
UC Berkeley
UC Berkeley Previously Published Works

Title
DRONA: A framework for safe distributed mobile robotics

Permalink
https://escholarship.org/uc/item/1f60v540

ISBN
9781450349659

Authors
Desai, A
Saha, I
Yang, J
et al.

Publication Date
2017-04-18

DOI
10.1145/3055004.3055022

Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/1f60v540
https://escholarship.org/uc/item/1f60v540#author
https://escholarship.org
http://www.cdlib.org/

DRONA: A Framework for Safe Distributed Mobile Robotics

Ankush Desai
University of California, Berkeley

ankush@eecs.berkeley.edu

Indranil Saha
Indian Institute of Technology,

Kanpur
isaha@cse.iitk.ac.in

Jianqiao Yang
University of California, Berkeley

jq.yang@berkeley.edu

Shaz Qadeer
Microso� Research, Redmond

qadeer@microso�.com

Sanjit A. Seshia
University of California, Berkeley

sseshia@eecs.berkeley.edu

ABSTRACT

Distributed mobile robotics (DMR) involves teams of networked

robots navigating in a physical space to achieve tasks in a coor-

dinated fashion. A major challenge in DMR is to program the

ensemble of robots with formal guarantees and high assurance of

correct operation. To this end, we introduce Drona, a framework

for building reliable DMR applications.

�is paper makes three central contributions: (1) We present

a novel and provably correct decentralized asynchronous motion

planner that can perform on-the-fly collision-free planning for

dynamically generated tasks. Moreover, the motion planner is

the first to take into account the fact that distributed robots may

have clocks that are only synchronized up to a tolerance, i.e., they

are almost synchronous; (2) We formalize the DMR system as a

mixed-synchronous system, and present a sound abstraction-based

verification approach for DMR systems, and (3) Drona provides a

state-machine based language for safe event-driven programming

of a DMR system and the code generated by the compiler can be

executed on platforms such as the robot operating system (ROS).

To demonstrate the efficacy of Drona, we build and verify a pri-

ority mail delivery system. Using our abstraction-based verification

approach we were able to find, within a few minutes, bugs which

could not be found by performing random simulation for several

hours. Our verified decentralized motion-planner scales efficiently

for large number of robots (upto 128 robots) and workspace sizes

(upto a 256x256 grid).

CCS CONCEPTS

•Computing methodologies→Motion path planning; Coop-

eration and coordination; •Computer systems organization

→Robotic autonomy; Embedded so�ware; •So�ware and its

engineering→So�ware verification and validation;

KEYWORDS

Distributed Robotics, Verification, Programming Language for Ro-

botics, Safe Mobile Robotics, Multi-Robot Motion Planning

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permi�ed. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

ICCPS 2017, Pi�sburgh, PA USA

© 2017 Copyright held by the owner/author(s). Publication rights licensed to ACM.
978-1-4503-4965-9/17/04. . .$$15.00
DOI: h�p://dx.doi.org/10.1145/3055004.3055022

ACM Reference format:

Ankush Desai, Indranil Saha, Jianqiao Yang, Shaz Qadeer, and Sanjit A.

Seshia. 2016. DRONA:A Framework for Safe DistributedMobile Robotics. In

Proceedings of �e 8th ACM/IEEE International Conference on Cyber-Physical

Systems, Pi�sburgh, PA USA, April 2017 (ICCPS 2017), 10 pages.

DOI: h�p://dx.doi.org/10.1145/3055004.3055022

1 INTRODUCTION

Recent demonstrations of autonomous robots collaborating to ac-

complish complex missions have fueled excitement about future

opportunities offered by distributed mobile robotics (DMR). Ap-

plications of DMR systems span a broad spectrum of areas like

surveillance, law enforcement, agriculture, disaster management,

warehouse and delivery systems. As DMR systems are becoming

increasingly prevalent in complex safety-critical applications, pro-

grammability with high assurance and provable guarantees is a

major barrier to their large scale adaptation.

In this paper, we consider a class of DMR systems where a fixed

set of robots shares a known workspace with static obstacles and

the tasks to be performed by the system are generated dynami-

cally. Safe programming of such a DMR system is notoriously hard

as the programmer has to correctly reason about failures, uncer-

tain environments, asynchrony, dynamically generated tasks and

interfering robots in the workspace. To address this problem, we

presentDrona, a so�ware framework that helps build reliableDMR

systems.

Figure 1: Workspace for the mail delivery system.

Example DMR application: Fig. 1 shows the 2D representation

of a city area in which a fleet of drones operates to pickup and

deliver packages. �e black blocks represent buildings and are the

static obstacles in the workspace. �e do�ed blocks are ba�ery

charging locations that the drones must visit to charge their ba�er-

ies. Mail delivery tasks are nondeterministically generated by the

ICCPS 2017, April 2017, Pi�sburgh, PA USA A. Desai et al.

environment. We use the mail delivery system as an example DMR

application in rest of the paper and demonstrate how Drona can

be used for the safe programming of such applications.

When a team of mobile robots shares the same workspace, one of

the fundamental problems is to prevent collisions and still compute

optimal motion plans for the individual teammembers. For example,

in the mail delivery system, mail requests are generated in real-

time and the drones might have to move simultaneously in the

workspace computing collision-free paths on-the-fly. To address

this problem, Drona implements a provably correct multi-robot

motion planner (MRMP) which is decentralized, asynchronous, and

reactive to dynamically generated task requests.

Prior work onmulti-robotmotion planning (e.g. [5, 26, 27, 29, 30])

makes an assumption that the robots in the system step syn-

chronously, or in other words, their local clocks are synchro-

nized. However, in distributed systems there is no perfect syn-

chrony and hence this unsound assumption can lead to motion

planner computing colliding trajectories. With the advances in

time-synchronization protocols [12], clocks in the distributed sys-

tem can be synchronized within a small bound. One of the salient

features of MRMP implemented in Drona is that it does not as-

sume perfect synchrony of the distributed clocks. It produces safe

collision-free trajectories taking into account the “almost synchro-

nized” nature of a time-synchronized DMR system.

A major challenge in programming autonomous reactive robots

is to correctly handle nondeterministically generated events and

their interleavings. We integrate a state-machine based program-

ming language P [8] into the Drona tool-chain. P simplifies the

process of implementing and specifying event-driven asynchronous

programs. �e generated C code from the high-level P program can

be directly deployed on Robot Operating System (ROS) [25]. P sup-

ports Zing [2, 9], a state-of-the-art model-checker for verification

of P programs.

We take a principled approach towards specifying and imple-

menting a generic DMR so�ware stack (Sec. 2.1) in P language. A

DMR system implemented using Drona so�ware stack consists of

both event-driven asynchronous processes and periodic processes.

We formalize such a DMR system as a mixed-synchronous system.

We verify the system using Zing’s implementation of a model

checking approach based on the notion of approximate synchrony,

an idea we previously introduced [10].

To demonstrate the efficacy of the Drona tool chain, we imple-

mented and verified themail delivery system. Using the abstraction-

based verification approach we found several critical bugs in our

implementation of the application and so�ware stack which the ran-

dom simulation based approach failed to find. Our results show that

MRMP scales efficiently for systems with large number of robots

(upto 128 robots), and can be used for on-the-fly computation of

safe-trajectories in real systems. Drona tool-chain and simulation

videos of some of our experiments are publicly available [11].

In summary, our contributions are the following:

• We present a novel and provably correct decentralized asynchro-

nous motion planner that can perform on-the-fly collision-free

planning for dynamically generated tasks. Moreover, the motion

planner is the first to take into account the fact that distributed

robots may have clocks that are only synchronized up to a toler-

ance.

• We formalize the DMR system as a mixed synchronous system

and implement a sound abstraction-based model checking ap-

proach in Drona for verifying DMR systems.

• We demonstrate the advantages of using Drona for safe pro-

gramming and verification of DMR systems by implementing

themail delivery system as a case study. Using Drona, we found

several critical bugs in our implementation which a rigorous

random simulation based approach failed to find.

2 PRELIMINARIES

In this section, we first provide an overview of the DMR so�ware

stack implemented in Drona, followed by the set of definitions

used in the rest of the paper.

2.1 Overview of DMR So�ware Stack

S
o

ft
w

a
re

S
ta

ck

Multi-Robot Motion Planner

Plan

Executor

Sense And

Infer

Mail Delivery

System

Robot State

Network Comm.

Controllers

R
o

b
o

t

S
D

K

T
a

sk

P
la

n
n

e
r

API

Time

Synchronization

Protocol

Figure 2: Robotics So�ware Stack

Fig. 2 presents the modular so�ware stack executed by each

robot in the DMR system. �e edges in Fig. 2 represent interac-

tion between modules, these modules interact by sending events

asynchronously.

At the top is the task-planner (TP) that implements the ap-

plication specific protocol to guarantee that the system satisfies

application-specific goals. For example, the task-planner for mail

delivery system is responsible for ensuring that the mail requests

are handled responsively and are always delivered in priority order.

Whenever task-planner wants the robot to perform a task by going

to a location, it sends a request to the motion-planner to compute

a trajectory to the goal location. It is the role of multi-robot mo-

tion planner (MRMP) module to compute safe and collision-free

trajectory for the robot by coordinating with other robots in the

system. On computing a trajectory, the motion-planner sends the

trajectory to the plan-executor module.

�e plan-executor (PE) module ensures that the robot correctly

follows the trajectory computed by the motion planner. �e sense

and infer (SI) module implements the monitoring state-machines

that continuously monitor the sensor streams coming from the

robot and informs the task-planer only if it infers an event that

requires task planner’s a�ention. For example, there is a Ba�ery-

Monitor state-machine that monitors the ba�ery sensor data-stream

DRONA: A Framework for Safe Distributed Mobile Robotics ICCPS 2017, April 2017, Pi�sburgh, PA USA

coming from the robot and only informs the task-planner when the

ba�ery level is less than a threshold. Robot manufacturing compa-

nies also provide a so�ware development kit (SDK) that implements

basic primitives for programmatically controlling a robot, sampling

its state and communicating with other robots in the system. We

verified the implementation of DMR so�ware stack under the as-

sumption that the robot SDK is correct. Further details about the

so�ware stack are available online [11].

2.2 Terminology and Definitions

In this section, we formalize the definitions needed for the rest of

the paper.

Workspace: We represent the workspace for a DMR application

as a 3-D occupancy grid map, the top view of an example 3-D

workspace is shown in Fig. 1. �e grid decomposes the workspace

into cube-shaped blocks. �e size of a workspace is represented

using the number of blocks along each dimension. For example, if

the workspace contains nx , ny and nz blocks along the x, y and z

dimension respectively, the size of the workspace is represented as

[nx × ny × nz]. Each block is assigned a unique identifier (Fig. 1)

which represents the location of that block in the workspace. �e

set of all locations in the workspace is denoted by the setW . Some

parts of the workspace can be occupied by static obstacles. If a grid

block is partially occupied by an obstacle, we mark the entire grid

block to be covered by obstacle. �e set of locations covered by

obstacles is denoted by Ω. �e set of free locations in the workspace

is denoted by F , where F =W \Ω. �e fixed set of robots operating

in the workspace is denoted by the set R = {r1, . . . , r |R |}.

Tasks: In a DMR application, tasks can be generated dynamically

and assigned to a robot. An atomic task is denoted as the tuple (l ,p),

where l ∈ F denotes the goal location where the robot needs to

reach for finishing the task, and p ∈ N denotes the unique identifier

of the task. We denote by T the set of all atomic tasks. A complex

task can be represented as a sequence of atomic tasks. In the rest

of the paper, we will use the term task to refer to an atomic task.

Motion primitives: Motion primitives are a set of short closed-

loop trajectories of a robot under the action of a set of precomputed

control laws [20, 22]. �e set of motion primitives form the basis of

the motion for a robot. A robot moves from its current location to a

destination location by executing a sequence of motion primitives.

We denote by Γ the set of all motion primitives available for a robot.

For example, in the most simple case a ground robot has five motion

primitives: {H, L, R, U, D}, where the primitive H keeps the robot in

the same grid block and the primitives L, R, U and D move the robot

to the adjacent le�, right, upper, and lower grid block respectively.

For a grid location l and a motion primitive γ ∈ Γ, we denote

by post(l ,γ) the location where the robot moves when the motion

primitive γ is applied at l . We use intermediate(l ,γ) to denote

the set of locations through which the robot may traverse a�er

applying γ at location l (including l and post(l ,γ)). For a motion

primitive γ ∈ Γ, we denote by cost(γ) the cost (e.g., energy ex-

penditure) to execute the motion primitive. We assume that for all

robots in the system, each motion primitive requires τ unit time

for execution. �is assumption may not hold for heterogeneous

systems and extending our approach for such systems is le� as a

future work.

Motion plan: Now we formally define a motion plan.

Definition 2.1 (Motion Plan). A motion plan is defined as a se-

quence of motion primitives to be applied to a robot ri to move

from its current location l ic to a goal location l iд . A motion plan is

denoted by ρi = (γ1 . . .γk), where, γq ∈ Γ for q ∈ {1, . . . ,k}.

Timed trajectories: �e trajectory of a robot ri can be represented

as a sequence of timestamped locations (τ i0 , l
i
0), (τ

i
1 , l

i
1) . . ., where

τ in represents the n-th periodic time step for robot ri . In the rest

of the paper we refer to (τ in , l
i
n) as l

i
n representing the location of

robot ri in the n-th time step. �e size of the period |τ in − τ
i
n+1 | = τ ,

where τ is the time it takes to execute any motion primitive.

Definition 2.2 (Trajectory). Given the current location l ic of the

robot ri and a motion plan ρi = (γ1 . . .γk) that is applied to the

robot at the time step τ in , the trajectory of the robot is a sequence of

locations ξi = (l
i
nl
i
n+1 . . . l

i
n+k
), such that l in = l

i
c , ∀q ∈ {0, . . . ,k −

1}, γq+1 is applied to the robot at location l in+q at the time step

τ in+q and l in+q+1 = post(l in+q ,γq+1).

Safe-trajectory property: �e trajectory computed by the motion

plannermust always satisfy the safe-trajectory property (Φst) which

is a conjunction of following three properties: (a) obstacle avoidance

(ϕo), (b) collision avoidance (ϕc), and (c) successful task completion

(ϕf). �e property ϕo requires that a robot never a�empts to pass

through a location l ∈ Ω associated with a static obstacle. �e

property ϕc entails that two robots never collide with each other.

�e property ϕf captures the requirement that if a robot follows

the trajectory then it will eventually reach the goal location.

3 MULTI-ROBOT MOTION PLANNER

In this section, we present the multi-robot motion planner (MRMP)

implemented in Drona. MRMP is asynchronous, decentralized, and

robust to clock skew in distributed systems.

Motion planning problem in DMR:

Problem 1. Given a set of robots R = {r1, . . . , r |R |} operating in

a common workspaceW , if a dynamically generated task (l ,p) ∈ T

is assigned to a robot ri ∈ R, find trajectory ξi such that it satisfies

safe-trajectory property Φst .

We decompose the above motion planning problem into two

sub-problems:

1. Trajectory coordination problem: For computing the

collision-free trajectory of a robot, motion planner must have a

consistent snapshot of the trajectories of all other robots in the

system (Sec. 3.1).

2. Safe plan-generation problem: Given the set of current tra-

jectories of all the robots (Ψ), synthesize a safe trajectory that is

robust against time-synchronization errors in distributed sys-

tems and satisfies Φst (Sec. 3.2).

3.1 Distributed Trajectory Coordination

In a DMR system, tasks are generated dynamically. Hence, the

motion planner for such a system should be able to compute trajec-

tories on-the-fly and in a decentralized fashion.

�e decentralized motion-planner for robot ri ∈ R is shown in

Protocol 1 in the form of a state machine, which is executed by

ICCPS 2017, April 2017, Pi�sburgh, PA USA A. Desai et al.

each robot in the system. It is presented in the form of pseudo-code

that closely represents the syntax of the P programming language.

A P program comprises of concurrently executing state machines

(a.k.a. actors) communicating asynchronously with each other

using events accompanied by typed data values. Each state machine

has an input queue and machine-local store for a collection of

variables. On entering a state, the entry function corresponding to

that state is executed. Each state has a set of event-handlers which

get executed on receiving the corresponding event. �e function

send (tr , ev,pd) is used to send an event ev with payload data pd

to target machine tr . �e function broadcast (ev,pd) broadcasts

event ev with payload pd to all the robots in workspace, including

oneself (more details about P language is available at [24]).

�e motion-planner state machine has three states: WaitForT-

askReqest, CoordinateAndGeneratePlan, andWaitForPlanComple-

tion. Planner starts executing in the WaitForTaskReqest state. On

receiving a NewTask event from the task-planner, it updates the task

information (currTaskid and l iд) and moves to the CoordinateAnd-

GeneratePlan state. If the planner receives a ReqForCurrentTraj

event from another robot r j ∈ R, it sends its current location l
i
c to

robot r j .

Upon entering the CoordinateAndGeneratePlan state, planner

broadcasts ReqForCurrentTraj event with the identifier of the cur-

rent task and its own identifier, asking for trajectories of all robots

in the workspace. Rr ecv stores identifiers of the robots that have

sent their trajectories as a response to the ReqForCurrentTraj

event, and Ψi stores the current trajectories of all those robots.

Rpend is used for storing identifiers of all robots from which it has

received ReqForCurrentTraj and have to send its newly computed

trajectory. Upon receiving the CurrentTraj event from another

robot r j , the planner adds robot r j to set Rr ecv and its trajectory ζj
to the set Ψi . �e planner state machine is blocked in Coordinate-

AndGeneratePlan state until it receives CurrentTraj event from

all the robots.

On receiving trajectories from all the robots (line 19), the plan-

ner invokes the synthesizeMotionPlan function with its current

location l ic , the goal location l iд , the set of static obstacles Ω and

the set of trajectories of all the robots Ψi . �e implementation of

plan generator function synthesizeMotionPlan is described in

Sec. 3.2. �e motion-plan returned by the synthesizeMotionPlan

function is sent to the plan-executor module so that the robot can

start executing it, and the corresponding trajectory is sent to all

the robots whose identifiers are present in the set Rpend and are

blocked waiting for the trajectory of robot ri .

If two robots ri and r j a�empt to generate motion plans simulta-

neously then a race situation arises as both of them are waiting for

the current trajectory of the other robot. �is deadlock situation is

resolved based on the unique identifier assigned to each tasks. If the

planner of ri receives a ReqForCurrentTraj event from r j in the

CoordinateAndGeneratePlan state and if the task identifier taskid
in the event is less than its current task identifier currTaskid then

it implies that the robot r j is dealing with a higher priority task. In

such a case, the motion planner of ri sends its current location l
i
c to

the motion planner of r j to unblock it and waits for r j ’s computed

trajectory. Otherwise, it adds the robot r j to the set Rpend , and

once it computes its own trajectory, sends the trajectory to unblock

r j (Line 23-25).

In the WaitForPlanCompletion state, motion planner waits for

a Reset event from the plan-executor indicating that the task is

completed, on receiving which it moves to WaitForTaskReqest.

Notice that if the planner for robot ri generates trajectory ξi ,

then ξi is always safe as the coordination protocol guarantees that

all future trajectories computed by any other robot r j will have ξi
in Ψj .

Protocol 1 Decentralized Motion Planner

1: machine DecentralizedMotionPlanner {
2: start state WaitForTaskReqest {
3: entry { l ic ←getCurrentLocation() }
4: on NewTask (task : T) do {
5: currTaskid ← task .id , l iд ← task .дoal

6: goto CoordinateAndGeneratePlan

7: }
8: on ReqForCurrentTraj (taskid , r j) do {

9: send (r j , CurrentTraj, (ri , [l
i
c]))

10: }
11: }
12: state CoordinateAndGeneratePlan {
13: entry {
14: Rpend ← {} , Rr ecv ← {}, Ψi ← {}
15: broadcast (ReqForCurrentTraj, (currTaskid , ri))

16: }
17: on CurrentTraj (r j , ζj) do {
18: Rr ecv ← Rr ecv ∪ {r j}, Ψi ← Ψi ∪ {ζj}
19: if (sizeof(Rr ecv) = |R |) then

20: ρi ← synthesizeMotionPlan(l ic , l
i
д ,Ω,Ψi)

21: SendMotionPlanToPlanExecutor(ρi)

22: ξi ← ConvertMotionPlanToTraj(ρi)

23: foreach r j ∈ Rpend
24: send (r j , CurrentTraj, (ri , ξi))

25: end

26: goto WaitForPlanCompletion

27: end if

28: }
29: on ReqForCurrentTraj (taskid , r j) do {
30: if (taskid ≤ currTaskid) then

31: send (r j , CurrentTraj, (ri , [l
i
c]))

32: else

33: Rpend ← Rpend ∪ {r j}
34: end if

35: }
36: }
37: state WaitForPlanCompletion {
38: on ReqForCurrentTraj (task id , r j) do {
39: send (r j , CurrentTraj, (ri , ξi))

40: }
41: on Reset () do {
42: goto WaitForTaskReqest

43: }
44: }
45: }

DRONA: A Framework for Safe Distributed Mobile Robotics ICCPS 2017, April 2017, Pi�sburgh, PA USA

3.2 Safe Plan Generator

In this section, we present an approach for synthesizing a motion

plan to generate a trajectory that satisfies the safe-trajectory prop-

erty Φst .

3.2.1 Motion Plan Synthesis Problem. �e inputs to the motion

plan synthesis problem (Protocol 1, line 20) for a robot ri is the

current location of the robot (l ic), the goal location (l iд), the set

of static obstacles (Ω), and the set of current trajectories of other

robots (Ψi). We call the tuple Pi = 〈l
i
c , l

i
д ,Ω,Ψi 〉 as the motion plan

synthesis problem instance for robot ri .

Recall that a trajectory ξi of robot ri is a sequence of locations

(l in , l
i
n+1, . . . , l

i
n+k
), where the trajectory starts at the n-th time

step. We adopt a technique based on composition of motion primi-

tives [26, 27] to solve the motion-plan synthesis problem. To gener-

ate such a trajectory ξi , we must synthesize a motion plan (Def. 2.1)

ρi = (γ1,γ2, . . . ,γk), where γq ∈ Γ, 1 ≤ q ≤ k . Recollect that the

desired trajectory (Def. 2.2) is realized by applying motion primitive

γq+1 to the robot at time step τ in+q .

We now define the motion plan synthesis problem:

Problem 2. Given a motion plan synthesis problem instance Pi
for robot ri , a set of motion primitives Γ, and the time step τ in when the

plan executor will start executing the motion plan, synthesize a motion

plan ρi = (γ1 . . .γk) such that the trajectory ξi = (l
i
nl
i
n+1 . . . l

i
n+k
)

generated by the plan executor by executing the motion plan ρi satis-

fies the safe-trajectory property Φst .

Accounting for clock skew: Each robot ri ∈ R operates based on

its own local clock χi . Let t denote an ideal global time reference

(just for purposes of formalization). We denote by χi (t) the valua-

tion of the clock χi at the global time t . Synchronization of these

clocks plays an important role in the correctness of our distributed

motion planning algorithm with respect to the collision avoidance

property ϕc . We assume that the DMR so�ware stack implements a

time-synchronization protocol [12] that bounds the skew between

two clocks, given by |χi (t) − χj (t)| ≤ β . If β = 0, we say that the

clocks of the robots are in perfect synchrony. Otherwise, the clocks

are almost-synchronous with precision β > 0.

To capture the skew between timed trajectories of two robots,

we define a parameter ∆ that denotes the maximum offset between

the sequences of periodic steps τ i and τ j of any two robots ri and

r j . �e value of ∆ is computed as ∆ =
⌈
β
τ

⌉
.

Theorem 3.1. If the local clocks of robots ri and r j are time-

synchronized with a synchronization precision β , and at some global

time point t , if robot ri takes the time step τ ip and robot r j takes the

time step τ
j
q , then |p − q | ≤ ∆, where ∆ is given by ∆ =

⌈
β
τ

⌉
where τ

is the duration of a time step [10].

�e above condition is called approximate synchrony and was

introduced and proved in our previous work [10]. Informally, �e-

orem 3.1 states that if the clocks of two robots are synchronized

within a bound β then the difference between the number of pe-

riodic steps taken by the two robots is bounded by ∆. Hence, for

collision avoidance, while synthesizing motion plan it is important

to know precisely where the other robots in the system would be

for a time-step window of size ±∆. �e parameter ∆ determines

how conservative a robot should be, when computing its trajectory

that avoids collision with other robots.

3.2.2 Motion Plan Generation. We now describe how a motion

plan ρi = (γ1, . . . ,γk) is synthesized from a motion plan synthesis

problem instance Pi = 〈l
i
c , l

i
д ,Ω,Ψ〉. We formulate the problem

as an optimization problem where the decision variables are the

motion primitives to be applied at different time steps, and the

objective is to minimize the total cost to execute the trajectory. �e

functions post, cost, and intermediate used in this section are

defined in Sec. 2.2.

�e objective function is given as follows:

minimize
(γ1,γ2, ...,γk)

k∑

j=1

cost(γj) (1)

�e constraints for the optimization problem is a conjunction of

four constraints as described below:

(1) Initial and final location: �e first location in ξi is the

current location l ic of the robot. Similarly, the last location in ξi
must be the goal location l iд .

l in = l
i
c ∧ l

i
n+k
= l iд (2)

(2) Trajectory continuity: A location in a trajectory is reachable

from the previous location using the motion primitive applied at

the previous location.

∀q ∈ {0, . . . ,k − 1} : l in+q+1 ∈ post(l
i
n+q ,γq+1) (3)

(3) Obstacle avoidance: No location on the trajectory should be

covered with obstacles.

∀q ∈ {0, . . . ,k − 1} ∀l ∈ intermediate(l in+q ,γq+1) : l < Ω (4)

�is constraint ensures the obstacle avoidance component ϕo of

the safe-trajectory property Φst .

(4) Collision avoidance: If the local clocks of all the robots are in

perfect synchrony, ensuring collision avoidance would require that

the robots do not occupy the same grid location in the workspace

at the same time period according to their local clock. Motion plan

synthesizer must ensure collision avoidance of robot ri ’s trajectory

represented as ξi = (l
i
nl
i
n+1 . . . l

i
n′
) with the trajectories of other

robots captured in the set Ψ. �e trajectory of any other robot r j is

denoted by (l
j
m , . . . , l

j
n , . . . , l

j
m′
) ∈ Ψ, wherem ≤ n.

�e following constraint guarantees collision avoidance property

ϕc for a perfectly synchronous system:

∀r j ∈ R \ {ri }, (l
j
m , . . . , l

j
n , . . . , l

j
m′
) ∈ Ψ :

((∀q ∈ {n, . . . , min(n′,m′)} : l iq , l
j
q) ∧

/* �e robot ri reaches destination before robot r j */

(n′ < m′ ⇒ ∀q ∈ {n′ + 1, . . . ,m′} : l i
n′
, l

j
q) ∧

/* �e robot ri reaches destination a�er robot r j */

(n′ > m′ ⇒ ∀q ∈ {m′ + 1, . . . ,n′} : l iq , l
j
m′
))

(5)

ICCPS 2017, April 2017, Pi�sburgh, PA USA A. Desai et al.

Once a robot reaches its destination, it stays there unless it com-

putes a new trajectory using the motion planner. Eq. (5) comprises

conjunction of three constraints (one per line). �e first constraint

enforces that two robots cannot occupy the same location at the

same instant while moving. �e second and third constraint spec-

ify that a robot that is moving does not occupy the location of a

stationary robot (that has stopped a�er reaching destination).

When the clocks are not perfectly synchronous, then one must

consider the synchronization precision β . We do so using the notion

of approximate synchrony introduced in �eorem 3.1. Specifically,

to ensure collision avoidance with another robot, the plan synthe-

sizer of a robot should ensure that its location at time step τ in does

not overlap with the location of the other robot at any step in the

range of (τ in − ∆,τ
i
n + ∆). Eq. (6) extends Eq. (5) to encode collision

avoidance constraint with an approximate synchrony bound of ∆.

∀r j ∈ R \ {ri }, (l
j
m , l

j
m+1, . . . , l

j
n , . . . , l

j
m′
) ∈ Ψ :

((∀q ∈ {n, . . . , min(n′,m′)} ∀p ∈ {q − ∆, . . . ,q + ∆} :

(n ≤ p ≤ m′ ⇒ l iq , l
j
p) ∧

(p < m ⇒ l iq , l
j
m) ∧ (p > m

′ ⇒ l iq , l
j
m′
)) ∧

/* �e robot ri reaches destination before robot r j */

((n′ < m′) ⇒ ∀q ∈ {n′ + 1, . . . ,m′} ∀p ∈ {q − ∆, . . . ,q + ∆} :

(p ≤ n′ ⇒ l ip , l
j
q) ∧ (p > n′ ⇒ l i

n′
, l

j
q)) ∧

/* �e robot ri reaches destination a�er robot r j */

((n′ > m′) ⇒ ∀q ∈ {m′ + 1, . . . ,n′} ∀p ∈ {q − ∆, . . . ,q + ∆} :

(p ≤ m′ ⇒ l iq , l
j
p) ∧ (p > m

′ ⇒ l iq , l
j
m′
)))

(6)

SMT solver based safe plan-generator: To synthesize the motion

plan using an satisfiability modulo theories (SMT) solver [4], we

first start by initializing the length of the trajectory (k) to be the

manha�an distance between the current location of the robot and

its goal location. �e constraints (Eq.(1)-Eq.(6)) are from the theory

of linear integer arithmetic and the theory of equality with uninter-

preted functions. We represent the obstacles using an uninterpreted

function. If there exists a solution for the set of constraints, the

solution provides us the desired motion plan. If no solution exists,

we increase the value of k by 1 and a�empt to solve the constraints

again. We iterate that process until the value of k is less than or

equal to Limax (a parameter that represents the maximal length

to be considered for generating the trajectory for robot ri). If no

motion plan of length less than or equal to Limax is found, it is guar-

anteed that there does not exist a feasible motion plan of length

less than equal to Limax for the given problem instance.

However, as our experimental results reveal (Sec. 6), an SMT

based solution suffers from lack of scalability for large grid sizes

and multi-robot systems as constraints become hard to solve.

A* based safe plan-generator: To have a scalable implementation,

we extend the well-known A* search algorithm [16] to generate safe

motion plans. A* search algorithm can natively handle the objective

function Eq. (1) and the constraints Eq. (2)-(4) for static obstacles.

We extended the function that computes adjacent nodes in A* to

incorporate the constraints in Eq. (5) and Eq. (6). We associate a

time-stamp value to each node in the A* search graph. �e time-

stamp denotes the number of steps required to reach the current

node from the start node. During adjacent node calculation, we use

time-stamp at a node to encode the constraints in Eq. (5) and Eq. (6)

to ensure that the trajectory through the potential adjacent node

will not be in collision with the trajectory of any other robot.

3.3 Plan Executor
�e plan-executor (PE) module plays an important role in the over-

all correctness ofMRMP. It is the responsibility of the plan-executor

module to ensure that the robot correctly follows its computed

trajectory. �e plan-generator (Sec. 3.2) generates safe trajectory

under the assumption that all robots in the system will follow their

timed-trajectories that they communicated to other robots.

Recollect that theMRMP protocol (Protocol 1, line 21) on com-

puting a motion plan ρi sends it to the plan-executor module. �e

plan-executor executes the sequence of motion-primitives in ρi
such that the robot ri realizes its timed-trajectory ξi (Def. 2.2). It is

implemented as a periodic state-machine with the duration of each

period as τ , executing the next motion-primitive at each period.

For all the robots to follow their timed-trajectories correctly,

the path-executor processes across robots must step periodically

with a symmetric period τ , i.e, ∀ri ∈ R,∀n, |τ
i
n − τ

i
n+1 | = τ . Since

path-executor at each robot ri step using its local clock χi , the path-

executors across the system do not step perfectly synchronously but

almost-synchronously with a bound ±∆ which the plan-generator

has accounted for in Eq. (6).

3.4 Provably Correct Motion Planner

Recollect that when computing a trajectory for a robot ri , the execu-

tion ofMRMP is decomposed into two phases: first the coordination

protocol computes the avoid trajectories set Ψi which is then used

by the safe plan-generator for computing the collision-free trajec-

tory ξi . We say that the avoid trajectories set Ψi is consistent if

∀ζj ∈ Ψi , ζj = ξ j , where ζj is the trajectory sent by robot r j to

robot ri and ξ j is the actual trajectory being executed by robot r j .

As described in Sec. 3.2.2, the A* based plan-generator always

generates trajectories that satisfy the safe-trajectory property Φst

under the assumption that avoid trajectory set Ψi is consistent. In

other words, given the set of trajectories Ψi , if the plan-generator

computes trajectory ξi then consistent(Ψi) =⇒ (ξi |= Φst).

In order to prove that the assumption consistent(Ψi) holds, we

verify (using model-checking) the following properties about the

coordination protocol: (1) Safety: �e avoid trajectory set Ψi com-

puted by the coordination protocol is always consistent. (2) Liveness:

If a dynamically generated task (l ,p) ∈ T is assigned to the robot ri
then it eventually computes consistent Ψi .

�e multi-robot motion planner described in this section satisfies

the following soundness theorem:

Theorem 3.2 (Soundness). If a dynamically generated task (l iд ,p)

is assigned to a robot ri then the corresponding trajectory ξi computed

by MRMP always satisfies the safe-trajectory property Φst .

Proof. As stated earlier, if ξi is the trajectory computed

by the plan-generator using Ψi then it provides the guarantee

that consistent(Ψi) =⇒ (ξi |= Φst) and we proved using

model-checking that the coordination protocol always satisfies

∀Ψi , consistent(Ψi). �

DRONA: A Framework for Safe Distributed Mobile Robotics ICCPS 2017, April 2017, Pi�sburgh, PA USA

However, MRMP is not complete due to the following reason:

for a given task the corresponding robot may not be able to reach

the destination due to the fact that its feasible trajectories may be

blocked by the other stationary robots.

4 VERIFICATION OF DMR SYSTEM

In this section, we describe our approach for verifying that a DMR

system (M) satisfies specification Φ.

As explained in Sec. 3.3, for the robots in the system to suc-

cessfully follow their computed trajectories, the plan executor (PE)

processes must step almost-synchronously with symmetric period τ .

Hence, the PE processes across robots are implemented as periodic

processes. All the other processes in the so�ware stack e.g., TP,

MRMP, and SI are event-driven and are composed asynchronously.

We call the DMR system as a mixed synchronous system as it is

a composition of asynchronously composed processes and almost-

synchronously composed processes.

4.1 Formal Model of DMR system

We model the DMR mixed synchronous system as a tuple

(k,S,I,Psp ,Pas , ®χ ,τ ,δ) where:

- k is the number of robots in the system.

- S is the set of discrete states of the system which is a product

of the local states of all the processes.

- I ⊆ S is the set of initial states of the system.

- Psp = {P
1
sp ,P

2
sp , . . . ,P

k
sp } is the set of process identifiers for

the symmetric periodic (PE) processes. Pisp represents symmet-

ric periodic process running on ri .

- Pas = {P
1
as ,P

2
as , . . . ,P

k
as } is the set of process identifiers for

the asynchronous processes. Pias represents composition of

asynchronous process running on ri . Pias = T P
i ‖ MRMP i ‖

SI i .

- ®χ = (χ1, χ2, . . . , χk) is a vector of real valued local clocks, each

robot ri has an associated local clock χi .

- ®τ is the common global process timetable for the periodic Psp
processes. �e timetable ®τ is an infinite vector (τ 1,τ 2,τ 3, . . .)

specifying the time instants according to local clock χi when

the process Pisp executes (steps). In other words, Pisp makes its

jth step when χi (t) = τ j where χi (t) is the value of the local

clock χi at global reference time t . Also, since the Psp processes

step with a period of τ , |τ j+1 − τ j | = τ .

- δ ⊆ S × ΣMS ×S is the labeled transition relation for themixed

synchronous system. ΣMS denote (2Psp \{})⊔Pas , the transition

labels of the system.

Note that the periodic Psp processes have the same timetable but

that does not mean that the processes step perfectly synchronously,

since their local clocks may report different values at the same

global time t .

Timed traces: A timed trace σ of the mixed synchronous system

MMS is an infinite sequence of the timestamped record of the exe-

cution of the system according to the global (ideal) time reference t

and is of the form σ : (s0, t0), . . . (sn , tn) . . . with ∀i . i ≥ 0, si ∈ S,

ti ∈ R≥0 and ti ≤ ti+1 satisfying requirements:

Initiation: s0 ∈ I, and ∀i . χi (t0) = 0, t0 = 0.

Consecution: for all i ≥ 0, there is a transition of the form

(si ,ai , si+1) in δ such that the label ai is either one of the follow-

ing:

1. �e label ai is an asynchronous process, ai ∈ Pas and the

transition represents process ai stepping at time ti .

2. �e label ai is a subset of symmetric periodic processes, ai ⊆

Psp and ∀j .P
j
sp ∈ ai , χj (ti) = τm for some m ∈ {0, 1, 2, . . .}.

χj (ti) is the value of the local clock χj at current global reference

time ti . �is transition represents a subset of symmetric periodic

processes making a step whose local clock value at time ti is

equal to some timetable value. Moreover, Psp processes step

according to their timetables; thus, if any process Pisp ∈ Psp
makes itsmth and lth steps at times tj and tk respectively, for

m < l , then χi (tj) = τ
mi < τ li = χi (tk).

4.2 Mixed Synchronous Abstraction

MMS system described above can be modeled as a hybrid or timed

system (due to the continuous dynamics of physical clocks), but the

associated methods [14, 19] for verification tend to be less efficient

for systems with huge discrete state space. Instead, we construct

the discrete abstraction M̂MS ofMMS that preserves the relevant

timing semantics of the ‘mixed synchronous’ systems.

We restate the approximate synchrony abstraction introduced

in [10] (�eorem 3.1) for symmetric periodic processes.

Definition 4.1. A systemMas is said to satisfy approximate syn-

chrony (is approximately-synchronous) with parameter ∆ if, for any

two processes Pi and Pj inMas , the number of steps Ni and Nj

taken by the two processes always satisfies the following condition:

|Ni − Nj | ≤ ∆ (7)

We extend the approximate synchrony abstraction to create an

untimed mixed synchronous abstraction ofMMS .

We define M̂MS as a tuple (k,S,I,Psp ,Pas , ρ∆,δ
a) where ρ∆

is a scheduler process that performs an asynchronous composi-

tion of all the processes while enforcing approximate synchrony

condition with parameter ∆ (computed using �eorem 3.1) only

for the Psp processes. �e scheduler ρ∆ maintains counter Ni of

the number of steps taken by each process Pisp from the initial

state. A configuration of M̂MS is a pair (s,N) where s ∈ S and

N ∈ Zk is the vector of step counts for the Psp processes. �e

transition function δa for the abstract model M̂MS can be defined

as ((s,N),ai , (s
′
,N ′)) ∈ δa iff δ (s,ai , s

′) and one of following holds:

(1) N ′j = Nj + 1 and ρ∆ permits all P
j
sp ∈ ai to make a step, (2)

ai ∈ Pas and ai makes a step.

ρ∆ scheduler enforces the mixed synchrony condition during

exploration by allowing Psp processes to step iff their step does

not violate the approximate synchrony condition and the Pas are

always allowed to step.

Untimed traces: Traces of M̂MS are (untimed) sequences of dis-

crete (global) states s0, s1, s2, . . ., where sj ∈ S, s0 ∈ I, and for all j ,

(sj ,aj , sj+1) ∈ δ
a .

Theorem 4.2. �e abstract model M̂MS is a sound abstraction of

the concrete modelMMS . Hence, M̂MS |= Φ impliesMMS |= Φ.

ICCPS 2017, April 2017, Pi�sburgh, PA USA A. Desai et al.

Proof. (Proof Sketch) Let traces(M) represent the set of all

untimed traces of the system M. �e untiming logic for timed

traces is as defined by Alur in [1]. M̂ is a sound abstraction of

M if traces(M) ⊆ traces(M̂) We derive the proof-sketch from

�eorem 3.1 in [10] which proves that for a time-synchronized

systemMps with synchronization β , the approximate synchrony

based abstract model M̂ps is a sound abstraction with parame-

ter ∆ =
⌈
β
τ

⌉
. Since the Pas are interleaved asynchronously in

bothMMS and M̂MS we can further prove that traces(MMS) ⊆

traces(M̂MS). �

Note that mixed-synchronous abstraction is critical for the verifica-

tion of DMR systems. Performing synchronous composition of all

processes in the system is unsound and performing asynchronous

composition can lead to false-positives due to over-approximation.

Implementation of the verification approach: Zing model

checker supports directed search based on an external scheduler [9].

We implemented the mixed synchrony scheduler (ρ∆) as an external

scheduler for Zing that constraints the interleaving explored during

verification. �e model-checking algorithm that uses approximate

synchrony scheduler is described in [10].

5 DRONA FRAMEWORK

�e Drona tool-chain consists of four main building blocks — (1)

an event-driven programming language for implementing and speci-

fying a DMR application, (2) a reliable DMR so�ware stack, (3) a

model checking backend for efficiently verifying the DMR system,

and (4) a runtime library for executing the generated C code on

ROS.

We extended the state-machine based programming language

P [8, 24] so that the generated C code from the compiler can be

directly executed on ROS. We also extended the language with

primitives for specifying the workspace configuration.

Drone SDK or ROS

Autogen. C

Implementation

DRONA

Runtime

Drone SDK or ROS

Autogen. C

Implementation

DRONA

Runtime

Workspace

Config. (XML)

Implementation

Specification

Test Driver/

Environment

DRONA Application

DRONA

Compiler

Generic

Software Stack

Execution

Based

Model

Checker

Reproducible Error Trace

Autogen.

C Code

DRONA

Deployment

Tool

Robot SDK or ROS

Autogen.

C Code

DRONA

Runtime

Robot Hardware

Or Simulator

Figure 3: Drona Tool Chain

A Drona application implemented using the extended P

language consists of four blocks—implementation, specification,

workspace config., and test-driver. �e implementation block is a

collection of P state-machines implementing the task planner (TP)

module. Specification block capture the application specific correct-

ness properties. �ese specifications are implemented in the form

of monitors and can be used for any temporal safety or liveness

property. �e workspace config. XML file provides details about the

workspace, like size of the workspace grid, location of static obsta-

cles, location of ba�ery charging points, starting location of each

robot, etc. �e test-driver block implements the finite environment

state machines that close the DMR system for verification.

�e Drona compiler generates a translation of the DMR ap-

plication into the Zing modeling language. We extended Zing to

support mixed-synchronous abstraction to automatically check if

the program satisfies the desired properties expressed in the speci-

fication block. �e compiler also generates C code that is compiled

by a standard C compiler and linked against the Drona runtime

and robot SDK to generate the executable code to be deployed on

each robot or the ROS simulator.

�e generic so�ware stack (Fig. 2) consisting of theMRMP, PE

and SI modules is provided as a part of the Drona tool-chain. �e

entire so�ware stack was implemented in less than 2500 lines of P

code and was systematically tested using the Zing model-checker.

6 EVALUATION

We empirically evaluate Drona with the following goals: (1) show

that the safe plan-generator can be used for on-the-fly motion plan-

ning with large number of robots and large workspace size, (2)

demonstrate advantages of using Drona for building reliable DMR

system by implementing and verifying the priority mail delivery

system as a case-study, (3) deploy the generated code from Drona

on ROS simulator for various configurations to validate the reliabil-

ity, and (4) show how time-synchronization error (∆) effects safe

optimal path computation.

All experiments were performed on a laptop with 2.5 GHz Intel i7

core processor with 16GB RAM.

Evaluation of safe plan generator: Recently, there is an in-

creased interest towards using SMT solvers for motion plan synthe-

sis [23, 26, 27]. �e performance of plan generator depends on the

complexity of constraints generated, which varies based on the size

of workspace, number of robots, their current trajectories, and the

density of static obstacles. From our experiments, we found that

the state-of-the-art solver Z3 [6] does not scale for plan generation

in the context of multi-robot systems. Generating a motion plan

with a workspace of size 64x64 and 16 robots takes 2 min 18 secs

(see Table 1).

Time in seconds

|R | Grid Size

16x16 32x32 64x64

4 0.66 3.5 15.4

8 0.9 8.5 33.55

16 - 44.6 138

Table 1: Performance of SMT-

based plan-generator

We implemented the plan-

generator using a publicly

available A* implementa-

tion [3] and encoded the path

constraints into A* search. In

our evaluation of A* based

plan generator, we increase

the number of robots from 4

to 128 and consider 2-D grids

of sizes 16x16 to 256x256 (our

motion planner supports 3-D

workspaces, simulation video at [11]). We generated random

workspaces of varying size such that 20% of the grid locations are

occupied by obstacles. We simulated a system with n robots and

created an environment that pumps in a sequence of task requests

with random goal location. We measured the amount of time it

takes for each robot to compute its trajectory. Table 2 reports the

DRONA: A Framework for Safe Distributed Mobile Robotics ICCPS 2017, April 2017, Pi�sburgh, PA USA

average computation time over 300 invocations of plan-generator

for different configurations.

Computation time in seconds

Grid Size

|R | 16x16 32x32 64x64 128x128 256x256

4 0.0174 0.0179 0.0215 0.0518 0.1485

8 0.0179 0.0184 0.0249 0.0837 0.2651

16 0.0187 0.0206 0.0318 0.0884 0.3038

32 - 0.0247 0.0435 0.1007 0.3186

64 - - 0.0666 0.1538 0.3882

128 - - - 0.2293 0.5159

Table 2: Performance of A* based plan-generator

�e results show that our plan generator that takes into account

time-synchronized clocks is scalable for large grid sizes and number

of robots. Hence we believe that it can be used for generating plans

on-the-fly in a decentralized fashion with formal guarantees.

Building mail delivery system: We implemented the priority

mail delivery system in P and composed it with the reliable Drona

so�ware stack. We used the mixed synchronous discrete abstrac-

tion (Section 4.2) for verifying that the mail delivery system satisfies

application specific properties Φa like (1) mails are always delivered

in priority order, (2) mail request if received is eventually delivered,

and (3) ba�ery status of the drones is always higher than a safe

threshold. �ese specifications were implemented as P monitors.

As Drona supports finite state model-checking, we bounded the

environment to nondeterministically send 10 mail delivery requests

with random pickup-dropoff locations and verified that the system

satisfied Φa . During the process of implementing the generic so�-

ware stack and the priority mail delivery system we found many

critical bugs that would have been hard to find otherwise using

traditional simulation based approach. For example, there was a

bug (race condition) in the coordination protocol which led to the

case where a robot computes its trajectory using an older trajectory

of other robot, causing collision. �is race condition could not be

reproduced with 2 hours of random simulations but was caught in

a few seconds using the model-checker. We also deployed the gen-

erated code on to an AscTec Firefly1 drone for conducting simple

drone missions.

Evaluation of Verification: We performed analysis of the appli-

cation in two phases:

Max depth explored

in 10 hours

|R |
Grid Size

8x8 16x16 32x32

2 X X X

4 X X X

8 X X (78)

Table 3: Scalability of verifi-

cation approach

(1) Stratified random sampling: To

catch shallow bugs in our im-

plementation, we first performed

stratified sampling [9] of execu-

tions. In this mode, Zing uni-

formly samples execution of max

depth 1000. We were able to find

most of the bugs in our implemen-

tation during this mode of testing.

Note that this is similar to perform-

ing random simulations, but much

more scalable as we use a parallel model checker for exploration.

1h�p://www.asctec.de/uav-uas-drohnen-flugsysteme/asctec-firefly/

(2) Deterministic exploration: Sampling based approaches fail to

provide coverage guarantees, for that, we performed deterministic

enumeration (with state caching) of all possible executions in the

system with max depth 100 and time budget of 10 hours. Table 3

shows the coverage results for various grid sizes and number of

robots. Xrepresents that Zing explored all possible executions

till depth 100 and (n) represents that Zing explored all possible

executions till the depth n in the given time budget.

Simulations: We also implemented a ROS simulator that supports

3-D simulation of the code generated from Drona framework. Sim-

ulation videos for various configurations are available at [11]. To

validate the reliability of code generated by Drona, we added run-

time assertions into the generated C code and ran the simulations

for 128 robots with random task generator for 12 hours. We did not

find any bug during this stress testing, confirming that the verified

code generated from the Drona framework is reliable.

Effect of ∆ on planning: �e approximate-synchrony parameter

∆ represents the clock skew (and thus, step skew) in the system and

effects the window of locations avoided by robots when computing

trajectory. In other words, it affects how conservative a robot is

when computing the trajectory. Hence, the optimal path for a

robot may change based on the value of ∆. A simulation video to

demonstrate this scenario is available at [11].

7 RELATED WORK

Related work can be summarized into the following categories:

Multi robot motion planning: �e problem of synthesizing colli-

sion free trajectories for multi-robot systems in a scenario where

the robots are preassigned a set of tasks has been addressed in

several prior work. It can be categorized as follows: (1) Centralized

motion planning (e.g. [13, 26–28]) where a central server, given a set

of tasks and robots in the system, computes the collision-free tra-

jectory for each robot offline, (2) Decentralized prioritized planning

(e.g. [5, 15, 29]) where given a fixed set of tasks, the robots in the

system coordinate with each other asynchronously for computing

the trajectories. �ese papers empirically show that decentralized

approaches can converge faster than centralized approach. In this

paper, we present a decentralized motion planning that can han-

dle dynamically generated tasks and are robust against “almost

synchrony”.

Reactive motion planning: Recently, there is increased interest

towards using temporal logic formalism for synthesizing reactive

motion plans [7, 18, 31]. �is approach, in principle, can be ex-

tended and applied to solve a DMR problem. However, the problem

with automated synthesis is that the algorithms scale poorly both

with the number of robots and the size of the workspace. Also,

they resolve collisions only locally and therefore cannot always

guarantee that the resulting motion plan will be deadlock-free and

that the robot will eventually reach its destination. Also, in this

paper we present a framework that verifies the entire so�ware stack

and not just the task-planner and motion-planner.

Programmingmodels: Programming frameworks like Gio�o [17]

have been used for building critical distributed embedded systems

so�ware. Gio�o provides an abstract model for the implementation

of periodic so�ware tasks with real-time constraints. �e closest

ICCPS 2017, April 2017, Pi�sburgh, PA USA A. Desai et al.

work related to Drona is the recently proposed StarL [21] frame-

work, that unifies programming, specification and verification of

distributed robotic system. Drona integrates a state-machine based

programming language for event-driven robotics so�ware, it pro-

vides a novel motion planner which is robust against clock-skew

in distributed systems and presents an abstraction based model-

checking approach for verification.

8 CONCLUSION

In this paper, we presented the Drona so�ware framework for

building reliable DMR systems. �e multi-robot motion planner

(MRMP) implemented in Drona is provably correct and scales effi-

ciently for large number of robots and large workspaces. MRMP is

the first to take into account the time-synchronization error in a

distributed multi-robot system when generating safe motion plans .

Using a model-checking approach leveraging the notion of approx-

imate synchrony, we were able to find bugs in our implementation

which rigorous random simulations failed to find.

As future work, we plan on applying the Drona so�ware stack

for real-world complex missions. We also plan to extend Drona

with runtime monitoring and adaptation.

9 ACKNOWLEDGEMENTS

�e first and last author were supported by STARnet, a Semicon-

ductor Research Corporation program, sponsored by MARCO and

DARPA.

REFERENCES
[1] Rajeev Alur and David L Dill. 1994. A theory of timed automata. �eoretical

computer science 126, 2 (1994), 183–235.
[2] Tony Andrews, Shaz Qadeer, Sriram K. Rajamani, Jakob Rehof, and Yichen Xie.

2004. Zing: A Model Checker for Concurrent So�ware. In 16th International
Conference on Computer Aided Verification (CAV).

[3] Astar. 2017. Astar Algorithm Cpp Github. h�ps://github.com/justinhj/astar-
algorithm-cpp.git. (2017).

[4] C. Barre�, R. Sebastiani, S. A. Seshia, and C. Tinelli. 2009. Satisfiability Modulo
�eories. In Handbook of Satisfiability, Armin Biere, Hans van Maaren, and Toby
Walsh (Eds.). Vol. 4. IOS Press, Chapter 8.

[5] Michal Cáp, Peter Novák, Martin Seleckỳ, Jan Faigl, and Jiff Vokffnek. 2013.
Asynchronous decentralized prioritized planning for coordination in multi-robot
system. In International Conference on Intelligent Robots and Systems. IEEE, 3822–
3829.

[6] Leonardo De Moura and Nikolaj Bjørner. 2008. Z3: An Efficient SMT Solver.
In Tools and Algorithms for the Construction and Analysis of Systems (TACAS).
337–340.

[7] Jonathan A. DeCastro, Javier Alonso-Mora, Vasu Raman, Daniela Rus, and Hadas
Kress-Gazit. 2015. Collision-Free Reactive Mission and Motion Planning for
Multi-Robot Systems. In International Symposium on Robotics Research (ISRR).
Sestri Levante, Italy.

[8] Ankush Desai, Vivek Gupta, Ethan Jackson, Shaz Qadeer, Sriram Rajamani, and
Damien Zufferey. 2013. P: Safe Asynchronous Event-driven Programming. In
Programming Language Design and Implementation (PLDI). 321–332.

[9] Ankush Desai, Shaz Qadeer, and Sanjit A. Seshia. 2015. Systematic Testing of
Asynchronous Reactive Systems. In Foundations of So�ware Engineering (FSE).
73–83.

[10] Ankush Desai, Sanjit A. Seshia, Shaz Qadeer, David Broman, and John C. Ei-
dson. 2015. Approximate Synchrony: An Abstraction for Distributed Almost-
Synchronous Systems. In Computer Aided Verification (CAV). 429–448.

[11] Drona. 2017. Drona Website. h�ps://drona-org.github.io/Drona/. (2017).
[12] John Eidson and Kang Lee. 2002. IEEE 1588 standard for a precision clock

synchronization protocol for networked measurement and control systems. In
Sensors for Industry Conference, 2002. 2nd ISA/IEEE. Ieee, 98–105.

[13] Michael Erdmann and Tomas Lozano-Perez. 1986. On Multiple Moving Objects.
Algorithmica 2 (1986), 1419–1424.

[14] Goran Frehse, Colas Le Guernic, Alexandre Donzé, Sco� Co�on, Rajarshi Ray,
Olivier Lebeltel, Rodolfo Ripado, Antoine Girard, �ao Dang, and Oded Maler.
2011. SpaceEx: Scalable verification of hybrid systems. In Computer Aided
Verification (CAV). 379–395.

[15] Yi Guo and L. E. Parker. 2002. A distributed and optimal motion planning
approach for multiple mobile robots. In International Conference on Robotics and
Automation (ICRA), Vol. 3. 2612–2619.

[16] P. E. Hart, N. J. Nilsson, and B. Raphael. 1968. A Formal Basis for the Heuristic
Determination of Minimum Cost Paths. IEEE Transaction on Systems Science and
Cybernetics (1968).

[17] �omas A Henzinger, Benjamin Horowitz, and Christoph Meyer Kirsch. 2001.
Gio�o: A time-triggered language for embedded programming. In International
Workshop on Embedded So�ware. Springer, 166–184.

[18] Hadas Kress-Gazit, Georgios E Fainekos, and George J Pappas. 2009. Temporal-
logic-based reactive mission and motion planning. IEEE transactions on robotics
6 (2009), 1370–1381.

[19] Kim G Larsen, Paul Pe�ersson, and Wang Yi. 1997. UPPAAL in a nutshell.
International journal on so�ware tools for technology transfer 1, 1-2 (1997), 134–
152.

[20] Steven M LaValle. 2006. Planning algorithms. Cambridge university press.
[21] Yixiao Lin and Sayan Mitra. 2015. StarL: Towards a Unified Framework for Pro-

gramming, Simulating and Verifying Distributed Robotic Systems. In Languages,
Compilers and Tools for Embedded Systems (LCTES). Article 9, 10 pages.

[22] Daniel Mellinger and Vijay Kumar. 2011. Minimum snap trajectory generation
and control for quadrotors. In International Conference on Robotics and Automa-
tion (ICRA). 2520–2525.

[23] Srinivas Nedunuri, Sailesh Prabhu, Mark Moll, Swarat Chaudhuri, and Lydia E
Kavraki. 2014. SMT-based synthesis of integrated task and motion plans from
plan outlines. In International Conference on Robotics and Automation (ICRA).
IEEE, 655–662.

[24] P. 2017. P Github. h�ps://github.com/p-org/P. (2017).
[25] M.�igley, K. Conley, B. P. Gerkey, J. Faust, T. Foote, J. Leibs, R. Wheeler, and

A. Y. Ng. 2009. ROS: an open-source Robot Operating System. In ICRA Workshop
on Open Source So�ware.

[26] Indranil Saha, Ra�anachai Ramaithitima, Vijay Kumar, George J Pappas, and San-
jit A Seshia. 2014. Automated composition of motion primitives for multi-robot
systems from safe LTL specifications. In International Conference on Intelligent
Robots and Systems (IROS). IEEE, 1525–1532.

[27] Indranil Saha, Ra�anachai Ramaithitima, Vijay Kumar, George J Pappas, and
Sanjit A Seshia. 2016. Implan: scalable incremental motion planning for multi-
robot systems. In International Conference on Cyber-Physical Systems (ICCPS).
IEEE, 1–10.

[28] Jur P Van Den Berg and Mark H Overmars. 2005. Prioritized motion planning
for multiple robots. In Intelligent Robots and Systems (IROS). IEEE, 430–435.

[29] Prasanna Velagapudi, Katia Sycara, and Paul Scerri. 2010. Decentralized priori-
tized planning in large multirobot teams. In International Conference on Intelligent
Robots and Systems (IROS). IEEE, 4603–4609.

[30] GlennWagner andHowie Choset. 2011. M*: A completemultirobot path planning
algorithm with performance bounds. In International Conference on Intelligent
Robots and Systems (IROS). IEEE, 3260–3267.

[31] Tichakorn Wongpiromsarn, Ufuk Topcu, and Richard M Murray. 2012. Receding
horizon temporal logic planning. IEEE Trans. Automat. Control 57, 11 (2012),
2817–2830.

