

and skills. 

B. Enhance of ADAS Performance 

As previously mentioned, safety related systems would 

benefit from knowledge about DS to predict and anticipate to 

drivers’ reactions and adjust to individual users. ADASs 
adaptation to drivers may result in safety systems of better 

performance [25] [34]. This would be the case of collision 

avoidance systems that include driver-in-the-loop, which 

would be able to anticipate to drivers’ reactions and actuate 
accordingly [9] [40]. Nonetheless, implementing ADASs in 

driver-adaptive manner is a complex task that requires further 

investigation in the appropriate way of using DS information 

in intelligent vehicles [35]. Kurz et al. presented a method to 

classify and use DS to improve the vehicle handling based on 

an online/offline algorithm updated with historical data. The 

authors also propose person-specific implementation for 

multiple drivers [50]. 

Additional safety-related applications can be found in 

cooperative driving frameworks such as tandem and platoon, 

as exposed by Rass et al. The system assumed the drivers 

were willing to cooperate and provided feedback to encourage 

safety and improve the overall fleet efficiency [61]. Similar 

ideas were reviewed by Fotouhi et al. to reduce fuel 

consumption and emissions [62]. Safe autonomous driving can 

be an ultimate application of DS throughout increasing levels 

of automation. Urmson et al. proposed an algorithm able to 

learn from drivers during manual operation and reproduce 

human-like manoeuvres autonomously within pre-established 

safety constraints [63]. 

C. Control of HEV, PHEV and BEV 

Although conventional vehicles are strongly affected by DS, 

hybrid and battery electric vehicles are less sensitive to it due 

to the higher efficiency of the electric components, idling 

reduction and regenerative braking. Lenaers [46] asserted the 

influence of DS and road type combinations on consumption 

and CO2 emissions in four different powertrains: petrol, diesel, 



hybrid and liquefied petroleum gas. The hybrid powertrain 

was able to provide lower consumption even under urban 

aggressive drive, particularly due to start-stop and 

regeneration during braking. Furthermore, aggressive driving 

styles was found to require up to 68% and 47% more fuel in 

urban and rural roads respectively in conventional 

powertrains, whilst liquid petroleum and most importantly 

hybrid powertrains are less sensitive to the different driving 

patterns [46]. Neubauer et al. compared the effect of DS on a 

conventional vehicle, HEV, PHEV and BEV in terms of 

optimal operating conditions. The results showed important 

influence of driving style in all vehicle platforms, although 

this was affecting differently. HEV presented optimal working 

points at low speed, whilst conventional vehicles improved the 

overall efficiency at higher speed values. Furthermore, HEVs 

were barely affected by braking due to the regenerative 

capability, but particularly vulnerable to high acceleration 

[48]. A part from different operating conditions, hybrid modes 

selection in HEV and PHEV are strongly related with the 

driver torque request and inevitably to DS. Consequently, 

slight changes in driving style can cause unnecessary modes 

switching and develop sub-optimal performance [15].  

Besides, energy management can be enhanced with prior 

knowledge of driving style in HEV and PHEV. The increasing 

level of vehicle electrification has motivated research on the 

effect of DS and driving events on the energy demand in 

PHEVs, being both contributions particularly important for 

optimal control [12]. An optimal control strategy can be 

obtained with knowledge of the entire driving cycle, 

environment and driver behaviour. Thus the information about 

driving style can potentially lead to important fuel savings 

[25]. Driving style information was used by Lin et al. to 

improve the energy management of a hybrid truck [64]. Yu et 

al. used driving pattern and style recognition to better estimate 

the remaining range in PHEV assuming static and quasi-static 

knowledge of the route [65]. Similarly, Zhang et al. proposed 

an adaptive control strategy for a PHEV using driving pattern 

recognition [66].  

Driving style recognition can also provide useful 

information to estimate more accurately the remaining range, 

improve range management and potentially extend it [22]. The 

effect of DS over the BEV range was highlighted by Bingham 

et al., who claimed a possible divergence of 10% between 

drivers. This margin was associated to aggressive deceleration 

events that triggered friction brakes [67]. Similarly, Bolovinou 

et al. developed a strategy able to estimate the remaining 

range using route information: speed, gradient profile, traffic 

conditions and DS. This study targeted an accurate estimation 

of the battery range to reduce the so-called range anxiety that 

characterises BEV drivers and is found to be the main 

constraint that hinders electric vehicles integration in the 

market [24]. 

VI. CONCLUDING REMARKS 

This article offers a review of the recent research and 

development efforts on driving style characterization and 

recognition as well as their applications to intelligent vehicle 

control. The design process is chronologically followed from 

input signals identification and classification policy definition 

to the algorithm selection and implementation. All driving 

style influencing factors and classification strategies are 

presented in relationship to the targeted applications and 

implementation constraints. The complexity of driving style is 

discussed and the predominant interpretations, safety and fuel 

efficiency-related, are analysed through the enumeration of 

different algorithms. The gradual increment of ADAS 

presence and vehicle autonomous capabilities requires deeper 

driving style analysis and the inclusion of drivers in the 

systems. This has promoted the use of data-driven algorithms 

able to process more data and the implementation of machine 

learning algorithms able to adapt to individual drivers. Future 

trends will focus on even larger data sets covering a broader 

plurality of drivers and will implement the combination of 

supervised and unsupervised algorithms to enhance driver 

adaptability and cognitive performance. The presented review 

positions driving style recognition as a crucial concept for 

intelligent vehicle development that will strongly condition the 

progress in autonomous vehicles and their integration in the 

market. 
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