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ABSTRACT 
This paper presents a Cloud-based system computing customized 
and practically fast driving routes for an end user using (historical 
and real-time) traffic conditions and driver behavior. In this 
system, GPS-equipped taxicabs are employed as mobile sensors 
constantly probing the traffic rhythm of a city and taxi drivers’ 
intelligence in choosing driving directions in the physical world. 
Meanwhile, a Cloud aggregates and mines the information from 
these taxis and other sources from the Internet, like Web maps and 
weather forecast. The Cloud builds a model incorporating day of 
the week, time of day, weather conditions, and individual driving 
strategies (both of the taxi drivers and of the end user for whom 
the route is being computed). Using this model, our system 
predicts the traffic conditions of a future time (when the computed 
route is actually driven) and performs a self-adaptive driving 
direction service for a particular user. This service gradually 
learns a user’s driving behavior from the user’s GPS logs and 
customizes the fastest route for the user with the help of the Cloud. 
We evaluate our service using a real-world dataset generated by 
over 33,000 taxis over a period of 3 months in Beijing. As a result, 
our service accurately estimates the travel time of a route for a 
user; hence finding the fastest route customized for the user.  

Categories and Subject Descriptors 

H.2.8 [Database Management]: Database Applications - data 

mining, Spatial databases and GIS;  

General Terms 
Algorithms, Experimentation 

Keywords 
Driving directions, trajectory, traffic prediction, cyber-physical. 

1. INTRODUCTION 
Finding fast driving routes saves both the time of a driver and 
energy consumption (as traffic congestion wastes a lot of gas). 
Meanwhile, people are more likely to choose public transportation 
if they can know in advance that the practically quickest driving 
route to a destination is still slower than the public transportation. 
Therefore, this service is important for both end users and 
governments aiming to ease traffic and protect environment. 
Google and Bing Maps have provided the service of finding the 
fastest driving path in terms of the speed constraints of a road 
segment. However, the practical travel time of a driving route is 
usually different from the result calculated based solely on speed 
constraints. Although real-time traffic conditions are posted on 
some road segments, this is meant as basic information and is not 
incorporated into driving direction services. It is frustrating to 

traverse a road segment which was fast when being checked on a 
map while becomes very crowded when being actually driven.  

Essentially, the time that a driver traverses a route depends on 
three aspects: 1) The physical feature of a route, such as distance, 
the number of traffic lights and direction turns; 2) The time-
dependent traffic flow on the route; 3) A user’s drive behavior. 
Given the same route, cautious drivers will likely drive slower 
than those driving aggressively. Also, users’ drive behaviors vary 
in their progressing driving skills and experiences. E.g., traveling 
on an unfamiliar route, a user has to pay attention to the road signs, 
hence drive relatively slowly. Thus, a good routing service should 
consider these three aspects (routes, traffic and drivers), which are 
far beyond the scope of the shortest path computing.  

Usually, big cities have a large number of taxicabs traversing in 
urban areas. To enable efficient taxi dispatch and monitoring, 
taxis are usually equipped with a GPS sensor, which enables them 
to report on their location to a server at regular intervals, e.g., 2~3 
minutes. That is, a lot of GPS-equipped taxis already exist in 
major world cities, generating a huge volume of GPS trajectories 
every day [12][13][26]. Intuitively, taxi drivers are experienced in 
finding the quickest driving routes based on their knowledge. 
When selecting a route, they usually consider multiple factors 
including distance, traffic flows and signals, etc. Consequently, 
these taxi trajectories already have the knowledge of experienced 
drivers, physical routes and traffic conditions. 

In this paper, we propose a cloud-based cyber-physical system for 
computing practically fast routes for a particular user, using a 
large number of GPS-equipped taxis and the user’s GPS-enabled 
phone. First, GPS-equipped taxis are used as mobile sensors 
probing the traffic rhythm of a city in the physical world. Second, 
a Cloud in the cyber world is built to aggregate and mine the 
information from these taxis as well as other sources from the 
Internet like weather forecast. The mined knowledge includes the 
intelligence of taxi drivers in choosing driving directions and 
traffic patterns on road surfaces. Third, the knowledge in the 
Cloud is used in turn to serve Internet users and ordinary drivers 
in the physical world. Fourth, a mobile client, typically running in 
a user’s GPS-phone, accepts a user’s query, communicates with 
the Cloud, and presents the result to the user. The mobile client 
gradually learns a user’s driving behavior from the user’s driving 
routes and supports the Cloud to customize the fastest route for 
the user. The contribution of our work lies in three aspects: 

 Using the intelligence of taxi drivers and traffic patterns 
mined from a large number of taxi trajectories, we propose a 
routing service which self-adapts to a particular user’s 
driving behavior and customizes the fastest path for the user. 

 We infer the future traffic conditions on a road using an 
mth-order Markov model considering both the historical 
traffic patterns and present traffic flow mined from taxi 
trajectories. Then, the predicted future traffic condition is 
integrated into the proposed routing service. We evaluated 
the prediction model with Beijing taxi data as well as 
Singapore traffic data, and found a better performance over 
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some well-known methods using historical patterns or real-
time traffic alone like T-Drive [26] and ARIMA [10]. Using 
a high dimensional embedding approach, we can conduct 
this model online. 

 We built our system with a real dataset generated by 33,000 
taxis in a period of 3 months, and evaluated the system with 
extensive experiments in both effectiveness and efficiency. 

The remainder of this paper is organized as follows. Section 2 
gives an overview of our system. Section 3 presents our driving 
direction service. Section 4 details the processes of traffic 
condition prediction. Section 5 reports on major experimental 
results followed by some discussions. Finally, we summarize the 
related work in Section 6 and draw conclusions in Section 7. 

2. PRELIMINARY 
In this section, we define some terms used in this paper and give 
an overview of our work. 

Definition 1 (Taxi Trajectory): A taxi trajectory    is a sequence 
of GPS points pertaining to one trip. Each point   consists of a 
longitude, latitude and a timestamp    . That is,              , where                         .    defines 
the maximum sampling interval between two consecutive points. 

Definition 2. (Road Segment): A road segment   is a directed 
(one-way or bidirectional) edge that is associated with a direction 
symbol (     ), two terminal points (   ,    ), and a list of 
intermediate points describing the segment using a polyline. If       =one-way,   can only be traveled from     to    , 
otherwise, people can start from both terminal points, i.e.,         or         . Each road segment has a length          and a speed constraint        , which is the maximum 
speed allowed on this road segment. 

Definition 3. (Route): A Route   is a set of consecutive road 
segments,              , where                   ,      . The start point and end point of a route can be 
represented as     =      and     =    . 

Figure 1 shows the framework of our system which consists of 
two parts: knowledge discovery and service providing.  

Knowledge discovery: This part is comprised of two steps, offline 
mining and online inference. 1) In the first step, we mine the 
accumulated historical data, including taxis trajectories and 
weather condition records, and build four landmark graphs 
respectively corresponding to different weather conditions 
(normal and severe weather) and day types (weekday and 
weekend). This mining step runs offline and not very often, e.g., 
every month. Here, a landmark is defined as a road segment that 
has been frequently traversed by taxis, and an edge connecting 
two landmarks represents the frequent transition of taxis between 
the two landmarks. Each edge in these landmark graphs is 
associated with a distribution of travel time learned from the taxi 
trajectories. Such landmark graphs can well model taxi drivers’ 
intelligence in finding driving directions and traffic patterns on 
road surfaces. 2) In the online inference step, we calculate the 
real-time traffic on landmark edges according to the recently 
received taxi trajectories, and infer future traffic conditions in 
terms of the real-time traffic and the corresponding landmark 
graph. This process is conducted every 10-20 minutes. 

Service providing:  As shown in the left part of Figure 1, this 
process is comprised of five steps. 1) A user submits a query, 
consisting of a start point   , a destination   , a departure time   
and a custom factor   , from a GPS-enabled mobile phone. Here,   can be a future time and   is a vector, which represents how fast 

the user typically drives on different landmark edges.    is set by a 
default value at the very beginning and is gradually updated in 
later services. 2) Using our time-dependent routing algorithm, the 
Cloud computes the fastest driving route for the user according to 
the received query. This routing algorithm uses the traffic 
condition at the time when the road was actually driven. This 
future condition is constantly computed in the online inference.  3) 
The Cloud sends the computed driving route along with the 
distributions of travel times on each landmark edge contained in 
the driving route to the user’s mobile phone. 4) The GPS-phone 
records a GPS trajectory when the user really traverses the route. 
5) The user’s phone computes a new   based on the recorded 
trajectory and the travel time distributions sent from the Cloud. 

 
Figure 1: The framework our system 

3. KNOWLEDGE DISCOVERY 

3.1 Offline Mining 

3.1.1 Modeling Taxi Trajectories 
In practice, to save energy and communication loads, taxis usually 
report on their locations in a very low frequency, like 2-5 minutes 
per point. This increases the uncertainty of the routes traversed by 
a taxi [20][27]. Also, we cannot guarantee that there are sufficient 
taxis traversing on each road segment anytime even if we have a 
large number of taxis. That is, we cannot directly estimate the 
speed pattern of each road segment based on taxi trajectories.  

In our method, we first partition the GPS log of a taxi into some 
taxi trajectories representing individual trips according to the 
taximeter’s transaction records. Then, we employ our IVMM 
algorithm [27], which has a better performance than existing map-
matching algorithms when dealing with the low-sampling-rate 
trajectories, to project a GPS point onto a road segment where the 
point was recorded. As a result, each taxi trajectory is converted 
to a sequence of road segments. 

Based on the preprocessed taxi trajectories, we detect the top-k 
frequently traversed road segments, which are termed as 
landmarks. First, the sparseness and low-sampling-rate of the taxi 
trajectories do not support us to directly calculate the travel time 
for each road segment while we can estimate the traveling time 
between two landmarks (which have been frequently traversed by 
taxis). Second, the notion of landmarks follows the natural 
thinking pattern of people. For instance, the typical pattern that 
people introduce a route to a driver is like this “take I-405 South 

at NE 4th Street, then change to I-90 at exit 11, and finally exit at 

Qwest Field”. Instead of giving turn-by-turn directions, people 
prefer to use a sequence of landmarks (like NE 4th Street) that 
highlight key directions to the destination.  
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After detecting the landmarks, we define the transition between 
two landmarks as below: 

Definition 4. (Transition): Given a trajectory archive, a time 
threshold     , two landmarks  ,  , arriving time   , leaving time   , we say   = ( ,  ;   ,   ) is a transition if the following 
conditions are satisfied:  
(I) There exists a trajectory   :          , after map 
matching,    is mapped to a road segment sequence (          ).     ,          s. t.   =   ;   =   .  

(II)      ,…,      are not landmarks. 

(III)    =     ;   =      and the travel time of this transition           . 

Let     be the set of the transitions connecting      . If      ,  
we say               is a candidate edge, where      = {       | ( ,  ;   ,   )    } 

records all the historical arriving and leaving times. The frequency 
of   is the average number of transitions recorded per day, 
denoted as       . Given a minimum frequency threshold  ,   is 
a landmark edge if         . If no ambiguity arises, we denote 
the landmark edge by    . Later, we connect all the landmark 
edges and construct a landmark graph defined as follows: 

Definition 5. (Landmark Graph): A landmark graph    =(  ,   ) is 
a directed graph that consists of a set of landmarks    (conditioned 
by k) and a set of landmark edges    conditioned by   and     . 

We observe (from the taxi trajectories) that different weekdays 
(e.g., Tuesday and Wednesday) almost share similar traffic 
patterns while the weekdays and weekends have different traffic 
patterns. We also find that the traffic pattern varies in weather 
conditions. Therefore, we respectively build different landmark 
graphs for weekday and weekend, and for normal and severe 
weather conditions, like storm, heavy rain, and snow. In total, 
2 2 = 4 landmark graphs are built. The weather condition records 
are crawled from a weather forecast website. 

 
Figure 2. An example of building landmark graph 

Figure 2 illustrates an example of building a landmark graph. If 
we set k = 4, the top-4 road segments (  ,   ,   ,   ) with more 
projections are detected as landmarks. Note that the consecutive 
points (like    and   ) from a single trajectory (   ) can only be 
counted once for a road segment (   ). This aims to handle the 
situation that a taxi was stuck in a traffic jam or waiting at a traffic 
light where multiple points may be recorded on the same road 
segment (though being traversed once). As shown in Figure 2 (C), 
after the landmark detection, we convert each taxi trajectory from 
a sequence of road segments to a landmark sequence, and then 
connect two landmarks with an landmark edge if the transitions 
between these two landmarks conform to Definition 5 (supposing   =1 in this example). We propose the landmark graph to model 1) 
the intelligence of the experienced drivers and 2) traffic flow 
patterns on road surfaces during a period of historical time. 

3.1.2 Mining Taxi Drivers’ Knowledge 
Given the transition set     of a landmark edge    , we aim to 

estimate the time-dependent travel time of    . Figure 3 A) plots 
all the travel times of the transitions pertaining to a real landmark 
edge (on weekdays over 3 months). Clearly, the travel times 
gather around some values (like a set of clusters) rather than a 
typical Gaussian distribution. This may be induced by 1) the 
different number of traffic lights encountered by different drivers, 
2) the different routes chosen by different drivers traveling the 
landmark edge, and 3) drivers' personal behavior, skills and 
preferences. Therefore, different from existing methods [14][22] 
regarding the travel time of an edge as a single-valued function 
based on time of day, we regard a landmark edge's travel time as a 
set of distributions corresponding to different time slots.  

Intrinsically, different roads have different time-variant traffic 
patterns. That is, we cannot use a predefined time partition for all 
the landmark edges. Here, we employ our VE-Clustering 
algorithm proposed in [26] to automatically learn a proper time 
partition for each landmark edge based on the information entropy 
of the data (travel times) associated with a landmark edge. This 
approach consists of two phases: V-Clustering and E-Clustering. 
The first phase clusters the travel times pertaining to a landmark 
edge into several categories based on the variance of the travel 
times. The second phase utilizes the information gain to 
automatically learn a proper time partition such that in each time 
slot the distribution of travel time is relatively stable. As a result, 
the travel times of each landmark edge haven been divided into 
some portions (pertaining to different time slots), which are ready 
for distribution computing. 

 
Figure 3. Learning travel time distributions from raw data 

Differentiate taxi drivers’ experiences: Intuitively, different taxi 
drivers have different knowledge in different regions of a city 
(especially a big city). Drivers are more likely to find out smart 
driving routes in a region they are very familiar with. Meanwhile, 
this familiarity and experience will change over the times that a 
driver has traveled in the region. So, when calculating the 
distribution of the travel times, we differentiate taxi drivers’ 
experience based on the times they have traversed the edge. 

Suppose a landmark edge      was traversed by   different taxi 
drivers. Accordingly, the transition set      can be categorized into 
N sample spaces. After VE-Clustering, the time of day is 
partitioned into several time slots. Let    be the travel time 
distribution (of a time slot) computed only based on the sample 
from a taxi driver  , denoted as 

             (               )                       (1) 

where (1, 2, … ,  ) stand for   different travel time clusters of this 

landmark edge and     represents the proportion of cluster   in taxi 
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driver  ’s sample space. The progress of a driver’s familiarity with 
a landmark edge is modeled using a Sigmoid learning curve [16] 
(as shown in Figure 3 B), defined as: 

                                                           ;                             (2) 

where       is the familiarity,     are the coefficients, and    is 
the times that the driver   has traversed the landmark edge.       is the linear transformation which maps    from [min,  
max] to [-6, 6], where min and max respectively represent the 
minimum and maximum number of transitions (generated by all 
the drivers) on this landmark edge. Then distribution of this time 
slot, denoted by  , is computed by the weighted average: 

                          (                                  ),          (3)  

Where     is a normalized familiarity of the driver  , calculated as 

                                                              .                                  (4) 

Using this method, we obtain the travel time distribution of each 
time slot for each landmark edge. For example, as shown in 
Figure 3 C), in the time slot 9-14, over 60 percent of drivers 
traverse the landmark edge in 3-5 minutes (the green bar), while 
about 30 percent of drivers need 5-10 minutes (the yellow bar) 
and the rest of them even spends 10-14 minutes (the red bar). 

3.2 Online Inference  
In this section, we infer the traffic condition at a future time (F) in 
terms of the landmark graphs built from historical data (H) and 
real-time traffic flow calculated based on recently received taxi 
trajectories (R). In short,        . In our method, we model 
this problem as an mth-order Markov chain, and implement the 
model on-the-fly using a high-dimensional embedding approach. 

Table 1 Notations 

 

3.2.1 Modeling Traffic Condition 
We track the traffic condition                  at each time stamp   , as shown in Figure 4. Here,   can be the average velocity that 
vehicles can traverse on a road segment, or the average travel time 
of a landmark edge. This time series of real-time traffic can be 
calculated based on the recently received taxi trajectories and/or 
road sensors, using some approaches. One method is calculating 
the average speed or travel time of the samples on a road. 

 
Figure 4: The framework for traffic prediction 

Typically, the traffic condition is updated at a certain frequency  ,                                  .           (5) 

Given the accumulated historical traffic conditions  , we aim to 
predict the traffic condition at a future time     , where 

      ,                 =1, 2,…                     (6) 

In practice, the delay   is configured by user-sending queries, 
whereas   is often determined by a traffic monitoring system.  

Since the traffic condition is usually presented to end users using 
discrete states, we map the continuous    value into a finite state 
space   by a discretization function       . For example, after 
the VE-Clustering algorithm, the travel times of transitions 
pertaining to a landmark edge are discretized into a cluster set, 
which can be regarded as the state space. After the discretization,                   is converted into a state sequence, which can be 

considered as the realization of a stochastic process              , 
where each    is a random variable. Intuitively, the traffic 
condition at    usually depends on the time a short period before   , 
e.g., 1-2 hours, i.e., the past   states. Hence, we model this 
stochastic process as an mth-order Markov chain [24], stated as:                                                                                     (7)      ,          . Thus, for simplicity, we define our 
problem as: Predict the distribution of      given the realization 
of         , i.e., compute the h-step-ahead transition probability 

                                              ,       (8) 

3.2.2 High Dimensional Embedding  
Our solution is comprised of the following four steps: 

Step 1: Compute 1-step-ahead transition matrix of the mth-order 
Markov chain in   space using the Bayesian probability model. 

We denote the  -step-ahead transition probability 

                                                 ,       

by notation                   
. Then the  -step-ahead transition 

matrix of the  th-order Markov chain is denoted by 

                                                                                      (9) 

For   = 1, we can compute the 1-step-ahead transition matrix   =     
 based on the Bayesian probability theory. That is,                                                                                                           

                  =
                                                                              .                       (10) 

The numerator and denominator of Equation 10 are calculated 
based on the statistics in the historical data when implementing. 

Example 1. Figure 5 shows an exemplary 1-step-ahead transition 
matrix       

 , where   = 2 and the state space is  ={1, 2} (1 
could be the normal traffic and 2 could indicate a traffic jam). For 
instance, the element (at row 11 and column 2)      = 0.205 is 
the transition probability from {  = 1;    = 1} to    = 2. The value 
of       is calculated according to Equation 10.  

             
                      (                                        )                

                                    (                                                   )   

   Figure 5:   =        Figure 6:   =      
Step 2: Embed the  th-order Markov chain into an    space by 
binding the consecutive   variables from           into a vector. 

Basically, when   1, we can still use Equation 10 to compute the  -step-ahead transition matrix. However, this process is very time 
consuming as we need to scan the whole sample space   many 
times for different  . Instead, we compute the  -step-ahead 
probability by mapping the mth-order Markov chain    } from a 

  Traffic updating frequency    Delay (future) time     A traffic condition at time t   The collection of      Traffic condition space   A finite state space  ( ) A discretization function  :        A random variable in   
space.    Realization of   ,   = (   )   .   Order of a Markov chain   ( )  -step-ahead transition matrix of the  th-order Markov chain in     ( )  -step-ahead transition matrix of the 1st-order Markov chain in        ( )

 The  -step-ahead transition probability  of a Markov chain from 
state   to state b. 

H R F

H + R → F

τ  

t1

φ=hτ  

t2 t3 tn tn+h=tn+φ 
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space   into an   dimensional space    according to Lemma 1, 
as illustrated in Figure 7. 

LEMMA 1. Let  ⃗                      be a random vector of 

dimension  , where          is a mth-order Markov chain in the 

space  , then   ⃗        is a 1st-order Markov chain in the space   . 

 
Figure 7: Mapping an mth-order Markov chain from   to    spaces 

Step 3: Compute the  -step-ahead transition matrix      of the 
converted Markov chain in the    space. 

According to Lemma 1,   ⃗        is a 1st-order Markov chain in the    space. We denote the  -step-ahead transition matrix in    by:                                                               (11)  

for          ,  =1, 2,…,  .                       

Let                                               be the 1-step-ahead 

transition matrix of  ⃗   in the embedded space   , i.e.,                                 ⃗                     ⃗                                
                ={                          {          }                                                         (12)        

where                 is the element on row            and 

column     of the transition matrix  .          

According to the the Chapman-Kolmogorov equation [15], the  -

step-ahead transition matrix for  ⃗   is   multiplied by itself   times, 

i.e.,        . So,                              is an element of    at 

the row            and column             . 
Note that this property does not hold for the original  th-order 
Markov chain. That’s the reason why we embed the  th-order 
Markov chain into the    space. 

Example 2. Figure 6 presents the 1-step-ahead transition matrix  , 
which is constructed by applying Equation (12) to the matrix P 
shown in Figure 5. For example,       =  ( ⃗          | ⃗        ) 

          =   (             |           )       = 0.205. Yet,       =  ( ⃗          | ⃗        ) 

          =   (             |           )= 0,  

Since      2 and        never appear in the historical data  . 

Step 4: Compute the  -step-ahead transition matrix      in   
space based on the     . 
Given   and     , the  -step-ahead transition matrix of        in 

the   space can be computed directly as follows.  

Example 3. Figure 8 presents the matrix     =  , i.e.,   to the power 

of 5, which is the 5-step-ahead transition matrix of   ⃗    in the   
 

space (m=2). In the original   space, note 

                                                    =0.566+0.203=0.769, 

Where          
 and          

 are obtained from   . In this way, we 

compute other elements in     , shown in Figure 9. 

Formally, we have 

         
                                    (                                                                                   )                

                      (                                        )   

        Figure 8:      =                               Figure 9:      
                   {                                                                                                                                             
  (13) 

In this way, we only need to pre-compute the 1-step-ahead 

transition matrix      of      in   space while      and      can 

be calculated online (  1), which is more efficient than using a 
Bayesian probability model like Equation 10. The time cost for 
computing the matrix      is           , where   < 2.376 [4]. In 
the implementation, since both   and     (number of states) are 
small (e.g.,     3;       5), the online computation is affordable. 
To further improve the efficiency, we can compute      with 
some small  =2, 3 in advance. 

As a result, we obtain the future traffic condition (a distribution of 
states)   ahead of the present time. The value (a representative 
travel time) of a state can be calculated in terms of the mean of the 
samples pertaining to the state. Though in our system this 
condition is represented as a distribution of travel times associated 
with a landmark edge at time    , the method can be generally 
applied to other datasets and traffic prediction problems. 

4. SERVICE PROVIDING 
This section details the service providing process, which consists 
of 5 steps, as shown in the left part of Figure 1: 

1) Query Sending. A user sends a query (            to the 
Cloud. Specifically,               ,      , 0     1 
(typically stored in a mobile phone) is a custom factor indicating 
how fast a user usually drives on the ith landmark edge, and   
denotes the number of landmark edges. The larger the value    
has, the faster the user drives on the ith edge. Initially, each    can 
be set as a default value, and be gradually adapted to the user’s 
driving habits in terms of the user’s driving paths collected later. 

2) Route Computing. In this step, the Cloud first chooses a proper 
landmark graph according to the day type and weather of the 
departure time   . Then, a two-stage routing algorithm is 
performed to find out a time-dependent fastest route. In the first 
stage, we search the landmark graph (see Figure 2 C for an 
instance) for a rough route represented by a sequence of 
landmarks, using a time-dependent routing algorithm, like [5]. For 
example, Figure 10 A) depicts the travel time distribution of a 
landmark edge   in a given time slot, where (     ) denotes 5 
categories of travel times. Then, we convert this distribution into a 
cumulative frequency distribution function and fit it with a 
continuous cumulative frequency curve [3] depicted in Figure 10 
B). Given a user’s custom factor   = 0.7 of this landmark edge, 
we can particularly determine the travel time of the user on this 
landmark edge and in this time slot. Note that the traffic 
conditions (travel time distributions) on a landmark edge at a 
future time are computed using the method proposed in Section 
3.2. For instance, we can respectively pre-calculate the travel time 
distribution of a landmark edge at the time that is 15, 30, 45, and 
60 minutes later then the present time. Then, in the routing 
algorithm, we can choose the distribution of the time slots 
according to the time that the user will arrive at the landmark edge. 

In the second stage, we perform a detailed routing that finds the 
fastest path (based on speed constraints) connecting consecutive 
landmarks in the rough route generated in the first stage. This 

Yj Yj+1 Yj+m-1 Yj+m

Yj Yj+1 Yj+h

The S space

The Sm space



two-stage routing algorithm is even more efficient than existing 
methods. First, the rough routing on a landmark graph is very fast 
as a landmark graph is only a subset of the original road network. 
Second, the search space of the detailed routing becomes smaller 
than before as the distance between two landmarks is shorter than 
that between the original start and end points. 

     
A) Travel time distribution      B) Cumulative frequency distribution  

Figure 10: Travel time w.r.t. custom factor 

3) Route Downloading and 4) Path Logging. The Cloud sends 
the computed driving routes along with the travel time 
distributions of the landmark edges contained in the driving route 
to the phone. Later, the mobile phone logs the user’s driving path 
with a GPS trajectory, which will be used to recalculate the user’s 
custom factor  . The more a driver uses this system, the deeper 
this system understands the driver; hence, a better driving 
direction service can be provided. 

5) Adapting custom factor. For simplicity, we choose one      

to demonstrate the updating process. Initially, we assign    a 
default value, e.g., 1.0. Let       be the    the client sent to the 
cloud at the M-th query, and         be the cumulative 
distribution function (refer to Figure 10B for an example) of the 

ith landmark edge. After traveling, we calculate the real travel 

time of the landmark edges       by the recorded GPS traces. 
Then the mobile client computes the new custom factor by:    ̃        (     )                             (14) 

To obtain a stable value for   , we need to study the most recent   
driving routes of a user instead of a single trip. Meanwhile, the 
most recent driving paths should be more valuable in calculating    than those distant past. Therefore, we compute the new    by 
using a weighted moving average(WMA) shown as below             ̃                              ̃                (15) 

where   is the window size of the moving average.  

In the next query, the         will be sent to the Cloud. Note that 
both path recording and   learning are performed in a user’s 
mobile phone. Therefore, the user’s privacy is preserved.  

5. Evaluation 
Considering that the travel time of a driving route depends on 
route, traffic and driver, we evaluated the following two aspects in 
the experiments. 1) Does our method precisely predict the future 
traffic conditions? 2) Does our method learn a user’s diver 
behavior accurately and estimate the travel time of a route for the 
user precisely? If the answers are yes, our service is valuable. 

5.1 Datasets 
Taxi Trajectories: We build our system using GPS trajectories 
generated by 33,000 taxis over a period of 3 months. The total 
distance of the dataset is over 400 million kilometers and the total 
number of GPS point reaches 790 million. The average sampling 
interval of the dataset is 3.1 minutes and the average (Euclidian) 
distance between two consecutive points is about 600 meters.  

Road Network: The adaptive routing is based on the road network 

of Beijing which has 106,579 road nodes and 141,380 segments. 

Singapore traffic data: This dataset includes the updates (in a 
frequency of every 26 minutes on average) of traffic conditions on 
50 road segments in Singapore from Nov. 1- Dec. 13 (43 days). 

5.2 Evaluation on Traffic Prediction  
Framework: 1) Prediction on a landmark edge: We use the taxi 
trajectories of the first two months as a training set (for offline 
mining) and choose 12 days, consisting of 6 workdays and 6 
weekends, from the trajectories of the third month as a test set. 6 
out of the 12 days had normal weather conditions, and the 
remainder had severe weather conditions. We use the expectation 
of the travel times as a predictor calculated based on the inferred 
distribution. The ground truth of a given landmark edge is 
computed in terms of the average travel time of the transitions 
(from the test dataset) pertaining to the landmark edge in the time 
slot to be inferred. 1,000 landmark edges with over 10 transitions 
are chosen for the evaluation. 2) Prediction on a road segment: 
We also test the performance of our method predicting traffic on 
road segments, using the Singapore traffic data. 

Baselines: We compare our     approach with two baseline 
methods: 1)   method (T-Drive [26]). This method selects the 
travel time distribution from the historical traffic patterns 
according the time slot to be inferred, and then transfer the 
distribution into a travel time expectation. 2)   method (ARIMA  
[10], whose order is determined using AIC criterion). This is a 
well-known baseline method predicting the traffic conditions on a 
landmark edge (or a road segment) in terms of the samples (e.g., 
taxi trajectories) received a certain time (e. g, 1 or 2 hours) earlier 
than the time to be inferred.  

Measurements: To quantify the accuracy of the traffic inference, 
we use the root mean square error (RMSE) defined as:      √        ̂                                (16) 

where   is the real travel time,  ̂  is the predicted travel time and   is the number of predictions. Using this measurement, we study 
the performance of our approach changing over  . If not specified, 
the default   is 2, i.e., second-order Markov Model. 

Figure 11 a) shows the overall RMSE (the lower, the better) with   =90min,  =15min, between 2pm-7pm on weekdays. Clearly,     outperforms both the   and   methods, especially in the 
rush hours (6pm‐7pm), in which the traffic patterns (likely 
affected by multiple factors) change significantly and in complex 
ways; hence becomes difficult to predict for the baseline methods. 
Generally speaking, our method models a set of historical traffic 
patterns (for a landmark edge) conditioned by the recent traffic 
flows,       . Therefore, our method chooses different   
patterns to predict future traffic in terms of the  . However, the 
stand alone   method only has one pattern corresponding to a 
given time slot. 

 

a) w.r.t. time of day( =90min)                       b) w.r.t.   (  =30min) 

Figure 11: RMSE of different methods 
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Figure 11 b) plots the RMSE changing over   with  =30 minutes. 
As the delay   increases, the performance of these approaches 
decreases while our approach has smaller RMSE (about a 30-
second gap) than the competing methods. In short, given the same 
prediction error, our method is more capable of predicting traffic 
conditions at a farther time than   and   methods.  

Figure 12 a) visualizes the distribution of residual error of the 
three methods, where     has a clear advantage over   and  . 
Figure 13 investigates the performance varying in the order  , of 
our Markov model. Obviously, the 2nd-order model outperforms 
the 1st-order model because the traffic condition of a future time   
depends on not only the state right before   but also a sequence of 
traffic states in the near past of  . However, the larger   we select, 
more data and heavier computation are needed. In practice, it is 
not necessary to choose a very large   given that the traffic 
condition does not rely on the distant past. 

              

Figure 12: Distribution of residual error         Figure 13. RMSE vs   

Table 2 shows the RMSE of our method (with or without 
considering the weather) in predicting the future traffic conditions, 
using the time slot 6pm-7pm of the test days having a severe 
weather condition. Clearly, weather information brings significant 
benefit to our model. Given limited space we do not present more. 

Table 2: RMSE considering weather information   (min) with weather (s) without weather (s) 

30 90.6 106.6 

60 98.6 107.1 

90 97.7 140.4 

Figure 14 shows the overall precision of the predictions on road 
segments using the Singapore traffic data. Here, the traveling 
speed of a road is discretized into four classes representing 
different volumes of traffic flows according to a pre-defined 
schema, e.g., green denotes >40km/h and yellow represents 20-
40km/h. Though both ours and the   method outperform the   
method, our approach did not show clear advantages over the   
method according to the aggregated results (over 50 segments). 
But, our method does have a significantly better performance than 
the two baselines when predicting the traffic conditions on some 
road segments. So, we further explore these road segments, 
aiming to reveal the features (of roads) supporting our method. 

   

 

The Shrewsbury road, which is one of the good road segments 
(for ours), has a relatively complex linking structure in the road 
network, denoted as a blue segment in Figure 16 A). There are 
five kinds of directions and throughput that can happen at one of 

its terminal points (refer to the white arrows illustrated in Figure 
16 B). Hence, the traffic pattern on this road becomes more 
complex and difficult to model. This claim is further justified by 
the traffic conditions plotted in Figure 16 C) where the travel 
speed is chaotic and disorderly over time of day. Neither   nor   
can handle such a situation very well, and thus drops behind ours, 
as shown in Figure 15.  

 
Figure 16: Traffic pattern study on Shrewsbury road 

W.r.t. the road segments where our method is no better than the 
baselines, we found they have simple connecting structures in the 
road network. As demonstrated in Figure 17, Pan Island Expy is a 
straight road segment with only one link (to other road segments) 
at its terminal points (refer to Figure 17 A)). Thus, the traffic 
pattern on this road becomes similarly periodical and easy to 
predict (see Figure 17 B)) for the baselines. However, insufficient 
data (only 43 days) affects the precision of our model in inferring 
multiple       . 

 
Figure 17: Traffic pattern study on Pan Island Expy road 

As shown in Table 3, we further studied the average number of 
links connecting to a terminal point (node) in both the Beijing 
landmark graph and Singapore roads. Since a landmark (in 
Beijing data) usually has more links than a road segment (from 
Singapore), our method has a better overall performance on the 
Beijing dataset. Meanwhile, our method is more capable of 
predicting road segments with relatively more links to others. 
Given sufficient data, our method will show a higher performance. 

Table 3: Average number of links at a terminal point  

Datasets On all segments On good segments 

Beijing landmark 3.1 8.7 

Singapore 1.9 2.5 

5.3 Evaluation on Routing  
It is very difficult to directly evaluate whether a customized route 
(provided by our system) for a real user is the actually fastest one 
due to the following two reasons. First, a user can only drive on 
one route at a given time. You would never know if other routes 
are better (for the user) than the driven one. Requesting a different 
user to travel another route simultaneously would bring 
unexpected factors (caused by their different drive behaviors and 
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A) A complex road B) Street view of the complex road

C) The traffic patterns on the complex road

A) A simple road
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knowledge) to the evaluation. Second, it is not reasonable to 
request a single user to drive two different routes separately since 
the user can learn from their past driving experiences. So, the 
route driven later will benefit from the first test. 

To address the above challenges, instead of directly finding the 
fastest driving route for a particular user, we first record the routes 
the user has driven with GPS logs and then estimate the travel 
time of these routes based on our method and baselines 
respectively, using the GPS logs as ground truths. More 
specifically, by mapping a route   to a landmark graph, we 
convert   into a sequence of landmark edges           . Then, 
we measure the accuracy of the estimation using the absolute 
percentage error (APE), defined as Equation (17).                ̂                                             (17) 

where       and  ̂     are the real and predicted travel times of   . 
Here, we use two users’ 1-year GPS logs (released in GeoLife 
dataset [28][29]) to determine the ground truth of the exact road 
segments a driver traversed and corresponding travel times. As 
proved in [26], T-Drive outperforms major routing services, such 
as speed-constraint-based and real-time-traffic-based methods, we 
only compare our approach with T-Drive here. Initially, we set  =1.0 on all the landmark edges for our method.  

Figure 18 illustrates the self-adaptive process for learning user 
A’s custom factor    on two different routes. First, the estimated 
travel time of our method gradually becomes accurate (measured 
by APE) and converges as the user A traverses these two routes 
more, showing advantage beyond that using a fixed  . For 
instance, when the user A traversed Route1 over 20 times, the 
APE of our method decreases to 0.15 while that of a fixed   = 1.0 
is still 0.3. Choosing a small   = 0.3, T-Drive has a relatively 
minor APE in the first several days, however, it drops behind our 
method after user A has traveled the route several times. This is 
because a user’s driving behavior changes over the times she has 
traveled a route. Second, the user A has different drive behaviors 
on these two routes. For example, our method can reach an APE 
of 0.15 after the user A traversed Route2 10 times while Route1 
needs to be traversed 20 times before APE approaches 0.15. 

     
(a) Route1                                        (b) Route2 

Figure 18: Self-learning user A’s custom factor 

   
                          (a) User A                                           (b)  User B 

Figure 19: Learning different two users’ factors on the same route 

Figure 19 plots the self-tuning processes of two users traversing 
the same route, demonstrating the fact that different users have 
different custom factors tuned in different ways. For instance, we 
see the clear difference between these two users’    after they 

traversed the route 11 times. Note that   is a vector rather than a 
single value and a route could include several landmark edges. 
According to these results, we should neither use the same custom 
factor for different users nor set a consistent factor for a particular 
user on different routes. Additionally, the custom factor of a user 
is dynamic and changes over the user’s driving experiences and 
skills on a road. So, our self-adaptive routing out-performs T-
Drive which is better than other major services. 

Efficiency: Besides being effective, our system is also efficient 
due to the following reasons. First, a landmark graph is only a 
subset of the original road network (8% in node size, 16% in edge 
size). So, the rough routing on the landmark graph is very fast. 
Also, a rough route indicating the key directions reduces the 
search area on a road network and enables parallel computing 
when performing the detailed routing [26]. Second, the high 
dimensional embedding approach speeds up the traffic prediction 
tremendously, as depicted in Figure 20. After calculating the 1-
step transition matrix which has the same computation with the 
statistic-based approach, our method computes the h-step (  2) 
very efficiently. The time cost shown in Figure 21 is an average 
time on calculating six transitions,   =1-6. Third, we only include 
the items (about 0.1% of     according to a study) with significant 
changes, sending a query to the Cloud. To reveal the performance 
of our method (regardless of system design), we test our system 
on a single server with 2.67GHz CPU and 16GB RAM (using a 
single thread without optimization) in the Cloud, as shown in 
Figure 21. The mobile client is running on a Windows smartphone 
with 1GHz CPU and GPRS connection. Roughly, we can answer 
1,000 queries per second using 30 (24-core) servers in a Cloud. 

 

 

6. RELATED WORK 

6.1 Traffic Estimation  
There are a few projects [1][2][9][11][12][25] aiming to learn 
historical traffic patterns, estimate real-time traffic flows and 
forecast future traffic conditions on some road segments in terms 
of floating car data [23], such as GPS trajectories as well as Wi-Fi 
and GSM signals. However, these methods are road-segment-
level inferences, which predict the traffic conditions on individual 
road segments with enough samples. Although our prediction 
model can also be used on a road segment, our work differs from 
the above methods in the following aspects. First, by using the 
landmark graphs, our work well models the city-wide traffic 
conditions from low sampling-rate trajectories (e.g., 3-5minutes 
per sample), and enables a real routing service. Second, the 
routing service considers the driver behavior both of an end user 
(for whom the route is being computed) and taxi drivers. Third, 
according to the experimental results our prediction model 
outperforms competing methods, such as ARIMA [10]. 

6.2 Smart Routing 
To optimize taxi drivers’ income, literatures [7][19] has proposed 
route recommendation services for a taxi driver by analyzing fleet 
trajectories. Here, they focus on taxi drivers’ pick-up behavior in 
creating higher profit (e.g., how to easily find passengers). So, a 
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normal end user cannot benefit from the recommended routes. 
Meanwhile, the traffic conditions are not involved in their systems. 

Papers like [17][18][21] present work that aims to provide 
personalized routes according to a user’s driving preferences in 
choosing a road, using user-computer interaction or implicit 
modeling. The recommended routes from these works are not 
optimized by travel time. Different from these works, the route we 
recommend to a driver is the practically fastest one customized for 
a particular driver, considering both traffic conditions of a future 
time (when the computed route will be actually traversed) and the 
behavior of the driver. Other factors, like day of the week, and 
weather conditions, are also considered in our routing model. 

Existing work [6][8][26] also aims to use user-generated GPS 
trajectories to improve routing services. The work presented in 
this paper significantly differs from those examples, especially 
our previous publication T-Drive [26] in the following five 
aspects. 1) T-Drive does not consider the drive behavior of end 
users for whom a route is computed. Also, a user’s mobile phone 
does not provide any knowledge of the user. But, our method self-
learns different users’ drive behaviors (varying in different roads 
and the times they traversed a road) according to the recent GPS 
logs, automatically and gradually, in their own mobile phones. 
The interaction between mobile and Cloud enables us to find the 
practically fastest driving route customized for a user. 2) T-Drive 
only employs the historical traffic patterns in the routing process. 
However, we infer the traffic conditions at a future time (when a 
road is actually driven) based on the historical patterns and real-
time traffic flow. The future traffic conditions are involved in the 
routing. 3) We incorporate other resources from the Web, like 
weather condition records, into the routing model. 4) We 
differentiate different taxi drivers’ knowledge in different regions. 
This helps us better model the traffic patterns and taxi drivers’ 
knowledge in choosing a route. 5) Given the above differences, 
we estimate the travel time of a route more precisely than T-Drive 
according to the extensive evaluations; our method hence can find 
better driving routes for a particular user. 

7. CONCLUSION 
This paper describes a system for computing shortest-time driving 
routes using traffic information and driver behavior. Specifically, 
the system mines historical traffic patterns (from GPS trajectories 
generated by taxicabs) and incorporates recent real-time traffic 
information (from the same fleet or road sensors) to predict future 
traffic conditions at the time when the computed route is actually 
driven. The system incorporates day of the week, time of day, 
weather conditions, and individual driving strategies (both of the 
fleet drivers and of the end user for whom the route is being 
computed). We build our system with a real-world dataset 
generated by over 33,000 taxis in Beijing, and evaluate our 
services with extensive experiments and in-the-field studies. The 
prediction model is also tested using a Singapore traffic dataset. 
The results show that: 1) our prediction method considering both 
historical patterns and real-time traffic,    , outperforms the 
approaches separately using  and   in predicting the future 
traffic conditions, especially, in handling road segments with 
relatively more links (to other segments). The proposed high 
dimensional embedding method speeds up the 2nd-order Markov 
model and enables the online traffic prediction. 2) Our system 
accurately estimates the travel time of a driving route for a 
particular user by self-tuning the custom factors (on different 
roads) for the user in terms of the user’s historical GPS logs. So, 
we can find practically fast routes customized for a particular user. 

In the future, we plan to learn a user’s driver behavior in a mobile 
phone, with a more efficient, accurate and advanced method. 
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