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Abstract. Most existing malicious Android app detection approaches rely on

manually selected detection heuristics, features, and models. In this paper, we

describe a new, complementary system, called DroidMiner, which uses static

analysis to automatically mine malicious program logic from known Android

malware, abstracts this logic into a sequence of threat modalities, and then seeks

out these threat modality patterns in other unknown (or newly published) An-

droid apps. We formalize a two-level behavioral graph representation used to

capture Android app program logic, and design new techniques to identify and

label elements of the graph that capture malicious behavioral patterns (or ma-

licious modalities). After the automatic learning of these malicious behavioral

models, DroidMiner can scan a new Android app to (i) determine whether it con-

tains malicious modalities, (ii) diagnose the malware family to which it is most

closely associated, (iii) and provide further evidence as to why the app is con-

sidered to be malicious by including a concise description of identified malicious

behaviors. We evaluate DroidMiner using 2,466 malicious apps, identified from a

corpus of over 67,000 third-party market Android apps, plus an additional set of

over 10,000 official market Android apps. Using this set of real-world apps, we

demonstrate that DroidMiner achieves a 95.3% detection rate, with only a 0.4%

false positive rate. We further evaluate DroidMiner’s ability to classify malicious

apps under their proper family labels, and measure its label accuracy at 92%.

Keywords: Mobile Security, Android Malware Analysis and Detection.

1 Introduction

Analysis of Android applications (apps) is complicated by the nature of the interaction

between the various entities in its component-based framework. Existing static analysis

approaches for detecting Android malware rely on either matching against manually-

selected heuristics and pre-defined programming patterns [1,2] or designing detection

models that use coarse-grained features such as permissions registered in the apps [3].

Some studies [4,5] design detection models by calculating the frequencies of isolated

framework API calls, which still miss capturing the important programming logic of

Android malware.

In this work, we introduce DroidMiner, a new approach to detect and charac-

terize Android malware through robust and automated learning of fine-grained
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programming logic and patterns in known malware. Specifically, DroidMiner extends

traditional static analysis techniques to map the functionalities of an Android app into a

two-tiered behavior graph. This two-tiered behavior graph is specialized for modeling

the complex, multi-entity interactions that are typical for Android applications. Within

this behavior graph, DroidMiner automatically identifies modalities, i.e., programming

logic segments in the graph that correspond to known suspicious behavior. The set of

identified modalities is then used to define a modality vector. DroidMiner then uses

common modality vectors to offer a more robust classification scheme, in which variant

applications can be grouped together based on their shared patterns of suspicious logic.

While DroidMiner also relies on analyzing Framework API calls, different from exist-

ing approaches that merely analyze the isolated usage of Framework APIs, DroidMiner

relies on the modalities that robustly capture the semantic relationships across multiple

APIs and proposes new techniques to automatically extract them. Rather than simply

examining whether or not the target app is malicious (a binary answer), DroidMiner

also provides specific app behavior traits (modalities) to support detection decisions.

We present DroidMiner’s algorithm for discovering and automatically extracting

malware modalities. We evaluate DroidMiner using 2,466 malicious apps, identified

from a corpus of over 67,000 third-party market apps, plus an additional set of over

10,000 official market apps from GooglePlay. We measure the utility of DroidMiner

modalities with respect to three specific use cases: (i) malware detection, (ii) malware

family classification, and (iii) malware behavioral characterization. Our results valid-

ate that DroidMiner modalities are useful for classification and capable of isolating a

wide range of suspicious behavioral traits embedded within parasitic Android applic-

ations. Furthermore, the composite of these traits enables a unique means by which

Android malware can be identified with a high degree of accuracy. We anticipate that

programs identified as sharing common modalities with known malicious apps would

then be subject to more in-depth scrutiny through, potentially more expensive, dynamic

analysis tools.

The contributions of our paper include the following:

– A description of our new two-tiered behavioral graph model for characterizing An-

droid application behavior, and labeling its logical paths within known malicious

apps as malicious modalities.

– The design and implementation of DroidMiner, a novel system for automated ex-

traction of robust and fine-grained Android app program behaviors into modalities,

as well as automated characterization of such behaviors to support detection de-

cisions.

– An in-depth evaluation of DroidMiner including its run-time performance and ef-

ficacy in malware detection, family classification, and behavioral characterization.

2 Motivation and System Goals

2.1 Motivations

We motivate our system design by introducing the inner working of a real-world An-

droid malware (MD5: c05c25b 769919fd7f1b12b4800e374b5). It attempts to perform
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the following malicious behaviors in the background after the phone is booted: stealing

users’ personal sensitive information (e.g., IMEI and IMSI) and sending them to remote

servers, sending and deleting SMS messages, downloading unsolicited apps, and issu-

ing HTTP search requests to increase websites’ search rankings on the search engine.

As illustrated in Figure 1, once the phone is booted, the receiver will send out an

alarm every two minutes and trigger another receiver (named “MyAlarmReceiver”)

by using three API calls: AlarmManager(), getServiceSystem(), and getBroadcast().

Then, MyAlarmReceiver starts a background service (named “MyService”) by calling

startService() in its lifecycle call onReceive(). Once the service is triggered, it will read

the device ID (getDeviceId()) and subscriber ID (getSubscriberId()) in the phone, and

register an object handler to access the short message database (content://sms/). Mean-

while, the service monitors changes to the SMS Inbox database (content://sms/inbox/)

by calling ContentObserver.onChange() and deleting particular messages using delete(),

and also attempts to download unsolicited APK files (e.g., “myupdate.apk”). More de-

tails can be found in our extended technical report [6].

Intent: android.intend.action.Boot_Complete

onReceive()

Receiver:MyBoolService AlarmManager()
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Fig. 1. Capabilities embedded in malware from the ADRD family. The sample achieves its mali-

cious functionalities by mainly invoking a series of framework APIs in order.

The above description motivates an important design premise that when malware

authors design malicious apps to achieve specific malicious behaviors, they typically

require the use of sets of framework API calls and specific resources (e.g., content

providers). More specifically, although attackers may attempt to launch malicious be-

haviors in a more surreptitious way, they would still have to use those framework APIs

or access those important resources.

2.2 Goals and Assumptions

The goal of DroidMiner is to automatically, effectively and efficiently mine Android

apps and interrogate them for potentially malicious behaviors. Given an unknown app,

DroidMiner should be able to determine whether or not it is malicious. Going beyond

just providing a yes or no answer, our system should be able to provide further evid-

ence as to why the app is considered as malicious by including a concise description

of identified malicious behaviors. This kind of information is typically considered the

hallmark of a good malware detection system. For example, DroidMiner can inform
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us that a given app is malicious, and that it contains behaviors such as sending SMS

messages and blocking certain incoming SMS messages.

Currently, we do not analyze native Android apps implemented using the Android

Native Develop Kit (Android NDK). According to our observations, an overwhelming

majority of Android apps today are developed using the Android SDK. Furthermore,

the vast majority of malicious behaviors in Android apps are achieved by using An-

droid SDK rather than Android NDK. Even for those malicious apps that use the NDK

to achieve some malicious behaviors, they typically also use certain Android Frame-

work APIs to obtain some auxiliary information. For example, “rooting” malware (e.g.,

samples in the family of DroidKungFu), which utilizes native code to achieve privilege

escalation, still needs to use specific Framework APIs to obtain auxiliary information

(e.g., the version of the operating system) to successfully root the phone. Hence, the

presence of such APIs in the Dalvik bytecode could still provide hints for detecting

such malware. Extending our system to include complete analysis of native code in

Android apps is future work and outside the scope of this paper.

3 System Design

DroidMiner contains two phases: Mining and Identification. As illustrated in Figure

2, in the mining phase, DroidMiner takes both benign and malicious Android apps as

input data and automatically mines malicious behavior patterns or models, which we

call modalities. In the identification phase, our system takes an unknown app as input,

extracts a Modality Vector (MV) based on our trained modalities, and outputs whether

or not it is malicious, and which family it belongs to. In addition to a simple yes/no

answer, our system can also characterize the behaviors of the app given the Modality

Vector representation.

Fig. 2. DroidMiner System Architecture

An important component in our system is the Behavior Graph Generator, which takes

an app as input and outputs a behavior graph representation. As illustrated in Figure 1,

although Android malware authors have significant flexibility in constructing malicious

code, they must obey certain specific rules, pre-defined by the Android platform, to
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realize malware functionality (e.g., using particular Android/Java framework APIs and

accessing particular content providers). These framework APIs and content providers

capture the interactions of Android apps with Android framework software or phone

hardware, which could be used to model Android apps’ behaviors. With this intuition,

DroidMiner builds a behavior graph based on the analysis of Android framework APIs

and content providers used in apps’ bytecode.

In the Mining phase, DroidMiner will attempt to automatically learn the malicious

behaviors/patterns from a training set of malicious applications. The basic intuition

is that malicious apps in the same family will typically share similar functionalities

and behaviors. DroidMiner will examine the similarities from the behavior graphs of

these malicious apps and automatically extract common subsets of suspicious behavior

specifications, which we call modalities. From an intrusion detection perspective, these

modalities are essentially micro detection models that characterize various suspicious

behaviors found in malicious apps (in Section 3.1).

In the Identification phase, DroidMiner transforms an unknown malicious app into

its behavior graph representation (using Behavior Graph Extractor) and extract a

Modality Vector (based on all trained modalities), described in Section 3.3. Then, Droid-

Miner applies machine-learning techniques to detect whether or not the app is mali-

cious. DroidMiner also has a data-mining module that implements Association Rule

Mining to automatically learn the behavior characterization (in Section 3.4).

3.1 Behavior Graph and Modalities

Behavior Graph. DroidMiner detects malware by analyzing the program logic of sens-

itive Android and Java framework API functions and sensitive Android resources. To

represent such logic, we use a two-tiered graphical model. As shown in Figure 3, at

upper tier, the behaviors (functionalities) of each Android app could be viewed as the

interaction among four types of components (Activities, Services, Broadcast Receiv-

ers, and Content Observers). We represent this tier using a Component Dependency

Graph (CDG). At the lower tier, each component has its own semantic functionalities

and a relatively independent behavior logic during its lifetime. Here, we represent this

independent logic using Component Behavior Graphs (CBG).

Component Dependency Graph (CDG) (upper tier of Figure 3) represents the in-

teraction relationships among all components in an app. Each node in the CDG is a

component (Activity, Service, or Broadcast Receiver). (Note that multiple nodes could

belong to the same type of component.) There is an edge from one node vi to another

node vj , if the component vi could activate the start of component vj ’s lifecycle.

The Component Behavior Graphs (CBG) (lower tier of Figure 3) represents each

component’s lifetime1 behavior logic (functionalities), i.e., each CBG represents the

control-flow logic of those permission-related Android and Java API functions, and

actions performed on particular resources of each component. Specifically, as illustrated

in Figure 3, a CBG contains four types of node:

1 Lifetime, as defined by Android, is time between the moment when the OS considers a com-

ponent to be constructed and the moment when the it considers the component to be destroyed.
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Fig. 3. Two-tier behavior graph

– A root note (vroot), denoting the component itself (e.g., an Activity).

– Lifecycle functions (Vlcf ), used to achieve the runtime programming logic (e.g.,

onCreate() in activities, onReceive() in receivers, and onStart() in services).

– Permission-related API functions (Vpf ), representing those permission-related (An-

droid SDK or Java SDK) API functions (e.g., Java API Runtime.execute() or An-

droid API sendTextMessage()). For simplicity, in the rest of paper, we refer both

lifecycle functions and API functions as framework API functions.

– Sensitive resource (Vres), i.e., sensitive data (files or databases) that are accessed

by the component. In this work, we consider resources as content providers (e.g.,

content://sms/inbox/), which could be extended to any other type of sensitive data.

The usage of framework API functions and sensitive resources in an app essentially

captures the interactions of an app with the Android platform hardware and sensit-

ive data. Hence, the control-flow logic of framework API functions and the actions

performed on those sensitive resources reflect an application’s range of capabilities.

The edges in CBG represent the control-flow logic of framework API functions and

sensitive resources. In terms of framework API functions, we consider that there is a

direct edge from function node vi to vj in the CBG, if (1) when vi and vj are in the

same control-flow block, vj is executed just after vi with no other functions executed

between them; or (2) when vi and vj are in two continuous control-flow blocks Bi and

Bj respectively (i.e., Bj follows Bi), vi is the last function node in Bi and vj is the

first node in Bj . Then, we call vj “is a successor of” vi. For example, in terms of the

malware sample illustrated in Figure 1, there is an edge from smsManager.getDefault()

to sendTextMessage(). In terms of sensitive resources, since our work mainly focuses

on analyzing the control-flow of sensitive functions rather than the data flow of sensitive

data, we simply consider that there is an edge from the root to the resource vr, if the

component uses that sensitive resource2.

Modality. We use the term, modalities to refer to malicious behavior patterns that are

mined from behavior graphs of Android malware. More specifically, each modality is

an ordered sequence (reserving the control-flow order) of framework API functions

(function modality) or a set of sensitive resources (resource modality) in commonly

2 We could also choose to build an edge from a framework API function (that uses that resource)

to the resource, which relies on the data flow analysis.
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shared in malicious apps’ behavior graphs3, which could be used to implement sus-

picious activities (e.g., sending SMS messages to premium-rate numbers or stealing

sensitive information). As an example, the malware sample illustrated in Figure 1 re-

lies on a function modality with an ordered sequence of two framework functions (on-

Change() → ContentResolver.delete()), and a resource modality (content://sms/inbox/)

to partially achieve the malicious behavior of deleting messages in the SMS inbox.

3.2 Mining Modalities

Based on previous concepts, DroidMiner’s approach to efficient mining of modalities

from large malware corpora involves the following three steps: Behavior Graph Gener-

ation, Sensitive Node Extraction, and Modality Generation.

Behavior Graph Generation. The generation of the behavior graph of an app con-

tains two phases: generating CDG and generating CBG. Due to the page limitation,

we mainly introduce the details of generating CBG (Details of generating CDG can

refer [6].) Since Android is component driven, and each component has its own life-

time execution logic, the extraction of control-flow logic of framework API functions

is more complex than traditional program analysis. DroidMiner generates the behavior

graph by using the following three steps.

(a) MCG (b) CFG

(c) Transformed CFG (d) CBG with API functions

Fig. 4. Illustration of generating a CBG with framework API functions

Step 1: Generate Method Call Graph. For each component, our system generates a

method call graph (MCG) containing two types of nodes: Android lifecycle functions

and user-defined methods. Since each type of component has fixed lifecycle functions

(e.g., onCreate() in an Activity), DroidMiner extracts lifecycle functions by analyzing

method names in the component. Those user-defined methods are identified by using a

static analysis tool. As illustrated in Figure 4(a), the directed edge from method M0 to

M1 implies that M0 calls M1.

3 Although modalities described in this paper are localized within a CBG, our work could be

extended to include cross CBG modalities with the usage of CDG.



170 C. Yang et al.

Step 2: Generate Control-Flow Graph. To extract the program logic corresponding

to the usage of framework APIs, DroidMiner extracts each method’s control-flow graph

(CFG) by identifying branch-jump instructions in the method’s bytecode (e.g., if-nez

or packed-switch). Each node is a block of Dalvik bytecode without any jump-branch

instructions. For example,M0 with five blocks is illustrated in Figure 4(b). The directed

edge from block B0 to B1 implies that B1 is a successor block of B0. Then, each block

is represented as an ordered sequence of framework API functions and user-defined

methods, which are extracted from the Dalvik bytecode with function call instructions

(e.g., invoke-direct). We label a block as “null”, if it does not contain any function call

instructions . For example, in the method M0, if (1) B0 contains two API functions and

user-defined method M1, with the execution order of f01, M1 and f02; (2) B1 and B3

do not contain any function calls; (3)B2 contains method M2 and one API function f21;

(4) B3 contains one API function f41, then the control-flow graph of M0 is formed as

Figure 4(c).

Step 3: Replace User-Defined Methods. As illustrated in Figure 4(c), since each leaf

in the method-call graph does not call any other user-defined method, the leaf either

contains a subgraph of framework API functions or is “null”. Then, our approach re-

places its position in its parents’ control-flow graphs with that subgraph. This process

is recursively performed, until all user-defined methods are replaced with framework

API functions. For example, if (1) M1 contains three framework API functions (fm1,

fm3, and fm4) and one “null” node after replacing its children methods M3 and M4 as

illustrated in the middle of Figure 4(d), and M2 does not contain any function nodes,

then after replacing its children methods M5 and M6, the graph will be transformed

to Figure 4(d). Finally, the CBG will be generated by removing those leaves that are

“null”. After the above three steps, each app’s CBG could be generated that represents

the control flow of its framework API calls.

Sensitive Node Extraction. A modality is an ordered sequence of framework API

functions and a set of sensitive resources that are commonly observed in malware’s

behavioral graphs. We denote those framework API functions and sensitive resources

as sensitive nodes (the former are called sensitive function nodes, and the latter are

called sensitive resource nodes).

We use two strategies to automatically extract sensitive nodes. The first strategy

is based on the observation that malware samples belonging to the same family tend

to share similar malicious logic. Such an observation has been validated by a recent

study, which reports that Android malware in the same family tends to hide in multiple

categories of fake versions of popular apps [7]. Based on this intuition, we group known

malware samples according to their families. Then, for each malware family, we extract

function nodes and resource nodes that are commonly shared by at least θ% members

in this family. Our second strategy is based on the observation that malware samples

hosted on third-party market websites tend to be parasitic, i.e., they masquerade as

popular benign apps by injecting malicious payloads into original benign apps. Based

on this intuition, we automatically extract sensitive nodes by calculating the additional

bytecode between the known malicious app and official Android apps sharing similar

app names. More details/discussions of the two strategies are in our technical report [6].
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Modality Generation. Intuitively, our system generates function modalities by mining

an ordered sequence (path) of sensitive function nodes from known malware samples’

behavior graphs, as illustrated in Figure 2. In particular, for each path of each known

malware’s CBG, we denote a subpath of it as a sensitive path, if it starts from one sens-

itive function node and ends with another sensitive function node. Then, after removing

those non-sensitive nodes sitting in the middle of the sensitive path, we generate func-

tion modalities from the transformed sensitive path by extracting all of its subsequences.

Generating function modalities involves the two steps: Extract Sensitive Path and Ex-

tract All Subsequences. (Due to the page limit, we leave the detailed algorithm in [6].)

Step 1: Extract Sensitive Path. For each pair of sensitive nodes Si and Sj , we ex-

tract sensitive paths Pij of framework API functions from all known malware samples’

CBGs, if Pij starts from Si and ends with Sj . In particular, for each path in the mal-

ware’s CBG, we generate modalities from the longest sensitive path, which will cover

the results extracted from those shorter sensitive paths. As an illustrative example in

Figure 4(d), if f01, fm4 and f02 are sensitive nodes, the longest sensitive path could

be illustrated as Figure 5(a). Then, we could generate a transformed path of function

nodes, through removing non-sensitive nodes in the middle. In the previous example,

a transformed sensitive path f01 → fm4 → f02 can be extracted by removing two

non-sensitive nodes fm1 and “null” in the middle.

Step 2: Extract All Subsequences. We generate function modalities by extracting all

order-preserving4 subsequences of the transformed path of sensitive function nodes.

Accordingly, we could mine four function modalities from the previous example (see

Figure 5(b)). Since DroidMiner utilizes all subsequences to generate the modalities

instead of using the original single long sequence/path, DroidMiner is resilient to many

evasion attempts by malware, e.g., insertion of loop framework API calls in the middle

that serve no purpose other than adding noise. Hence, our modalities are a more robust

representation of specific malware programming logic than using simple call sequences

or frequencies.

(a) Extract Sensitive Path

(1) Modality 1 (2) Modality 2

(3) Modality 3 (4) Modality 4

(b) Extract All Subsequences

Fig. 5. An illustration of function modality generation

4 This implies that the order of two function nodes in the subsequece remains the same as in the

original path.
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3.3 Identification of Modalities

After mining modalities, the second phase of DroidMiner involves the identification of

modalities in unknown apps (i.e., determine which modalities are contained in unknown

apps). As illustrated in Figure 2, for each unknown app, DroidMiner identifies its mod-

alities by extracting its behavior graph and generating a Modality Vector, specifying the

presence of mined modalities.

More specifically, for each unknown app, DroidMiner generates its behavior graph

and extracts sensitive paths from the graph. Then, DroidMiner obtains all potential sub-

paths by generalizing those sensitive paths. For each sub-path, if it is a modality (be-

longing to the mined modality set), we consider this app to contain this modality. This

process of modality extraction is highly efficient due to the limited number of sens-

itive nodes present in each app. In this way, once M different modalities are mined

from known malware samples, each app could be transformed into a boolean vector

(X1, X2, . . . , XM ), denoted as a “Modality Vector”: Xi = 1, if the app contains the

modality Mi; otherwise, Xi = 0. In this way, an app’s Modality Vector could represent

its spectrum of potentially malicious behaviors.

3.4 Modality Use Cases

We introduce how to use an Android app’s Modality Vector to address the following

three use-case scenarios: Malware Detection, Malware Family Classification, and Ma-

licious Behavior Characterization.

Malware Detection. The first use case involves simply determining whether or not an

Android app is malicious. In fact, it is challenging to make a confirmative decision.

For example, although some sensitive behaviors (e.g., sending network packets or SMS

messages to remote identities) are commonly seen in malware, without a deep analysis

about such behaviors (e.g., the analysis of the reputation of those remote identities),

we cannot blindly declare all apps with such behaviors to be malware. However, An-

droid malware typically needs to use multiple sensitive functions (or modalities) to

achieve its objectives: e.g., (i) sending SMS AND blocking notifications or (ii) rooting

the phone AND installing new apps. According to this observation, DroidMiner con-

siders an app to be malicious only if the cumulative malware indication from all of its

modalities exceed a sufficient threshold. That is, the single usage of one modality in a

benign app will not cause it to be labeled as malware. We use machine learning tech-

niques to learn the indication of each modality used in the cumulative scoring process.

More specifically, we consider each of mined modalities as one detection feature in the

machine-learning model. Thus, the number of detection features is equal to the dimen-

sionality of the Modality Vector. By feeding modality vectors extracted from known

malware and benign apps into the applied machine-learning classifier, the indication

of those modalities that are highly correlated with malicious apps are up-weighted in

judging an app to be malicious; those modalities that are also commonly used in benign

apps are down-weighted.

DroidMiner could also be designed to detect malware using pre-defined (strict) de-

tection rules, like policy-based detection systems discussed in Section 5, which may

lead to a lower false positive rate. However, such a policy-based design requires con-

siderable domain knowledge and comprehensive manual investigations of malware
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samples, which can limit overall scalability and thus is more suitable to be applied

to detect specific attacks. Our goal of designing a fully automated approach motivated

us to use the learning-based approach instead of policy-based ones.

Malware Family Classification. Besides detecting malware from a corpus of apps, an-

other use case is automatically determining the family that an identified malware sample

may belong to, given sufficient knowledge from existing known malware families. This

problem is also important for understanding and analyzing malware families. In fact,

many antivirus vendors still rely on common code extraction techniques, which typic-

ally manually extract signatures after gathering a large collection of malware samples

belonging to the same malware family.

Different malware samples in the same family tend to share similar malicious be-

haviors, which could be depicted by Modality Vectors. Thus, the degree of similar-

ity between the Modality Vectors of two malware samples provides an indication of

whether they belong to the same family. Hence, with the knowledge of Modality Vec-

tors mined from malware samples belonging to existing malware families, we could

also build a malware family classifier for unknown malicious apps.

Malicious Behavior Characterization. The final use case involves characterizing the

specific malicious functionality embedded within a candidate app. To solve this prob-

lem, we essentially need to know which modalities could be used to achieve specific

malicious behaviors. Then, if an app contains those modalities, we could claim with

high confidence that the app is malicious. To realize this goal, we use a data mining

technique, called “Association Rule Mining [8]”. Due to the page limit, we only intro-

duce the basic intuition here, and recommend interested readers to read our extended

version [6]. Intuitively, we mine relationships (association rules) from modalities to ma-

licious behaviors. More specifically, DroidMiner derives association rules by analyzing

the relationship between the modality usage in existing known malware families and

their corresponding malicious behaviors. For example, Zsone has two known malicious

behaviors: (i) sending SMS and (ii) blocking SMS. DroidMiner associates modalities

generated from this family to these two behaviors.

4 Evaluation

We present our evaluation results by implementing a prototype of DroidMiner and ap-

plying it to apps collected from existing third-party Android markets and from the offi-

cial Android market (GooglePlay).

4.1 Prototype Implementation

We implement a prototype of DroidMiner on top of a popular static analysis tool

(Androguard [9]). In our experience, comparing with other public Android app decom-

pilers (e.g., Dex2Jar [10] or Smali [11]), Androguard produces more accurate decom-

pilation results, especially in terms of handling exceptions. The prototype decompiles

an Android app into Dalvik bytecode, further builds its behavior graph and mines its

modalities based on the bytecode.



174 C. Yang et al.

The method call graph in an app is built by analyzing the caller-callee relationships

of all methods used in the app. For each method, DroidMiner extracts its callee methods

by analyzing the invoke-kind instructions (e.g., invoke-virtual and invoke-direct) used in

the method. Since Android is event-driven, the entrance of an app could also be UI event

methods (e.g., onClick). However, such UI event methods could only be executed after

the corresponding UI event listeners are registered (e,g., setOnClickListener). Thus, to

make the program logic more complete, DroidMiner adds an edge from UI events listen-

ers to corresponding UI event methods, although there is no such caller-callee relation-

ships in the bytecode. We use a similar strategy to address registered event handlers

and threads. DroidMiner generate the control-flow graph in each method by analyzing

branch jump instructions (e.g., if-eq). In our implementation, all behavior graphs are

stored in XGMML [12] format, a highly efficient format for graph representation and

matching.

4.2 Data Collection

We crawled four representative marketplaces, including GooglePlay, and three altern-

ative markets (SlideMe [13], AppDH [14], and Anzhi [15]). The collection from the

alternative markets occurred during a 13-day period. GooglePlay collection was harves-

ted during a two-months period. As described in Table 1, in total, we collected 67,797

free apps, where 17% of the apps (11,529) were collected from GooglePlay, and the

remaining 83% (56,268) were harvested from the alternative markets.

Table 1. Summary of Android App Collection

Official Market SlideMe AppDH Anzhi

Location U.S.A U.S.A China China

Number of Apps 11,529 15,129 2,349 38,790

Total Apps
11,529 (17%) 56,268 (83%)

67,797

Next, we isolate the set of malicious apps from our corpus by submitting the set of

apps from the alternative markets to “VirusTotal.com”, which is a free antivirus (AV)

service that scans each uploaded Android app using over 40 different AV products [16].

For each app, if it has been scanned earlier by an AV tool, we can obtain the full Virus-

Total report, which includes the first and last time the app was seen, as well as the

results from the individual AV scans. For example, BitDefender has a report for a ma-

licious app (MD5: 7acb7c624d7a19ad4fa92cacfddd9257) as Droid.Trojan.KungFu.C.

Thus, we obtained 1,247 malicious apps identified by at least one AV product. For each

malicious app, we extract its associated malware family name, and when AV reports

disagree, we derive a consensus label using the label that dominates the responses from

the AV tools. In addition, we obtain another set of malware samples from Genome

Project [17,18]. This dataset contains the family label for each malware sample. After

excluding those already appeared in our crawled malware set, there are 1,219 differ-

ent malware apps. Thus, in total, our malware dataset consists of 2,466 (1,247+1,219)

unique malicious apps that belong to 68 malware families.
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We construct a benign dataset using popular apps collected from GooglePlay. To

further clean this dataset, we submit our candidate set of 11,529 free GooglePlay apps

to VirusTotal, of which 1,126 apps were labeled as malicious by one AV product. We

discarded those apps and constructed our benign dataset using the remaining 10,403

free GooglePlay Android apps. Clearly, the benign app dataset may still contain some

malicious apps, but this set has at least been vetted by the GooglePlay anti-malware

analysis and by more than 40 AV products from VirusTotal. The problem of producing a

perfect benign app corpus remains a hard challenge, and we note that a similar approach

to construct a benign app dataset has been used in prior related work [3].

4.3 Evaluation Result

Below, we summarize our system evaluation results for malware detection, malware

family classification, behavior characterization, and efficiency.

Malware Detection. As introduced in Section 3.4, we utilize machine learning tech-

niques to conduct malicious app detection. To better evaluate the effectiveness of

DroidMiner, we utilize four widely used machine learning (ML) classifiers: Naive-

Bayes, Support Vector Machine (SVM), DecisionTree and Random Forest.

For each classifier, we conduct a series of experiments using a ten-fold cross valid-

ation to compute three performance metrics: False Positive Rate, Detection Rate, and

Accuracy. Specifically, we divide both malicious and benign datasets randomly into 10

groups, respectively. In each of the 10 rounds, we choose the combination of one group

of benign apps and malicious apps as the testing dataset, and the remaining 9 groups as

the training dataset. We further compare the performance of DroidMiner with another

classifier (used in [3]), which uses registered permissions as major detection features,

based on our collected dataset.5

Table 2 shows the results of using permission versus DroidMiner based on different

classifiers. We see that for all four classifiers, the usage of modalities as the input fea-

ture set (DroidMiner) produces a higher detection rate and lower false positive rate than

the approach of using permission features [3]. Particularly, using Random Forest Droid-

Miner achieved a detection rate of 95.3%, roughly 10% higher than the that of using

permission. Furthermore, DroidMiner produced a lower false positive rate of (0.4%), or

around 1/5th of the compared approach. Also, DroidMiner could maintain the detection

rate higher than 86% for all four classifiers. Due to space limit, we leave a more detailed

analysis of false positives and negatives in [6].

Table 2. Detection Results (DR denotes detection rate, FP denotes false positive)

Classifier NaiveBayes SVM Decision Tree Random Forest

Method Permission DroidMiner Permission[3] DroidMiner Permission[3] DroidMiner Permission[3] DroidMiner

DR 75.1% 82.2% 78.8% 86.7% 85.7% 92.4% 87.0% 95.3

FP Rate 7.2% 4.4% 3.5% 1.1% 2.2% 1.0% 2.0% 0.4%

5 We are unable to provide a direct corpus comparative evaluation with other detection systems

discussed in related work [1,2], because they are not publicly available and it is generally

difficult to completely reproduce similar systems and parameter selections.
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Family Classification. The purpose of this experiment is to measure the accuracy of

using Modality Vectors to correctly assign apps that are classified as malicious to their

correct corresponding malware family. To conduct the malware family classification, we

use samples from 12 families, each of which has more than 50 samples. The number of

samples of each family is shown in Table 3.

Table 3. Malware samples used for classification

Ind Family Num Ind Family Num Ind Family Num Ind Family Num

1 GingerMaster 166 4 AnserverBot 187 7 KMin 52 10 DroidKungFu3 327

2 GoldDream 57 5 DroidKungFu 70 8 BaseBridge 122 11 DroidKungFu4 10

3 Airpush 568 6 Leadbolt 52 9 Geinimi 69 12 Plankton 194

For each family, we use half of the samples as training dataset, and the other half

as the testing dataset. In this case, the classification accuracy represents the ratio of the

number of correctly classified samples to the total number of samples in the test dataset.

Here, we use Random Forest for classifying both the training and testing datasets. The

classifier produces a relatively high classification accuracy of 92.07%.

Fig. 6. The confusion matrix of malware classification for multiple malware families

Figure 6 shows the confusion matrix produced from our classification of the dataset

into the malware family label set. The value of the cell (i, j) in the matrix shows the

number of samples in family i, which are classified as being family j. Thus, the central

diagonal in the matrix shows the number of correctly predicted samples per malware

family. The darker the cell color is, the higher the classification accuracy is. With the

exception of Leadbolt (index is 6), most of the other families achieve an accuracy higher

than 90%. Leadbolt is an adware family, and thus its implementation may be influenced

by the campaign it is serving, and thus producing a behavior that has a wide variability,

leading its samples to appear to match a wider range of potential families.

Behavior Characterization. As described in Section 3.4, to characterize malicious be-

haviors, we construct a behavior matrix based on malicious behaviors observed within

an existing training set of known malware apps. To decrease sampling bias, we produce

our training dataset using malware samples from families which have a minimum of 5

members. Next, for each family, we manually extract a malicious behavior description
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for this family using documentation describing the malware family from sites that con-

tain malware analysis reports, such as threat reports from various AV companies (e.g.,

Symantec.com). There are many detailed public sources of information regarding mali-

cious behavior description for many existing Android malware families. For this exper-

iment, we focus on the following six malicious behaviors commonly observed within

many malware families: stealing phone information (GetPho), Sending SMS (SdSMS),

blocking SMS (BkSMS), communicating with a C&C (C&C), escalating root privilege

(Root) and accessing geographical information (GetGeo). We refer interested readers

to [6] for more details.

Table 4. Characterizations on 10 malware samples

MD5 Family Behavior

917a1aa8fafb97cdb91475709ca15cdb MobileTX SdSMS, C&C

49ea90de2336dccee188c3078ea64656 Gappusin SdSMS, BKSMS, C&C, GetGeo

d6aea5963681cf6415cc3f221e4e403b Cosha SdSMS, C&C, GetGeo

8ef081ff9fb2dd866bfc6af6749abdcf Fakeflash C&C

a835b82de9e15330893ddf2da67a6a49 HippoSMS SdSMS, BkSMS

bbb6f9a1aad8cc8c38d4441bac4852c0 DroidDeluxe Root

9b0d331aa9019bfb550f4753aba45d27 RogueLemon SdSMS, BKSMS, C&C

cfa9edb8c9648ae2757a85e6066f6515 Spitmo GetPho, SdSMS, BKSMS, C&C

ee0f74897785eb3f7af84a293263c6c5 Gamex Root

c00e43c563ecadf1e22097124538c24a Tapsnake C&C, GetGeo

Efficiency. We now consider the performance overhead of DroidMiner in identifying

modalities. As described in Section 3.3, modality identification involves three steps: 1)

decompilation, 2) behavior graph generation and 3) modality vector generation. Table

5 shows the mean and median value of time spent on each step and the overall time

required to identify modalities for all collected apps. Table 5 illustrates that DroidMiner

expended an average of 19.8 seconds and a median of 5.4 seconds to identify modalities

in an app. We provide a fine-grained analysis of the time used for generating behavior

graphs in our extended version [6].

Table 5. Time for identifying modalities.

Step Decompile Behavior Graph Modality Vector Overall

Mean 3.87 15.19 1.10 19.83

Median 1.65 3.08 0.56 5.35

5 Related Work

5.1 Mobile Malware Detection

System Call Monitoring. Systems such as [19,20,21] detect malware by monitoring

and analysis of system calls. A fundamental shortcoming of such approaches is the
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semantic gap between the system calls and specific behaviors. DroidScope [22] is de-

signed to reconstruct both OS-level and Java-level semantics. Their dynamic analysis

approach is limited by path exploration challenges.

Android Permission Monitoring. Enck et al. studied the security of Android apps by

analyzing the permissions registered in the top official Market apps [23]. Stowaway [24]

and COPES [25] are designed to find those apps that request more permissions than they

need. PScout [26] analyzes the usage trend of permissions in Android apps. Kirin [27]

detected malicious Android apps by finding permissions declared in Android apps that

break “pre-defined” security rules. More recent work also detected malicious Android

apps by designing several classifiers, whose features were built primarily on the applic-

ation categories and permissions [3]. A concern with these approaches is false positives

stemming from the coarse-grained nature of permissions and the highly common nature

of benign apps to over-claim their set of required permissions. Mario et al. [28] presen-

ted their studies of permission request patterns of Android and Facebook applications.

Framework API Monitoring. DroidRanger [1] and Pegasus [2] detect malicious An-

droid apps by statically matching against “pre-defined” signatures (permissions and An-

droid Framework API calls) of well-known malware families. Such approaches requires

semi-manual analysis of suspicious system calls and manual selection of heuristics (or

detection patterns). Thus, they are not systematic and not robust to the evolution of mal-

ware. In [4,5], the frequencies of API calls were used as detection features, and more

recently in [29], the names and parameters of APIs and packages were used as detec-

tion features. Such studies differ fundamentally from DroidMiner in that our modalities

capture the connections of multiple sensitive API functions, not just the frequency or

names of APIs.

Online Malware Detection Service. We intend to make DroidMiner available as a

public webservice for Android malware analysis and detection. Similar public services

include AndroTotal [30] which allows users to submit applications and have them sim-

ultaneously analyzed by various mobile antivirus systems and CopperDroid [31] which

performs system-call centric dynamic analysis.

Due to space limit, we leave more detailed comparisons and discussions in [6].

5.2 Android Platform Security Defense and Analysis

Existing studies have also developed several security extensions to defend against spe-

cific types of attacks. TaintDroid [32] detects those apps that may leak users’ privacy

information. However, it is not designed to detect other types of malicious behaviors

such as stealthily sending of SMS. RiskRanker [33] detects malicious apps based on

the knowledge of known Android system vulnerabilities, which could be utilized by

malicious apps, and several heuristics. Dendroid [34] is a static analysis tool which spe-

cializes in text mining of android malware code. Quire [35] prevents confused deputy at-

tacks. Bugiel et al. [36] proposed a security framework to prevent both confused deputy

attacks and collusion attacks. AppFence [37] protects sensitive data by either feeding

fake data or blocking the leakage path. Apex [38] allows for the selection of granted

permissions, and Kirin [27] performs lightweight certification of applications. Paranoid

Android [19], L4Android [39] and Cells [40] utilize the virtual environment to secure
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smartphone OS. SmartDroid [41] automatically finds UI triggers that result in sensitive

information leakage.

6 Discussion

DroidMiner against Zero-Day Attacks. Emerging malware generally falls into two

classes: fundamentally new strain with entirely novel code bases, and malware that

improves (evolves) from an existing code base. The latter form arguably represents the

dominant case. We believe DroidMiner is well designed to adapt to evolutionary change

in existing code bases, and thus useful in detecting most emerging variant strains. As

long as new malware launches malicious behaviors through utilizing modalities ob-

served in known malware families, DroidMiner should detect it. For entirely novel mal-

ware strains, an additional strength of DroidMinder is that unlike traditional systems

that require human expertise, DroidMiner’s features (modalities) can be automatically

learned and updated by feeding new malware samples.

DroidMiner against Common Evasion Techniques. We can envision that Android

malware may evolve to be more evasive. As observed by DroidChameleon [42], com-

mon malware transformation techniques (e.g., repackaging, changing field names, and

changing control-flow logic) could evade many existing commercial anti-malware tools.

However, DroidMiner is resilient to these common evasion techniques studied in [42].

Specifically, DroidMiner does not rely on specific signing signatures or class/method-

/field names to detect malware. The simple program transformation (resigning, repack-

aging, changing names) will not affect the detection model used in DroidMiner. Another

type of evasion technique is to insert noisy code and spurious calls in between malicious

sequences, or to change specific control-flow logic. However, DroidMiner is designed

to extract all subsequences of suspicious control-flow logic commonly seen in malware

(instead of relying on the exact matching of one full/long execution path). As long as

the malware follows a known programming paradigm to achieve malicious goals (e.g.,

intercepting short text messages after receiving them, and obtaining the phone number

before sending it), DroidMiner could still capture such suspicious logic regardless of

the noisy/spurious API injections in the middle of execution paths. Last but not least,

malicious apps may include a large number of benign patterns to confuse DroidMiner.

As mentioned earlier, our learning procedure typically down-weights modalities com-

monly used in benign apps and up-weights truly malicious modalities learned before.

Thus, DroidMiner still has a good tolerance of such evasion.

Limitations and Future Work. Like any learning-based approach, DroidMiner re-

quires an accurate training dataset to mine its malicious behaviors into modalities. The

effectiveness of our approach depends on the quality of the given training data, e.g.,

labeled malicious Android apps and their families. Fortunately, it was easy for us to ob-

tain such data (thanks to prior research efforts from academia and industry). In fact, one

may also recognize DroidMiner’s automatic learning approach as a feature rather than

a strict liability. Whereas most existing approaches require significant manual labor to

generate signature, specifications, and models for detection, DroidMiner offers far more

automated model generation.
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DroidMiner currently employs static analysis, which is a reasonable choice given

that current Android apps are relatively easy to reverse engineer statically, unlike no-

torious PC-based malware. Like other Java static analysis studies, DroidMiner may fail

to identify certain usages of instances/methods, which are encrypted or made by using

Java Reflection and native code. This serves as another motivation for us to incorporate

dynamic analysis in our future work.

7 Conclusion

DroidMiner is a new static analysis system that automatically mines malicious para-

sitic code segments from a corpus of malicious mobile applications, and then detects

the presence of these code segments within other, previously unlabeled, mobile apps.

We present our DroidMiner prototype and an extensive evaluation of this algorithm on

a corpus of over 2,400 malicious apps. From these 2,400 malware apps DroidMiner

achieves a 95% accuracy rate in processing over 77,000 samples from real-world app

stores. Further, we show that DroidMiner achieves a 92% accuracy in assigning mali-

cious labels to blind test suites.
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